Properties

Label 19.11
Level 19
Weight 11
Dimension 141
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 330
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 19 \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(330\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(19))\).

Total New Old
Modular forms 159 159 0
Cusp forms 141 141 0
Eisenstein series 18 18 0

Trace form

\( 141 q - 9 q^{2} - 9 q^{3} - 9 q^{4} - 9 q^{5} - 9 q^{6} - 9 q^{7} - 9 q^{8} - 9 q^{9} - 9 q^{10} - 9 q^{11} - 1493001 q^{12} + 1683291 q^{13} - 1837449 q^{14} - 2838735 q^{15} + 5621751 q^{16} + 2927502 q^{17}+ \cdots + 44372036601 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(19))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
19.11.b \(\chi_{19}(18, \cdot)\) 19.11.b.a 1 1
19.11.b.b 14
19.11.d \(\chi_{19}(8, \cdot)\) 19.11.d.a 30 2
19.11.f \(\chi_{19}(2, \cdot)\) 19.11.f.a 96 6