Newspace parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.h (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.1513609911\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −5.43050 | 0 | 21.4904 | 6.55850 | + | 11.3597i | 0 | −18.0987 | + | 3.92907i | −73.2595 | 0 | −35.6160 | − | 61.6887i | ||||||||||||
37.2 | −5.03185 | 0 | 17.3195 | 0.0751526 | + | 0.130168i | 0 | 12.4545 | − | 13.7072i | −46.8942 | 0 | −0.378156 | − | 0.654986i | ||||||||||||
37.3 | −4.21476 | 0 | 9.76423 | −3.91201 | − | 6.77580i | 0 | −15.9002 | + | 9.49654i | −7.43579 | 0 | 16.4882 | + | 28.5584i | ||||||||||||
37.4 | −3.86663 | 0 | 6.95086 | −6.67810 | − | 11.5668i | 0 | 15.1080 | + | 10.7120i | 4.05663 | 0 | 25.8218 | + | 44.7246i | ||||||||||||
37.5 | −3.66978 | 0 | 5.46732 | 7.38708 | + | 12.7948i | 0 | 15.9165 | + | 9.46920i | 9.29438 | 0 | −27.1090 | − | 46.9542i | ||||||||||||
37.6 | −3.35315 | 0 | 3.24362 | −4.35326 | − | 7.54007i | 0 | −2.88142 | − | 18.2947i | 15.9489 | 0 | 14.5971 | + | 25.2830i | ||||||||||||
37.7 | −2.66292 | 0 | −0.908849 | 9.61903 | + | 16.6607i | 0 | −5.55741 | + | 17.6668i | 23.7236 | 0 | −25.6147 | − | 44.3660i | ||||||||||||
37.8 | −1.44809 | 0 | −5.90304 | 2.21638 | + | 3.83887i | 0 | 9.71690 | − | 15.7665i | 20.1328 | 0 | −3.20951 | − | 5.55903i | ||||||||||||
37.9 | −1.33560 | 0 | −6.21617 | 4.50235 | + | 7.79829i | 0 | −3.16069 | − | 18.2486i | 18.9871 | 0 | −6.01333 | − | 10.4154i | ||||||||||||
37.10 | −0.983694 | 0 | −7.03235 | −9.35711 | − | 16.2070i | 0 | −18.4989 | + | 0.890133i | 14.7872 | 0 | 9.20454 | + | 15.9427i | ||||||||||||
37.11 | −0.534259 | 0 | −7.71457 | −0.696621 | − | 1.20658i | 0 | −2.10659 | + | 18.4001i | 8.39564 | 0 | 0.372176 | + | 0.644627i | ||||||||||||
37.12 | 0.438515 | 0 | −7.80770 | −8.04659 | − | 13.9371i | 0 | 16.9337 | + | 7.49990i | −6.93192 | 0 | −3.52855 | − | 6.11163i | ||||||||||||
37.13 | 0.590775 | 0 | −7.65099 | 5.49223 | + | 9.51282i | 0 | −16.7104 | − | 7.98524i | −9.24621 | 0 | 3.24467 | + | 5.61993i | ||||||||||||
37.14 | 1.80909 | 0 | −4.72719 | −1.04890 | − | 1.81674i | 0 | 18.3541 | − | 2.47507i | −23.0246 | 0 | −1.89755 | − | 3.28665i | ||||||||||||
37.15 | 2.37882 | 0 | −2.34120 | 9.23374 | + | 15.9933i | 0 | 15.8733 | − | 9.54133i | −24.5999 | 0 | 21.9654 | + | 38.0453i | ||||||||||||
37.16 | 2.65476 | 0 | −0.952261 | 3.67781 | + | 6.37015i | 0 | −1.32557 | + | 18.4728i | −23.7661 | 0 | 9.76368 | + | 16.9112i | ||||||||||||
37.17 | 2.93457 | 0 | 0.611720 | −1.84855 | − | 3.20179i | 0 | −18.1273 | + | 3.79476i | −21.6814 | 0 | −5.42471 | − | 9.39588i | ||||||||||||
37.18 | 3.37342 | 0 | 3.37993 | −4.87266 | − | 8.43970i | 0 | −16.1176 | − | 9.12268i | −15.5854 | 0 | −16.4375 | − | 28.4706i | ||||||||||||
37.19 | 4.30573 | 0 | 10.5394 | −7.99829 | − | 13.8535i | 0 | 1.84582 | − | 18.4280i | 10.9338 | 0 | −34.4385 | − | 59.6493i | ||||||||||||
37.20 | 4.87128 | 0 | 15.7294 | −3.10540 | − | 5.37871i | 0 | 17.8495 | + | 4.93906i | 37.6522 | 0 | −15.1273 | − | 26.2012i | ||||||||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.4.h.a | 44 | |
3.b | odd | 2 | 1 | 63.4.h.a | yes | 44 | |
7.c | even | 3 | 1 | 189.4.g.a | 44 | ||
9.c | even | 3 | 1 | 189.4.g.a | 44 | ||
9.d | odd | 6 | 1 | 63.4.g.a | ✓ | 44 | |
21.h | odd | 6 | 1 | 63.4.g.a | ✓ | 44 | |
63.h | even | 3 | 1 | inner | 189.4.h.a | 44 | |
63.j | odd | 6 | 1 | 63.4.h.a | yes | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.4.g.a | ✓ | 44 | 9.d | odd | 6 | 1 | |
63.4.g.a | ✓ | 44 | 21.h | odd | 6 | 1 | |
63.4.h.a | yes | 44 | 3.b | odd | 2 | 1 | |
63.4.h.a | yes | 44 | 63.j | odd | 6 | 1 | |
189.4.g.a | 44 | 7.c | even | 3 | 1 | ||
189.4.g.a | 44 | 9.c | even | 3 | 1 | ||
189.4.h.a | 44 | 1.a | even | 1 | 1 | trivial | |
189.4.h.a | 44 | 63.h | even | 3 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(189, [\chi])\).