Newspace parameters
Level: | \( N \) | \(=\) | \( 19 \) |
Weight: | \( k \) | \(=\) | \( 13 \) |
Character orbit: | \([\chi]\) | \(=\) | 19.d (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.3658825282\) |
Analytic rank: | \(0\) |
Dimension: | \(38\) |
Relative dimension: | \(19\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.1 | −103.778 | − | 59.9160i | 1112.21 | + | 642.136i | 5131.87 | + | 8888.65i | 9865.83 | − | 17088.1i | −76948.4 | − | 133279.i | 136607. | − | 739092.i | 558956. | + | 968140.i | −2.04771e6 | + | 1.18224e6i | |||
8.2 | −101.162 | − | 58.4061i | −509.434 | − | 294.122i | 4774.55 | + | 8269.76i | −5618.03 | + | 9730.71i | 34357.0 | + | 59508.1i | 37646.3 | − | 636988.i | −92705.3 | − | 160570.i | 1.13667e6 | − | 656254.i | |||
8.3 | −79.9424 | − | 46.1548i | −112.900 | − | 65.1830i | 2212.52 | + | 3832.20i | 6369.31 | − | 11032.0i | 6017.01 | + | 10421.8i | −43502.9 | − | 30374.1i | −257223. | − | 445523.i | −1.01836e6 | + | 587948.i | |||
8.4 | −73.2301 | − | 42.2794i | 681.442 | + | 393.431i | 1527.10 | + | 2645.02i | −8480.07 | + | 14687.9i | −33268.1 | − | 57622.0i | −130670. | 88093.1i | 43855.2 | + | 75959.5i | 1.24199e6 | − | 717065.i | ||||
8.5 | −63.8174 | − | 36.8450i | −1254.11 | − | 724.058i | 667.109 | + | 1155.47i | 6597.60 | − | 11427.4i | 53355.9 | + | 92415.1i | −120010. | 203516.i | 782800. | + | 1.35585e6i | −842084. | + | 486177.i | ||||
8.6 | −45.4503 | − | 26.2407i | 618.493 | + | 357.087i | −670.847 | − | 1161.94i | −4028.61 | + | 6977.76i | −18740.5 | − | 32459.4i | 120053. | 285378.i | −10698.1 | − | 18529.6i | 366203. | − | 211428.i | ||||
8.7 | −39.7413 | − | 22.9446i | −202.195 | − | 116.737i | −995.087 | − | 1723.54i | 9461.86 | − | 16388.4i | 5357.00 | + | 9278.59i | 162465. | 279290.i | −238465. | − | 413034.i | −752053. | + | 434198.i | ||||
8.8 | −38.8416 | − | 22.4252i | −812.168 | − | 468.905i | −1042.22 | − | 1805.17i | −14355.5 | + | 24864.5i | 21030.6 | + | 36426.1i | 137365. | 277195.i | 174024. | + | 301418.i | 1.11518e6 | − | 643851.i | ||||
8.9 | −14.2608 | − | 8.23346i | 844.490 | + | 487.567i | −1912.42 | − | 3312.41i | 13891.8 | − | 24061.3i | −8028.72 | − | 13906.2i | −187143. | 130432.i | 209722. | + | 363249.i | −396216. | + | 228756.i | ||||
8.10 | −5.19053 | − | 2.99675i | −395.326 | − | 228.241i | −2030.04 | − | 3516.13i | −3340.18 | + | 5785.37i | 1367.97 | + | 2369.39i | −150303. | 48883.5i | −161532. | − | 279782.i | 34674.6 | − | 20019.4i | ||||
8.11 | 10.6262 | + | 6.13502i | 1081.85 | + | 624.608i | −1972.72 | − | 3416.86i | −3733.97 | + | 6467.43i | 7663.97 | + | 13274.4i | 109319. | − | 98668.8i | 514551. | + | 891228.i | −79355.6 | + | 45816.0i | |||
8.12 | 26.7100 | + | 15.4210i | 374.102 | + | 215.988i | −1572.38 | − | 2723.45i | −3570.15 | + | 6183.68i | 6661.52 | + | 11538.1i | 32696.9 | − | 223320.i | −172419. | − | 298638.i | −190717. | + | 110111.i | |||
8.13 | 30.7257 | + | 17.7395i | −822.069 | − | 474.622i | −1418.62 | − | 2457.13i | 6636.69 | − | 11495.1i | −16839.1 | − | 29166.2i | 61912.6 | − | 245984.i | 184812. | + | 320103.i | 407834. | − | 235463.i | |||
8.14 | 65.7272 | + | 37.9476i | 202.251 | + | 116.770i | 832.046 | + | 1441.15i | −13303.8 | + | 23042.9i | 8862.26 | + | 15349.9i | −78949.2 | − | 184570.i | −238450. | − | 413008.i | −1.74884e6 | + | 1.00970e6i | |||
8.15 | 66.5813 | + | 38.4407i | 303.254 | + | 175.084i | 907.380 | + | 1571.63i | 9795.04 | − | 16965.5i | 13460.7 | + | 23314.6i | 53709.9 | − | 175385.i | −204412. | − | 354052.i | 1.30433e6 | − | 753057.i | |||
8.16 | 73.8192 | + | 42.6195i | −962.676 | − | 555.801i | 1584.85 | + | 2745.04i | −7644.85 | + | 13241.3i | −47376.0 | − | 82057.6i | 76020.2 | − | 78956.7i | 352109. | + | 609872.i | −1.12867e6 | + | 651640.i | |||
8.17 | 87.9394 | + | 50.7718i | 1114.77 | + | 643.610i | 3107.56 | + | 5382.45i | −509.092 | + | 881.773i | 65354.5 | + | 113197.i | −101293. | 215183.i | 562748. | + | 974708.i | −89538.5 | + | 51695.1i | ||||
8.18 | 94.4468 | + | 54.5289i | −618.668 | − | 357.188i | 3898.79 | + | 6752.91i | 6399.15 | − | 11083.7i | −38954.2 | − | 67470.6i | −232754. | 403687.i | −10553.4 | − | 18279.0i | 1.20876e6 | − | 697877.i | ||||
8.19 | 107.339 | + | 61.9720i | 45.1791 | + | 26.0842i | 5633.06 | + | 9756.75i | −2921.54 | + | 5060.26i | 3232.98 | + | 5599.69i | 217949. | 888694.i | −264360. | − | 457884.i | −627189. | + | 362108.i | ||||
12.1 | −103.778 | + | 59.9160i | 1112.21 | − | 642.136i | 5131.87 | − | 8888.65i | 9865.83 | + | 17088.1i | −76948.4 | + | 133279.i | 136607. | 739092.i | 558956. | − | 968140.i | −2.04771e6 | − | 1.18224e6i | ||||
See all 38 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 19.13.d.a | ✓ | 38 |
19.d | odd | 6 | 1 | inner | 19.13.d.a | ✓ | 38 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
19.13.d.a | ✓ | 38 | 1.a | even | 1 | 1 | trivial |
19.13.d.a | ✓ | 38 | 19.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{13}^{\mathrm{new}}(19, [\chi])\).