Newspace parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.g (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.1513609911\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100.1 | −2.54715 | − | 4.41178i | 0 | −8.97590 | + | 15.5467i | −6.84046 | 0 | 16.1584 | − | 9.05014i | 50.6973 | 0 | 17.4236 | + | 30.1786i | ||||||||||
100.2 | −2.53999 | − | 4.39939i | 0 | −8.90312 | + | 15.4206i | −18.4700 | 0 | −9.68740 | + | 15.7846i | 49.8155 | 0 | 46.9136 | + | 81.2567i | ||||||||||
100.3 | −2.43564 | − | 4.21866i | 0 | −7.86471 | + | 13.6221i | 6.21080 | 0 | −4.64741 | − | 17.9277i | 37.6522 | 0 | −15.1273 | − | 26.2012i | ||||||||||
100.4 | −2.15287 | − | 3.72888i | 0 | −5.26968 | + | 9.12735i | 15.9966 | 0 | −16.8821 | + | 7.61550i | 10.9338 | 0 | −34.4385 | − | 59.6493i | ||||||||||
100.5 | −1.68671 | − | 2.92146i | 0 | −1.68996 | + | 2.92710i | 9.74532 | 0 | 0.158327 | + | 18.5196i | −15.5854 | 0 | −16.4375 | − | 28.4706i | ||||||||||
100.6 | −1.46729 | − | 2.54141i | 0 | −0.305860 | + | 0.529765i | 3.69711 | 0 | 12.3500 | + | 13.8013i | −21.6814 | 0 | −5.42471 | − | 9.39588i | ||||||||||
100.7 | −1.32738 | − | 2.29909i | 0 | 0.476130 | − | 0.824682i | −7.35561 | 0 | 16.6607 | − | 8.08840i | −23.7661 | 0 | 9.76368 | + | 16.9112i | ||||||||||
100.8 | −1.18941 | − | 2.06012i | 0 | 1.17060 | − | 2.02754i | −18.4675 | 0 | −16.1997 | − | 8.97605i | −24.5999 | 0 | 21.9654 | + | 38.0453i | ||||||||||
100.9 | −0.904546 | − | 1.56672i | 0 | 2.36359 | − | 4.09386i | 2.09779 | 0 | −11.3205 | − | 14.6576i | −23.0246 | 0 | −1.89755 | − | 3.28665i | ||||||||||
100.10 | −0.295387 | − | 0.511626i | 0 | 3.82549 | − | 6.62595i | −10.9845 | 0 | 1.43976 | + | 18.4642i | −9.24621 | 0 | 3.24467 | + | 5.61993i | ||||||||||
100.11 | −0.219258 | − | 0.379765i | 0 | 3.90385 | − | 6.76167i | 16.0932 | 0 | −1.97176 | − | 18.4150i | −6.93192 | 0 | −3.52855 | − | 6.11163i | ||||||||||
100.12 | 0.267129 | + | 0.462682i | 0 | 3.85728 | − | 6.68101i | 1.39324 | 0 | 16.9882 | − | 7.37568i | 8.39564 | 0 | 0.372176 | + | 0.644627i | ||||||||||
100.13 | 0.491847 | + | 0.851904i | 0 | 3.51617 | − | 6.09019i | 18.7142 | 0 | 10.0203 | + | 15.5754i | 14.7872 | 0 | 9.20454 | + | 15.9427i | ||||||||||
100.14 | 0.667800 | + | 1.15666i | 0 | 3.10809 | − | 5.38337i | −9.00469 | 0 | −14.2234 | + | 11.8615i | 18.9871 | 0 | −6.01333 | − | 10.4154i | ||||||||||
100.15 | 0.724044 | + | 1.25408i | 0 | 2.95152 | − | 5.11218i | −4.43275 | 0 | −18.5126 | − | 0.531848i | 20.1328 | 0 | −3.20951 | − | 5.55903i | ||||||||||
100.16 | 1.33146 | + | 2.30616i | 0 | 0.454424 | − | 0.787086i | −19.2381 | 0 | 18.0786 | − | 4.02053i | 23.7236 | 0 | −25.6147 | − | 44.3660i | ||||||||||
100.17 | 1.67658 | + | 2.90391i | 0 | −1.62181 | + | 2.80905i | 8.70652 | 0 | −14.4030 | + | 11.6428i | 15.9489 | 0 | 14.5971 | + | 25.2830i | ||||||||||
100.18 | 1.83489 | + | 3.17813i | 0 | −2.73366 | + | 4.73484i | −14.7742 | 0 | 0.242329 | − | 18.5187i | 9.29438 | 0 | −27.1090 | − | 46.9542i | ||||||||||
100.19 | 1.93332 | + | 3.34860i | 0 | −3.47543 | + | 6.01962i | 13.3562 | 0 | 1.72288 | − | 18.4399i | 4.05663 | 0 | 25.8218 | + | 44.7246i | ||||||||||
100.20 | 2.10738 | + | 3.65009i | 0 | −4.88211 | + | 8.45607i | 7.82402 | 0 | 16.1743 | + | 9.02169i | −7.43579 | 0 | 16.4882 | + | 28.5584i | ||||||||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.4.g.a | 44 | |
3.b | odd | 2 | 1 | 63.4.g.a | ✓ | 44 | |
7.c | even | 3 | 1 | 189.4.h.a | 44 | ||
9.c | even | 3 | 1 | 189.4.h.a | 44 | ||
9.d | odd | 6 | 1 | 63.4.h.a | yes | 44 | |
21.h | odd | 6 | 1 | 63.4.h.a | yes | 44 | |
63.g | even | 3 | 1 | inner | 189.4.g.a | 44 | |
63.n | odd | 6 | 1 | 63.4.g.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.4.g.a | ✓ | 44 | 3.b | odd | 2 | 1 | |
63.4.g.a | ✓ | 44 | 63.n | odd | 6 | 1 | |
63.4.h.a | yes | 44 | 9.d | odd | 6 | 1 | |
63.4.h.a | yes | 44 | 21.h | odd | 6 | 1 | |
189.4.g.a | 44 | 1.a | even | 1 | 1 | trivial | |
189.4.g.a | 44 | 63.g | even | 3 | 1 | inner | |
189.4.h.a | 44 | 7.c | even | 3 | 1 | ||
189.4.h.a | 44 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(189, [\chi])\).