Properties

Label 189.4.e.h.163.8
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.8
Root \(1.06000 + 1.83598i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.h.109.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.73089 - 4.73004i) q^{2} +(-10.9155 - 18.9063i) q^{4} +(0.0995681 - 0.172457i) q^{5} +(-16.0061 - 9.31685i) q^{7} -75.5424 q^{8} +O(q^{10})\) \(q+(2.73089 - 4.73004i) q^{2} +(-10.9155 - 18.9063i) q^{4} +(0.0995681 - 0.172457i) q^{5} +(-16.0061 - 9.31685i) q^{7} -75.5424 q^{8} +(-0.543819 - 0.941923i) q^{10} +(14.2117 + 24.6153i) q^{11} +32.5809 q^{13} +(-87.7801 + 50.2664i) q^{14} +(-118.974 + 206.069i) q^{16} +(-57.7439 - 100.015i) q^{17} +(-10.5750 + 18.3164i) q^{19} -4.34736 q^{20} +155.242 q^{22} +(46.8828 - 81.2034i) q^{23} +(62.4802 + 108.219i) q^{25} +(88.9749 - 154.109i) q^{26} +(-1.43126 + 404.315i) q^{28} -231.571 q^{29} +(-140.871 - 243.996i) q^{31} +(347.640 + 602.130i) q^{32} -630.770 q^{34} +(-3.20045 + 1.83271i) q^{35} +(73.2770 - 126.919i) q^{37} +(57.7583 + 100.040i) q^{38} +(-7.52161 + 13.0278i) q^{40} +111.001 q^{41} +392.361 q^{43} +(310.256 - 537.380i) q^{44} +(-256.064 - 443.516i) q^{46} +(136.584 - 236.571i) q^{47} +(169.393 + 298.253i) q^{49} +682.506 q^{50} +(-355.638 - 615.984i) q^{52} +(-170.201 - 294.798i) q^{53} +5.66011 q^{55} +(1209.14 + 703.817i) q^{56} +(-632.395 + 1095.34i) q^{58} +(-348.408 - 603.461i) q^{59} +(185.001 - 320.431i) q^{61} -1538.81 q^{62} +1893.89 q^{64} +(3.24402 - 5.61880i) q^{65} +(-43.5681 - 75.4622i) q^{67} +(-1260.61 + 2183.45i) q^{68} +(-0.0713061 + 20.1432i) q^{70} +88.3772 q^{71} +(401.518 + 695.450i) q^{73} +(-400.223 - 693.207i) q^{74} +461.727 q^{76} +(1.86345 - 526.404i) q^{77} +(-182.308 + 315.766i) q^{79} +(23.6920 + 41.0357i) q^{80} +(303.132 - 525.040i) q^{82} -921.684 q^{83} -22.9978 q^{85} +(1071.50 - 1855.88i) q^{86} +(-1073.58 - 1859.50i) q^{88} +(-105.698 + 183.074i) q^{89} +(-521.494 - 303.551i) q^{91} -2047.01 q^{92} +(-745.993 - 1292.10i) q^{94} +(2.10586 + 3.64746i) q^{95} +845.718 q^{97} +(1873.35 + 13.2633i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.73089 4.73004i 0.965516 1.67232i 0.257295 0.966333i \(-0.417169\pi\)
0.708222 0.705990i \(-0.249498\pi\)
\(3\) 0 0
\(4\) −10.9155 18.9063i −1.36444 2.36328i
\(5\) 0.0995681 0.172457i 0.00890564 0.0154250i −0.861538 0.507693i \(-0.830499\pi\)
0.870444 + 0.492268i \(0.163832\pi\)
\(6\) 0 0
\(7\) −16.0061 9.31685i −0.864250 0.503063i
\(8\) −75.5424 −3.33854
\(9\) 0 0
\(10\) −0.543819 0.941923i −0.0171971 0.0297862i
\(11\) 14.2117 + 24.6153i 0.389544 + 0.674710i 0.992388 0.123149i \(-0.0392994\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(12\) 0 0
\(13\) 32.5809 0.695101 0.347551 0.937661i \(-0.387013\pi\)
0.347551 + 0.937661i \(0.387013\pi\)
\(14\) −87.7801 + 50.2664i −1.67573 + 0.959590i
\(15\) 0 0
\(16\) −118.974 + 206.069i −1.85897 + 3.21983i
\(17\) −57.7439 100.015i −0.823821 1.42690i −0.902817 0.430026i \(-0.858505\pi\)
0.0789952 0.996875i \(-0.474829\pi\)
\(18\) 0 0
\(19\) −10.5750 + 18.3164i −0.127688 + 0.221162i −0.922780 0.385326i \(-0.874089\pi\)
0.795093 + 0.606488i \(0.207422\pi\)
\(20\) −4.34736 −0.0486049
\(21\) 0 0
\(22\) 155.242 1.50444
\(23\) 46.8828 81.2034i 0.425032 0.736177i −0.571391 0.820678i \(-0.693596\pi\)
0.996423 + 0.0845003i \(0.0269294\pi\)
\(24\) 0 0
\(25\) 62.4802 + 108.219i 0.499841 + 0.865751i
\(26\) 88.9749 154.109i 0.671132 1.16243i
\(27\) 0 0
\(28\) −1.43126 + 404.315i −0.00966007 + 2.72887i
\(29\) −231.571 −1.48282 −0.741408 0.671055i \(-0.765841\pi\)
−0.741408 + 0.671055i \(0.765841\pi\)
\(30\) 0 0
\(31\) −140.871 243.996i −0.816167 1.41364i −0.908487 0.417913i \(-0.862762\pi\)
0.0923206 0.995729i \(-0.470572\pi\)
\(32\) 347.640 + 602.130i 1.92046 + 3.32633i
\(33\) 0 0
\(34\) −630.770 −3.18165
\(35\) −3.20045 + 1.83271i −0.0154564 + 0.00885098i
\(36\) 0 0
\(37\) 73.2770 126.919i 0.325585 0.563931i −0.656045 0.754722i \(-0.727772\pi\)
0.981631 + 0.190791i \(0.0611053\pi\)
\(38\) 57.7583 + 100.040i 0.246569 + 0.427070i
\(39\) 0 0
\(40\) −7.52161 + 13.0278i −0.0297318 + 0.0514970i
\(41\) 111.001 0.422816 0.211408 0.977398i \(-0.432195\pi\)
0.211408 + 0.977398i \(0.432195\pi\)
\(42\) 0 0
\(43\) 392.361 1.39150 0.695750 0.718284i \(-0.255072\pi\)
0.695750 + 0.718284i \(0.255072\pi\)
\(44\) 310.256 537.380i 1.06302 1.84121i
\(45\) 0 0
\(46\) −256.064 443.516i −0.820751 1.42158i
\(47\) 136.584 236.571i 0.423890 0.734199i −0.572426 0.819956i \(-0.693998\pi\)
0.996316 + 0.0857573i \(0.0273310\pi\)
\(48\) 0 0
\(49\) 169.393 + 298.253i 0.493856 + 0.869544i
\(50\) 682.506 1.93042
\(51\) 0 0
\(52\) −355.638 615.984i −0.948426 1.64272i
\(53\) −170.201 294.798i −0.441113 0.764030i 0.556660 0.830741i \(-0.312083\pi\)
−0.997772 + 0.0667111i \(0.978749\pi\)
\(54\) 0 0
\(55\) 5.66011 0.0138765
\(56\) 1209.14 + 703.817i 2.88533 + 1.67949i
\(57\) 0 0
\(58\) −632.395 + 1095.34i −1.43168 + 2.47975i
\(59\) −348.408 603.461i −0.768795 1.33159i −0.938217 0.346049i \(-0.887523\pi\)
0.169421 0.985544i \(-0.445810\pi\)
\(60\) 0 0
\(61\) 185.001 320.431i 0.388311 0.672574i −0.603912 0.797051i \(-0.706392\pi\)
0.992222 + 0.124477i \(0.0397254\pi\)
\(62\) −1538.81 −3.15209
\(63\) 0 0
\(64\) 1893.89 3.69900
\(65\) 3.24402 5.61880i 0.00619032 0.0107220i
\(66\) 0 0
\(67\) −43.5681 75.4622i −0.0794431 0.137600i 0.823567 0.567219i \(-0.191981\pi\)
−0.903010 + 0.429620i \(0.858648\pi\)
\(68\) −1260.61 + 2183.45i −2.24812 + 3.89385i
\(69\) 0 0
\(70\) −0.0713061 + 20.1432i −0.000121753 + 0.0343939i
\(71\) 88.3772 0.147725 0.0738623 0.997268i \(-0.476467\pi\)
0.0738623 + 0.997268i \(0.476467\pi\)
\(72\) 0 0
\(73\) 401.518 + 695.450i 0.643755 + 1.11502i 0.984587 + 0.174893i \(0.0559579\pi\)
−0.340832 + 0.940124i \(0.610709\pi\)
\(74\) −400.223 693.207i −0.628716 1.08897i
\(75\) 0 0
\(76\) 461.727 0.696891
\(77\) 1.86345 526.404i 0.00275792 0.779083i
\(78\) 0 0
\(79\) −182.308 + 315.766i −0.259636 + 0.449702i −0.966144 0.258002i \(-0.916936\pi\)
0.706509 + 0.707705i \(0.250269\pi\)
\(80\) 23.6920 + 41.0357i 0.0331106 + 0.0573492i
\(81\) 0 0
\(82\) 303.132 525.040i 0.408236 0.707085i
\(83\) −921.684 −1.21889 −0.609446 0.792828i \(-0.708608\pi\)
−0.609446 + 0.792828i \(0.708608\pi\)
\(84\) 0 0
\(85\) −22.9978 −0.0293466
\(86\) 1071.50 1855.88i 1.34351 2.32704i
\(87\) 0 0
\(88\) −1073.58 1859.50i −1.30051 2.25254i
\(89\) −105.698 + 183.074i −0.125887 + 0.218043i −0.922079 0.387001i \(-0.873511\pi\)
0.796192 + 0.605044i \(0.206844\pi\)
\(90\) 0 0
\(91\) −521.494 303.551i −0.600741 0.349679i
\(92\) −2047.01 −2.31973
\(93\) 0 0
\(94\) −745.993 1292.10i −0.818545 1.41776i
\(95\) 2.10586 + 3.64746i 0.00227428 + 0.00393917i
\(96\) 0 0
\(97\) 845.718 0.885254 0.442627 0.896706i \(-0.354047\pi\)
0.442627 + 0.896706i \(0.354047\pi\)
\(98\) 1873.35 + 13.2633i 1.93098 + 0.0136714i
\(99\) 0 0
\(100\) 1364.01 2362.54i 1.36401 2.36254i
\(101\) −78.4758 135.924i −0.0773132 0.133910i 0.824777 0.565459i \(-0.191301\pi\)
−0.902090 + 0.431548i \(0.857967\pi\)
\(102\) 0 0
\(103\) 69.6626 120.659i 0.0666414 0.115426i −0.830780 0.556602i \(-0.812105\pi\)
0.897421 + 0.441175i \(0.145438\pi\)
\(104\) −2461.24 −2.32062
\(105\) 0 0
\(106\) −1859.21 −1.70361
\(107\) −207.738 + 359.813i −0.187690 + 0.325088i −0.944480 0.328570i \(-0.893433\pi\)
0.756790 + 0.653658i \(0.226767\pi\)
\(108\) 0 0
\(109\) 422.040 + 730.995i 0.370863 + 0.642354i 0.989699 0.143167i \(-0.0457285\pi\)
−0.618835 + 0.785521i \(0.712395\pi\)
\(110\) 15.4572 26.7726i 0.0133980 0.0232061i
\(111\) 0 0
\(112\) 3824.22 2189.90i 3.22639 1.84756i
\(113\) 1342.21 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(114\) 0 0
\(115\) −9.33606 16.1705i −0.00757037 0.0131123i
\(116\) 2527.72 + 4378.14i 2.02322 + 3.50431i
\(117\) 0 0
\(118\) −3805.86 −2.96914
\(119\) −7.57144 + 2138.85i −0.00583254 + 1.64763i
\(120\) 0 0
\(121\) 261.557 453.029i 0.196511 0.340368i
\(122\) −1010.44 1750.13i −0.749841 1.29876i
\(123\) 0 0
\(124\) −3075.37 + 5326.69i −2.22723 + 3.85767i
\(125\) 49.7761 0.0356169
\(126\) 0 0
\(127\) 978.750 0.683858 0.341929 0.939726i \(-0.388920\pi\)
0.341929 + 0.939726i \(0.388920\pi\)
\(128\) 2390.88 4141.13i 1.65099 2.85959i
\(129\) 0 0
\(130\) −17.7181 30.6887i −0.0119537 0.0207044i
\(131\) 1186.40 2054.91i 0.791271 1.37052i −0.133909 0.990994i \(-0.542753\pi\)
0.925180 0.379528i \(-0.123914\pi\)
\(132\) 0 0
\(133\) 339.916 194.649i 0.221612 0.126904i
\(134\) −475.919 −0.306815
\(135\) 0 0
\(136\) 4362.12 + 7555.41i 2.75036 + 4.76376i
\(137\) 801.337 + 1387.96i 0.499729 + 0.865556i 1.00000 0.000312974i \(-9.96229e-5\pi\)
−0.500271 + 0.865869i \(0.666766\pi\)
\(138\) 0 0
\(139\) 2101.78 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(140\) 69.5844 + 40.5037i 0.0420068 + 0.0244513i
\(141\) 0 0
\(142\) 241.349 418.028i 0.142631 0.247043i
\(143\) 463.029 + 801.990i 0.270772 + 0.468992i
\(144\) 0 0
\(145\) −23.0571 + 39.9360i −0.0132054 + 0.0228724i
\(146\) 4386.01 2.48623
\(147\) 0 0
\(148\) −3199.43 −1.77697
\(149\) 262.200 454.144i 0.144163 0.249697i −0.784897 0.619626i \(-0.787284\pi\)
0.929060 + 0.369928i \(0.120618\pi\)
\(150\) 0 0
\(151\) 433.833 + 751.420i 0.233807 + 0.404965i 0.958925 0.283659i \(-0.0915484\pi\)
−0.725119 + 0.688624i \(0.758215\pi\)
\(152\) 798.860 1383.67i 0.426290 0.738356i
\(153\) 0 0
\(154\) −2484.83 1446.37i −1.30022 0.756829i
\(155\) −56.1050 −0.0290739
\(156\) 0 0
\(157\) 2.96000 + 5.12687i 0.00150467 + 0.00260617i 0.866777 0.498696i \(-0.166188\pi\)
−0.865272 + 0.501303i \(0.832854\pi\)
\(158\) 995.726 + 1724.65i 0.501365 + 0.868390i
\(159\) 0 0
\(160\) 138.455 0.0684116
\(161\) −1506.97 + 862.953i −0.737677 + 0.422424i
\(162\) 0 0
\(163\) 416.480 721.364i 0.200130 0.346636i −0.748440 0.663202i \(-0.769197\pi\)
0.948570 + 0.316567i \(0.102530\pi\)
\(164\) −1211.64 2098.62i −0.576909 0.999235i
\(165\) 0 0
\(166\) −2517.02 + 4359.61i −1.17686 + 2.03838i
\(167\) 566.798 0.262636 0.131318 0.991340i \(-0.458079\pi\)
0.131318 + 0.991340i \(0.458079\pi\)
\(168\) 0 0
\(169\) −1135.48 −0.516834
\(170\) −62.8045 + 108.781i −0.0283346 + 0.0490770i
\(171\) 0 0
\(172\) −4282.83 7418.08i −1.89862 3.28851i
\(173\) −2062.88 + 3573.02i −0.906579 + 1.57024i −0.0877960 + 0.996138i \(0.527982\pi\)
−0.818783 + 0.574103i \(0.805351\pi\)
\(174\) 0 0
\(175\) 8.19246 2314.28i 0.00353881 0.999676i
\(176\) −6763.27 −2.89660
\(177\) 0 0
\(178\) 577.299 + 999.912i 0.243092 + 0.421048i
\(179\) 463.823 + 803.365i 0.193675 + 0.335454i 0.946465 0.322806i \(-0.104626\pi\)
−0.752791 + 0.658260i \(0.771293\pi\)
\(180\) 0 0
\(181\) 1211.67 0.497585 0.248792 0.968557i \(-0.419966\pi\)
0.248792 + 0.968557i \(0.419966\pi\)
\(182\) −2859.96 + 1637.73i −1.16480 + 0.667013i
\(183\) 0 0
\(184\) −3541.64 + 6134.30i −1.41899 + 2.45775i
\(185\) −14.5921 25.2742i −0.00579909 0.0100443i
\(186\) 0 0
\(187\) 1641.28 2842.77i 0.641829 1.11168i
\(188\) −5963.56 −2.31350
\(189\) 0 0
\(190\) 23.0035 0.00878342
\(191\) −913.746 + 1582.65i −0.346159 + 0.599565i −0.985564 0.169306i \(-0.945848\pi\)
0.639405 + 0.768870i \(0.279181\pi\)
\(192\) 0 0
\(193\) 411.115 + 712.072i 0.153330 + 0.265576i 0.932450 0.361300i \(-0.117667\pi\)
−0.779120 + 0.626875i \(0.784334\pi\)
\(194\) 2309.56 4000.28i 0.854727 1.48043i
\(195\) 0 0
\(196\) 3789.85 6458.18i 1.38114 2.35357i
\(197\) 4873.12 1.76241 0.881207 0.472731i \(-0.156732\pi\)
0.881207 + 0.472731i \(0.156732\pi\)
\(198\) 0 0
\(199\) 741.113 + 1283.65i 0.264001 + 0.457262i 0.967301 0.253630i \(-0.0816246\pi\)
−0.703301 + 0.710892i \(0.748291\pi\)
\(200\) −4719.90 8175.11i −1.66874 2.89034i
\(201\) 0 0
\(202\) −857.236 −0.298589
\(203\) 3706.56 + 2157.51i 1.28152 + 0.745949i
\(204\) 0 0
\(205\) 11.0522 19.1429i 0.00376545 0.00652195i
\(206\) −380.482 659.015i −0.128687 0.222892i
\(207\) 0 0
\(208\) −3876.28 + 6713.91i −1.29217 + 2.23810i
\(209\) −601.153 −0.198960
\(210\) 0 0
\(211\) −4359.21 −1.42228 −0.711138 0.703053i \(-0.751820\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(212\) −3715.68 + 6435.75i −1.20375 + 2.08495i
\(213\) 0 0
\(214\) 1134.62 + 1965.22i 0.362435 + 0.627755i
\(215\) 39.0666 67.6653i 0.0123922 0.0214639i
\(216\) 0 0
\(217\) −18.4711 + 5217.90i −0.00577835 + 1.63232i
\(218\) 4610.18 1.43230
\(219\) 0 0
\(220\) −61.7832 107.012i −0.0189338 0.0327942i
\(221\) −1881.35 3258.59i −0.572639 0.991841i
\(222\) 0 0
\(223\) −3312.73 −0.994784 −0.497392 0.867526i \(-0.665709\pi\)
−0.497392 + 0.867526i \(0.665709\pi\)
\(224\) 45.5829 12876.7i 0.0135966 3.84089i
\(225\) 0 0
\(226\) 3665.43 6348.71i 1.07885 1.86863i
\(227\) −399.161 691.366i −0.116710 0.202148i 0.801752 0.597657i \(-0.203902\pi\)
−0.918462 + 0.395509i \(0.870568\pi\)
\(228\) 0 0
\(229\) 177.457 307.365i 0.0512083 0.0886954i −0.839285 0.543692i \(-0.817026\pi\)
0.890493 + 0.454996i \(0.150359\pi\)
\(230\) −101.983 −0.0292372
\(231\) 0 0
\(232\) 17493.4 4.95043
\(233\) −2236.95 + 3874.52i −0.628960 + 1.08939i 0.358801 + 0.933414i \(0.383186\pi\)
−0.987761 + 0.155977i \(0.950148\pi\)
\(234\) 0 0
\(235\) −27.1988 47.1097i −0.00755002 0.0130770i
\(236\) −7606.14 + 13174.2i −2.09795 + 3.63376i
\(237\) 0 0
\(238\) 10096.2 + 5876.79i 2.74974 + 1.60057i
\(239\) 1494.65 0.404523 0.202262 0.979332i \(-0.435171\pi\)
0.202262 + 0.979332i \(0.435171\pi\)
\(240\) 0 0
\(241\) 78.4424 + 135.866i 0.0209665 + 0.0363150i 0.876318 0.481733i \(-0.159992\pi\)
−0.855352 + 0.518048i \(0.826659\pi\)
\(242\) −1428.57 2474.35i −0.379470 0.657261i
\(243\) 0 0
\(244\) −8077.55 −2.11931
\(245\) 68.3020 + 0.483578i 0.0178108 + 0.000126101i
\(246\) 0 0
\(247\) −344.543 + 596.765i −0.0887559 + 0.153730i
\(248\) 10641.7 + 18432.0i 2.72480 + 4.71949i
\(249\) 0 0
\(250\) 135.933 235.443i 0.0343887 0.0595630i
\(251\) −3498.68 −0.879819 −0.439909 0.898042i \(-0.644989\pi\)
−0.439909 + 0.898042i \(0.644989\pi\)
\(252\) 0 0
\(253\) 2665.13 0.662275
\(254\) 2672.86 4629.53i 0.660276 1.14363i
\(255\) 0 0
\(256\) −5482.93 9496.72i −1.33861 2.31853i
\(257\) 2369.55 4104.18i 0.575130 0.996155i −0.420897 0.907108i \(-0.638285\pi\)
0.996027 0.0890463i \(-0.0283819\pi\)
\(258\) 0 0
\(259\) −2355.37 + 1348.78i −0.565080 + 0.323587i
\(260\) −141.641 −0.0337854
\(261\) 0 0
\(262\) −6479.88 11223.5i −1.52797 2.64652i
\(263\) −1682.22 2913.69i −0.394411 0.683141i 0.598614 0.801037i \(-0.295718\pi\)
−0.993026 + 0.117897i \(0.962385\pi\)
\(264\) 0 0
\(265\) −67.7865 −0.0157136
\(266\) 7.57332 2139.38i 0.00174568 0.493135i
\(267\) 0 0
\(268\) −951.139 + 1647.42i −0.216791 + 0.375494i
\(269\) −2603.64 4509.63i −0.590136 1.02215i −0.994214 0.107421i \(-0.965741\pi\)
0.404078 0.914725i \(-0.367592\pi\)
\(270\) 0 0
\(271\) 1156.00 2002.25i 0.259122 0.448813i −0.706885 0.707329i \(-0.749900\pi\)
0.966007 + 0.258516i \(0.0832334\pi\)
\(272\) 27480.1 6.12583
\(273\) 0 0
\(274\) 8753.46 1.92999
\(275\) −1775.90 + 3075.94i −0.389420 + 0.674495i
\(276\) 0 0
\(277\) −1303.36 2257.49i −0.282713 0.489673i 0.689339 0.724439i \(-0.257901\pi\)
−0.972052 + 0.234766i \(0.924568\pi\)
\(278\) 5739.74 9941.52i 1.23830 2.14479i
\(279\) 0 0
\(280\) 241.770 138.447i 0.0516019 0.0295493i
\(281\) 5271.62 1.11914 0.559570 0.828783i \(-0.310966\pi\)
0.559570 + 0.828783i \(0.310966\pi\)
\(282\) 0 0
\(283\) −2904.11 5030.06i −0.610004 1.05656i −0.991239 0.132080i \(-0.957834\pi\)
0.381235 0.924478i \(-0.375499\pi\)
\(284\) −964.686 1670.88i −0.201562 0.349115i
\(285\) 0 0
\(286\) 5057.93 1.04574
\(287\) −1776.70 1034.18i −0.365419 0.212703i
\(288\) 0 0
\(289\) −4212.23 + 7295.79i −0.857364 + 1.48500i
\(290\) 125.933 + 218.122i 0.0255001 + 0.0441674i
\(291\) 0 0
\(292\) 8765.58 15182.4i 1.75674 3.04275i
\(293\) 1979.70 0.394729 0.197364 0.980330i \(-0.436762\pi\)
0.197364 + 0.980330i \(0.436762\pi\)
\(294\) 0 0
\(295\) −138.761 −0.0273864
\(296\) −5535.52 + 9587.81i −1.08698 + 1.88270i
\(297\) 0 0
\(298\) −1432.08 2480.43i −0.278383 0.482174i
\(299\) 1527.48 2645.68i 0.295441 0.511718i
\(300\) 0 0
\(301\) −6280.18 3655.57i −1.20260 0.700011i
\(302\) 4739.00 0.902977
\(303\) 0 0
\(304\) −2516.29 4358.35i −0.474735 0.822264i
\(305\) −36.8404 63.8094i −0.00691631 0.0119794i
\(306\) 0 0
\(307\) 924.005 0.171778 0.0858888 0.996305i \(-0.472627\pi\)
0.0858888 + 0.996305i \(0.472627\pi\)
\(308\) −9972.69 + 5710.76i −1.84496 + 1.05650i
\(309\) 0 0
\(310\) −153.217 + 265.379i −0.0280714 + 0.0486210i
\(311\) −5054.30 8754.31i −0.921554 1.59618i −0.797012 0.603964i \(-0.793587\pi\)
−0.124542 0.992214i \(-0.539746\pi\)
\(312\) 0 0
\(313\) −3415.26 + 5915.40i −0.616747 + 1.06824i 0.373328 + 0.927699i \(0.378217\pi\)
−0.990075 + 0.140538i \(0.955117\pi\)
\(314\) 32.3337 0.00581114
\(315\) 0 0
\(316\) 7959.96 1.41703
\(317\) −3811.81 + 6602.25i −0.675371 + 1.16978i 0.300989 + 0.953627i \(0.402683\pi\)
−0.976360 + 0.216149i \(0.930650\pi\)
\(318\) 0 0
\(319\) −3291.01 5700.20i −0.577621 1.00047i
\(320\) 188.571 326.614i 0.0329419 0.0570571i
\(321\) 0 0
\(322\) −33.5753 + 9484.68i −0.00581081 + 1.64149i
\(323\) 2442.56 0.420768
\(324\) 0 0
\(325\) 2035.66 + 3525.87i 0.347440 + 0.601784i
\(326\) −2274.72 3939.94i −0.386458 0.669364i
\(327\) 0 0
\(328\) −8385.30 −1.41159
\(329\) −4390.27 + 2514.05i −0.735695 + 0.421288i
\(330\) 0 0
\(331\) −1241.60 + 2150.52i −0.206177 + 0.357110i −0.950507 0.310702i \(-0.899436\pi\)
0.744330 + 0.667812i \(0.232769\pi\)
\(332\) 10060.7 + 17425.6i 1.66311 + 2.88059i
\(333\) 0 0
\(334\) 1547.86 2680.98i 0.253579 0.439211i
\(335\) −17.3520 −0.00282997
\(336\) 0 0
\(337\) 7895.47 1.27624 0.638121 0.769936i \(-0.279712\pi\)
0.638121 + 0.769936i \(0.279712\pi\)
\(338\) −3100.89 + 5370.89i −0.499012 + 0.864314i
\(339\) 0 0
\(340\) 251.034 + 434.803i 0.0400418 + 0.0693544i
\(341\) 4004.02 6935.17i 0.635865 1.10135i
\(342\) 0 0
\(343\) 67.4606 6352.09i 0.0106196 0.999944i
\(344\) −29639.9 −4.64557
\(345\) 0 0
\(346\) 11267.0 + 19515.1i 1.75063 + 3.03219i
\(347\) 444.712 + 770.263i 0.0687994 + 0.119164i 0.898373 0.439233i \(-0.144750\pi\)
−0.829574 + 0.558397i \(0.811417\pi\)
\(348\) 0 0
\(349\) 6962.20 1.06785 0.533923 0.845533i \(-0.320717\pi\)
0.533923 + 0.845533i \(0.320717\pi\)
\(350\) −10924.3 6358.81i −1.66837 0.971122i
\(351\) 0 0
\(352\) −9881.09 + 17114.6i −1.49620 + 2.59150i
\(353\) −5780.30 10011.8i −0.871542 1.50956i −0.860401 0.509617i \(-0.829787\pi\)
−0.0111411 0.999938i \(-0.503546\pi\)
\(354\) 0 0
\(355\) 8.79955 15.2413i 0.00131558 0.00227865i
\(356\) 4615.00 0.687064
\(357\) 0 0
\(358\) 5066.60 0.747984
\(359\) 4228.51 7323.99i 0.621649 1.07673i −0.367529 0.930012i \(-0.619796\pi\)
0.989179 0.146716i \(-0.0468705\pi\)
\(360\) 0 0
\(361\) 3205.84 + 5552.68i 0.467392 + 0.809546i
\(362\) 3308.95 5731.26i 0.480426 0.832123i
\(363\) 0 0
\(364\) −46.6316 + 13172.9i −0.00671473 + 1.89684i
\(365\) 159.914 0.0229322
\(366\) 0 0
\(367\) −3456.46 5986.77i −0.491623 0.851517i 0.508330 0.861162i \(-0.330263\pi\)
−0.999953 + 0.00964558i \(0.996930\pi\)
\(368\) 11155.7 + 19322.2i 1.58024 + 2.73706i
\(369\) 0 0
\(370\) −159.398 −0.0223965
\(371\) −22.3170 + 6304.31i −0.00312302 + 0.882220i
\(372\) 0 0
\(373\) −211.956 + 367.118i −0.0294226 + 0.0509615i −0.880362 0.474303i \(-0.842700\pi\)
0.850939 + 0.525264i \(0.176034\pi\)
\(374\) −8964.30 15526.6i −1.23939 2.14669i
\(375\) 0 0
\(376\) −10317.9 + 17871.1i −1.41517 + 2.45115i
\(377\) −7544.79 −1.03071
\(378\) 0 0
\(379\) −9714.33 −1.31660 −0.658300 0.752756i \(-0.728724\pi\)
−0.658300 + 0.752756i \(0.728724\pi\)
\(380\) 45.9732 79.6280i 0.00620626 0.0107496i
\(381\) 0 0
\(382\) 4990.68 + 8644.12i 0.668444 + 1.15778i
\(383\) −1107.08 + 1917.51i −0.147699 + 0.255823i −0.930377 0.366605i \(-0.880520\pi\)
0.782677 + 0.622428i \(0.213854\pi\)
\(384\) 0 0
\(385\) −90.5966 52.7344i −0.0119928 0.00698077i
\(386\) 4490.84 0.592171
\(387\) 0 0
\(388\) −9231.47 15989.4i −1.20788 2.09211i
\(389\) −3832.73 6638.48i −0.499556 0.865256i 0.500444 0.865769i \(-0.333170\pi\)
−1.00000 0.000513038i \(0.999837\pi\)
\(390\) 0 0
\(391\) −10828.8 −1.40060
\(392\) −12796.3 22530.8i −1.64876 2.90300i
\(393\) 0 0
\(394\) 13308.0 23050.1i 1.70164 2.94732i
\(395\) 36.3041 + 62.8805i 0.00462444 + 0.00800977i
\(396\) 0 0
\(397\) −2489.10 + 4311.24i −0.314671 + 0.545026i −0.979367 0.202088i \(-0.935227\pi\)
0.664697 + 0.747113i \(0.268561\pi\)
\(398\) 8095.60 1.01959
\(399\) 0 0
\(400\) −29734.0 −3.71675
\(401\) −2385.10 + 4131.12i −0.297023 + 0.514460i −0.975454 0.220205i \(-0.929327\pi\)
0.678430 + 0.734665i \(0.262661\pi\)
\(402\) 0 0
\(403\) −4589.70 7949.60i −0.567319 0.982625i
\(404\) −1713.21 + 2967.37i −0.210979 + 0.365426i
\(405\) 0 0
\(406\) 20327.3 11640.2i 2.48480 1.42290i
\(407\) 4165.56 0.507319
\(408\) 0 0
\(409\) 298.629 + 517.240i 0.0361033 + 0.0625327i 0.883512 0.468408i \(-0.155172\pi\)
−0.847409 + 0.530940i \(0.821839\pi\)
\(410\) −60.3646 104.554i −0.00727120 0.0125941i
\(411\) 0 0
\(412\) −3041.62 −0.363714
\(413\) −45.6836 + 12905.1i −0.00544296 + 1.53758i
\(414\) 0 0
\(415\) −91.7703 + 158.951i −0.0108550 + 0.0188014i
\(416\) 11326.4 + 19617.9i 1.33491 + 2.31214i
\(417\) 0 0
\(418\) −1641.68 + 2843.48i −0.192099 + 0.332725i
\(419\) −9571.90 −1.11603 −0.558016 0.829830i \(-0.688437\pi\)
−0.558016 + 0.829830i \(0.688437\pi\)
\(420\) 0 0
\(421\) −5954.33 −0.689303 −0.344651 0.938731i \(-0.612003\pi\)
−0.344651 + 0.938731i \(0.612003\pi\)
\(422\) −11904.5 + 20619.2i −1.37323 + 2.37850i
\(423\) 0 0
\(424\) 12857.4 + 22269.7i 1.47267 + 2.55074i
\(425\) 7215.70 12498.0i 0.823560 1.42645i
\(426\) 0 0
\(427\) −5946.56 + 3405.24i −0.673944 + 0.385927i
\(428\) 9070.29 1.02437
\(429\) 0 0
\(430\) −213.373 369.573i −0.0239297 0.0414475i
\(431\) −1271.72 2202.69i −0.142127 0.246171i 0.786170 0.618010i \(-0.212061\pi\)
−0.928297 + 0.371839i \(0.878727\pi\)
\(432\) 0 0
\(433\) 9781.07 1.08556 0.542781 0.839874i \(-0.317371\pi\)
0.542781 + 0.839874i \(0.317371\pi\)
\(434\) 24630.5 + 14336.9i 2.72419 + 1.58570i
\(435\) 0 0
\(436\) 9213.59 15958.4i 1.01204 1.75291i
\(437\) 991.570 + 1717.45i 0.108543 + 0.188002i
\(438\) 0 0
\(439\) 8410.13 14566.8i 0.914336 1.58368i 0.106465 0.994316i \(-0.466047\pi\)
0.807871 0.589360i \(-0.200620\pi\)
\(440\) −427.579 −0.0463273
\(441\) 0 0
\(442\) −20551.1 −2.21157
\(443\) 1863.37 3227.46i 0.199846 0.346143i −0.748633 0.662985i \(-0.769289\pi\)
0.948478 + 0.316842i \(0.102623\pi\)
\(444\) 0 0
\(445\) 21.0483 + 36.4567i 0.00224221 + 0.00388362i
\(446\) −9046.71 + 15669.4i −0.960480 + 1.66360i
\(447\) 0 0
\(448\) −30313.8 17645.1i −3.19686 1.86083i
\(449\) 9287.05 0.976131 0.488065 0.872807i \(-0.337703\pi\)
0.488065 + 0.872807i \(0.337703\pi\)
\(450\) 0 0
\(451\) 1577.51 + 2732.33i 0.164705 + 0.285278i
\(452\) −14650.9 25376.2i −1.52461 2.64070i
\(453\) 0 0
\(454\) −4360.26 −0.450742
\(455\) −104.274 + 59.7113i −0.0107438 + 0.00615233i
\(456\) 0 0
\(457\) −6009.70 + 10409.1i −0.615147 + 1.06547i 0.375212 + 0.926939i \(0.377570\pi\)
−0.990359 + 0.138526i \(0.955764\pi\)
\(458\) −969.233 1678.76i −0.0988849 0.171274i
\(459\) 0 0
\(460\) −203.816 + 353.020i −0.0206587 + 0.0357819i
\(461\) 9571.71 0.967026 0.483513 0.875337i \(-0.339361\pi\)
0.483513 + 0.875337i \(0.339361\pi\)
\(462\) 0 0
\(463\) 2265.15 0.227366 0.113683 0.993517i \(-0.463735\pi\)
0.113683 + 0.993517i \(0.463735\pi\)
\(464\) 27550.9 47719.5i 2.75650 4.77441i
\(465\) 0 0
\(466\) 12217.8 + 21161.8i 1.21454 + 2.10365i
\(467\) −2660.47 + 4608.07i −0.263623 + 0.456609i −0.967202 0.254009i \(-0.918251\pi\)
0.703579 + 0.710617i \(0.251584\pi\)
\(468\) 0 0
\(469\) −5.71269 + 1613.77i −0.000562447 + 0.158885i
\(470\) −297.108 −0.0291587
\(471\) 0 0
\(472\) 26319.6 + 45586.9i 2.56665 + 4.44557i
\(473\) 5576.10 + 9658.10i 0.542050 + 0.938858i
\(474\) 0 0
\(475\) −2642.91 −0.255294
\(476\) 40520.4 23203.6i 3.90178 2.23432i
\(477\) 0 0
\(478\) 4081.74 7069.78i 0.390574 0.676494i
\(479\) 1883.49 + 3262.30i 0.179663 + 0.311186i 0.941765 0.336271i \(-0.109166\pi\)
−0.762102 + 0.647457i \(0.775832\pi\)
\(480\) 0 0
\(481\) 2387.43 4135.15i 0.226315 0.391989i
\(482\) 856.871 0.0809739
\(483\) 0 0
\(484\) −11420.1 −1.07251
\(485\) 84.2065 145.850i 0.00788375 0.0136551i
\(486\) 0 0
\(487\) −4428.96 7671.18i −0.412105 0.713787i 0.583014 0.812462i \(-0.301873\pi\)
−0.995120 + 0.0986744i \(0.968540\pi\)
\(488\) −13975.4 + 24206.2i −1.29639 + 2.24541i
\(489\) 0 0
\(490\) 188.813 321.751i 0.0174075 0.0296637i
\(491\) 17311.1 1.59112 0.795560 0.605874i \(-0.207177\pi\)
0.795560 + 0.605874i \(0.207177\pi\)
\(492\) 0 0
\(493\) 13371.8 + 23160.7i 1.22157 + 2.11583i
\(494\) 1881.82 + 3259.40i 0.171391 + 0.296857i
\(495\) 0 0
\(496\) 67039.8 6.06891
\(497\) −1414.58 823.397i −0.127671 0.0743147i
\(498\) 0 0
\(499\) 3515.22 6088.55i 0.315357 0.546214i −0.664157 0.747594i \(-0.731209\pi\)
0.979513 + 0.201380i \(0.0645425\pi\)
\(500\) −543.334 941.081i −0.0485972 0.0841729i
\(501\) 0 0
\(502\) −9554.51 + 16548.9i −0.849479 + 1.47134i
\(503\) −1519.74 −0.134716 −0.0673578 0.997729i \(-0.521457\pi\)
−0.0673578 + 0.997729i \(0.521457\pi\)
\(504\) 0 0
\(505\) −31.2547 −0.00275409
\(506\) 7278.19 12606.2i 0.639437 1.10754i
\(507\) 0 0
\(508\) −10683.6 18504.5i −0.933086 1.61615i
\(509\) −9727.68 + 16848.8i −0.847096 + 1.46721i 0.0366920 + 0.999327i \(0.488318\pi\)
−0.883788 + 0.467887i \(0.845015\pi\)
\(510\) 0 0
\(511\) 52.6474 14872.3i 0.00455770 1.28750i
\(512\) −21639.1 −1.86782
\(513\) 0 0
\(514\) −12942.0 22416.1i −1.11059 1.92361i
\(515\) −13.8723 24.0276i −0.00118697 0.00205589i
\(516\) 0 0
\(517\) 7764.35 0.660495
\(518\) −52.4776 + 14824.4i −0.00445122 + 1.25742i
\(519\) 0 0
\(520\) −245.061 + 424.458i −0.0206666 + 0.0357956i
\(521\) 5111.98 + 8854.21i 0.429866 + 0.744549i 0.996861 0.0791720i \(-0.0252276\pi\)
−0.566995 + 0.823721i \(0.691894\pi\)
\(522\) 0 0
\(523\) −8303.48 + 14382.1i −0.694237 + 1.20245i 0.276200 + 0.961100i \(0.410925\pi\)
−0.970437 + 0.241354i \(0.922409\pi\)
\(524\) −51801.0 −4.31858
\(525\) 0 0
\(526\) −18375.9 −1.52324
\(527\) −16268.9 + 28178.5i −1.34475 + 2.32918i
\(528\) 0 0
\(529\) 1687.50 + 2922.84i 0.138695 + 0.240227i
\(530\) −185.118 + 320.633i −0.0151717 + 0.0262781i
\(531\) 0 0
\(532\) −7390.46 4301.84i −0.602288 0.350580i
\(533\) 3616.52 0.293900
\(534\) 0 0
\(535\) 41.3681 + 71.6517i 0.00334299 + 0.00579023i
\(536\) 3291.24 + 5700.59i 0.265224 + 0.459381i
\(537\) 0 0
\(538\) −28441.0 −2.27914
\(539\) −4934.26 + 8408.34i −0.394311 + 0.671935i
\(540\) 0 0
\(541\) −3291.27 + 5700.65i −0.261558 + 0.453032i −0.966656 0.256078i \(-0.917570\pi\)
0.705098 + 0.709110i \(0.250903\pi\)
\(542\) −6313.83 10935.9i −0.500373 0.866672i
\(543\) 0 0
\(544\) 40148.2 69538.7i 3.16423 5.48060i
\(545\) 168.087 0.0132111
\(546\) 0 0
\(547\) 3407.73 0.266369 0.133185 0.991091i \(-0.457480\pi\)
0.133185 + 0.991091i \(0.457480\pi\)
\(548\) 17494.1 30300.6i 1.36370 2.36200i
\(549\) 0 0
\(550\) 9699.56 + 16800.1i 0.751983 + 1.30247i
\(551\) 2448.86 4241.55i 0.189337 0.327942i
\(552\) 0 0
\(553\) 5859.99 3355.66i 0.450619 0.258042i
\(554\) −14237.4 −1.09185
\(555\) 0 0
\(556\) −22942.1 39736.9i −1.74993 3.03097i
\(557\) −4740.05 8210.02i −0.360579 0.624541i 0.627477 0.778635i \(-0.284088\pi\)
−0.988056 + 0.154094i \(0.950754\pi\)
\(558\) 0 0
\(559\) 12783.5 0.967233
\(560\) 3.10652 877.558i 0.000234418 0.0662207i
\(561\) 0 0
\(562\) 14396.2 24935.0i 1.08055 1.87156i
\(563\) −10932.2 18935.2i −0.818363 1.41745i −0.906888 0.421372i \(-0.861549\pi\)
0.0885250 0.996074i \(-0.471785\pi\)
\(564\) 0 0
\(565\) 133.641 231.473i 0.00995101 0.0172357i
\(566\) −31723.2 −2.35588
\(567\) 0 0
\(568\) −6676.23 −0.493184
\(569\) −571.695 + 990.204i −0.0421207 + 0.0729552i −0.886317 0.463079i \(-0.846745\pi\)
0.844196 + 0.536034i \(0.180078\pi\)
\(570\) 0 0
\(571\) −5235.55 9068.24i −0.383715 0.664613i 0.607875 0.794032i \(-0.292022\pi\)
−0.991590 + 0.129419i \(0.958689\pi\)
\(572\) 10108.4 17508.3i 0.738907 1.27982i
\(573\) 0 0
\(574\) −9743.70 + 5579.63i −0.708526 + 0.405730i
\(575\) 11717.0 0.849795
\(576\) 0 0
\(577\) −2379.80 4121.94i −0.171703 0.297398i 0.767313 0.641273i \(-0.221594\pi\)
−0.939015 + 0.343876i \(0.888260\pi\)
\(578\) 23006.3 + 39848.0i 1.65560 + 2.86758i
\(579\) 0 0
\(580\) 1006.72 0.0720721
\(581\) 14752.6 + 8587.19i 1.05343 + 0.613179i
\(582\) 0 0
\(583\) 4837.70 8379.14i 0.343665 0.595246i
\(584\) −30331.7 52536.0i −2.14920 3.72252i
\(585\) 0 0
\(586\) 5406.36 9364.08i 0.381117 0.660114i
\(587\) 6307.45 0.443503 0.221751 0.975103i \(-0.428823\pi\)
0.221751 + 0.975103i \(0.428823\pi\)
\(588\) 0 0
\(589\) 5958.83 0.416858
\(590\) −378.942 + 656.348i −0.0264421 + 0.0457990i
\(591\) 0 0
\(592\) 17436.1 + 30200.2i 1.21051 + 2.09666i
\(593\) 8865.93 15356.2i 0.613963 1.06342i −0.376602 0.926375i \(-0.622908\pi\)
0.990565 0.137041i \(-0.0437591\pi\)
\(594\) 0 0
\(595\) 368.106 + 214.267i 0.0253628 + 0.0147632i
\(596\) −11448.2 −0.786808
\(597\) 0 0
\(598\) −8342.79 14450.1i −0.570505 0.988144i
\(599\) 9555.03 + 16549.8i 0.651766 + 1.12889i 0.982694 + 0.185236i \(0.0593050\pi\)
−0.330928 + 0.943656i \(0.607362\pi\)
\(600\) 0 0
\(601\) −13118.3 −0.890357 −0.445179 0.895442i \(-0.646860\pi\)
−0.445179 + 0.895442i \(0.646860\pi\)
\(602\) −34441.5 + 19722.6i −2.33178 + 1.33527i
\(603\) 0 0
\(604\) 9471.04 16404.3i 0.638032 1.10510i
\(605\) −52.0854 90.2145i −0.00350012 0.00606238i
\(606\) 0 0
\(607\) −8736.71 + 15132.4i −0.584204 + 1.01187i 0.410770 + 0.911739i \(0.365260\pi\)
−0.994974 + 0.100133i \(0.968073\pi\)
\(608\) −14705.1 −0.980876
\(609\) 0 0
\(610\) −402.429 −0.0267112
\(611\) 4450.03 7707.68i 0.294647 0.510343i
\(612\) 0 0
\(613\) −1547.70 2680.69i −0.101975 0.176626i 0.810523 0.585707i \(-0.199183\pi\)
−0.912498 + 0.409080i \(0.865850\pi\)
\(614\) 2523.36 4370.58i 0.165854 0.287268i
\(615\) 0 0
\(616\) −140.769 + 39765.9i −0.00920740 + 2.60099i
\(617\) −26334.8 −1.71831 −0.859157 0.511712i \(-0.829011\pi\)
−0.859157 + 0.511712i \(0.829011\pi\)
\(618\) 0 0
\(619\) 1343.02 + 2326.18i 0.0872061 + 0.151045i 0.906329 0.422572i \(-0.138873\pi\)
−0.819123 + 0.573618i \(0.805539\pi\)
\(620\) 612.416 + 1060.74i 0.0396697 + 0.0687100i
\(621\) 0 0
\(622\) −55211.0 −3.55910
\(623\) 3397.49 1945.54i 0.218487 0.125115i
\(624\) 0 0
\(625\) −7805.07 + 13518.8i −0.499524 + 0.865201i
\(626\) 18653.4 + 32308.7i 1.19096 + 2.06280i
\(627\) 0 0
\(628\) 64.6200 111.925i 0.00410608 0.00711194i
\(629\) −16925.2 −1.07290
\(630\) 0 0
\(631\) 22414.2 1.41409 0.707047 0.707167i \(-0.250027\pi\)
0.707047 + 0.707167i \(0.250027\pi\)
\(632\) 13772.0 23853.8i 0.866803 1.50135i
\(633\) 0 0
\(634\) 20819.3 + 36060.1i 1.30416 + 2.25888i
\(635\) 97.4522 168.792i 0.00609019 0.0105485i
\(636\) 0 0
\(637\) 5518.97 + 9717.37i 0.343280 + 0.604421i
\(638\) −35949.6 −2.23081
\(639\) 0 0
\(640\) −476.111 824.648i −0.0294062 0.0509329i
\(641\) 11069.5 + 19173.0i 0.682092 + 1.18142i 0.974341 + 0.225076i \(0.0722630\pi\)
−0.292249 + 0.956342i \(0.594404\pi\)
\(642\) 0 0
\(643\) 22523.7 1.38141 0.690707 0.723134i \(-0.257299\pi\)
0.690707 + 0.723134i \(0.257299\pi\)
\(644\) 32764.6 + 19071.6i 2.00483 + 1.16697i
\(645\) 0 0
\(646\) 6670.38 11553.4i 0.406258 0.703659i
\(647\) 5761.75 + 9979.64i 0.350105 + 0.606399i 0.986267 0.165156i \(-0.0528127\pi\)
−0.636163 + 0.771555i \(0.719479\pi\)
\(648\) 0 0
\(649\) 9902.93 17152.4i 0.598959 1.03743i
\(650\) 22236.7 1.34184
\(651\) 0 0
\(652\) −18184.4 −1.09226
\(653\) 230.968 400.049i 0.0138415 0.0239742i −0.859022 0.511939i \(-0.828927\pi\)
0.872863 + 0.487965i \(0.162261\pi\)
\(654\) 0 0
\(655\) −236.256 409.207i −0.0140936 0.0244107i
\(656\) −13206.2 + 22873.9i −0.786001 + 1.36139i
\(657\) 0 0
\(658\) −97.8152 + 27631.8i −0.00579519 + 1.63708i
\(659\) 14373.3 0.849627 0.424813 0.905281i \(-0.360340\pi\)
0.424813 + 0.905281i \(0.360340\pi\)
\(660\) 0 0
\(661\) −33.9245 58.7589i −0.00199623 0.00345758i 0.865026 0.501728i \(-0.167302\pi\)
−0.867022 + 0.498270i \(0.833969\pi\)
\(662\) 6781.38 + 11745.7i 0.398135 + 0.689591i
\(663\) 0 0
\(664\) 69626.3 4.06931
\(665\) 0.276122 78.0017i 1.61016e−5 0.00454853i
\(666\) 0 0
\(667\) −10856.7 + 18804.3i −0.630244 + 1.09162i
\(668\) −6186.91 10716.0i −0.358351 0.620683i
\(669\) 0 0
\(670\) −47.3863 + 82.0755i −0.00273238 + 0.00473262i
\(671\) 10516.7 0.605056
\(672\) 0 0
\(673\) 21970.2 1.25838 0.629190 0.777252i \(-0.283387\pi\)
0.629190 + 0.777252i \(0.283387\pi\)
\(674\) 21561.7 37345.9i 1.23223 2.13429i
\(675\) 0 0
\(676\) 12394.4 + 21467.8i 0.705191 + 1.22143i
\(677\) −1496.65 + 2592.27i −0.0849642 + 0.147162i −0.905376 0.424611i \(-0.860411\pi\)
0.820412 + 0.571773i \(0.193744\pi\)
\(678\) 0 0
\(679\) −13536.7 7879.43i −0.765081 0.445338i
\(680\) 1737.31 0.0979747
\(681\) 0 0
\(682\) −21869.1 37878.4i −1.22788 2.12674i
\(683\) −2730.95 4730.14i −0.152997 0.264998i 0.779331 0.626612i \(-0.215559\pi\)
−0.932328 + 0.361614i \(0.882226\pi\)
\(684\) 0 0
\(685\) 319.150 0.0178016
\(686\) −29861.4 17666.0i −1.66198 0.983221i
\(687\) 0 0
\(688\) −46680.7 + 80853.3i −2.58675 + 4.48038i
\(689\) −5545.32 9604.77i −0.306618 0.531078i
\(690\) 0 0
\(691\) 7889.49 13665.0i 0.434342 0.752303i −0.562899 0.826525i \(-0.690314\pi\)
0.997242 + 0.0742225i \(0.0236475\pi\)
\(692\) 90070.0 4.94790
\(693\) 0 0
\(694\) 4857.84 0.265708
\(695\) 209.270 362.467i 0.0114217 0.0197829i
\(696\) 0 0
\(697\) −6409.64 11101.8i −0.348325 0.603317i
\(698\) 19013.0 32931.5i 1.03102 1.78578i
\(699\) 0 0
\(700\) −43843.9 + 25106.8i −2.36735 + 1.35564i
\(701\) 8058.91 0.434209 0.217105 0.976148i \(-0.430339\pi\)
0.217105 + 0.976148i \(0.430339\pi\)
\(702\) 0 0
\(703\) 1549.81 + 2684.34i 0.0831466 + 0.144014i
\(704\) 26915.3 + 46618.7i 1.44092 + 2.49575i
\(705\) 0 0
\(706\) −63141.5 −3.36595
\(707\) −10.2898 + 2906.77i −0.000547367 + 0.154626i
\(708\) 0 0
\(709\) −13009.5 + 22533.1i −0.689113 + 1.19358i 0.283013 + 0.959116i \(0.408666\pi\)
−0.972125 + 0.234462i \(0.924667\pi\)
\(710\) −48.0612 83.2445i −0.00254043 0.00440016i
\(711\) 0 0
\(712\) 7984.68 13829.9i 0.420279 0.727944i
\(713\) −26417.7 −1.38759
\(714\) 0 0
\(715\) 184.412 0.00964560
\(716\) 10125.8 17538.3i 0.528516 0.915416i
\(717\) 0 0
\(718\) −23095.2 40002.1i −1.20043 2.07920i
\(719\) −2331.73 + 4038.68i −0.120944 + 0.209482i −0.920140 0.391589i \(-0.871926\pi\)
0.799196 + 0.601070i \(0.205259\pi\)
\(720\) 0 0
\(721\) −2239.19 + 1282.25i −0.115661 + 0.0662324i
\(722\) 35019.2 1.80510
\(723\) 0 0
\(724\) −13226.1 22908.2i −0.678926 1.17593i
\(725\) −14468.6 25060.3i −0.741172 1.28375i
\(726\) 0 0
\(727\) 35484.5 1.81024 0.905121 0.425154i \(-0.139780\pi\)
0.905121 + 0.425154i \(0.139780\pi\)
\(728\) 39395.0 + 22931.0i 2.00560 + 1.16742i
\(729\) 0 0
\(730\) 436.707 756.398i 0.0221414 0.0383501i
\(731\) −22656.5 39242.1i −1.14635 1.98553i
\(732\) 0 0
\(733\) 7628.55 13213.0i 0.384402 0.665804i −0.607284 0.794485i \(-0.707741\pi\)
0.991686 + 0.128681i \(0.0410742\pi\)
\(734\) −37756.9 −1.89868
\(735\) 0 0
\(736\) 65193.4 3.26503
\(737\) 1238.35 2144.89i 0.0618932 0.107202i
\(738\) 0 0
\(739\) −12876.9 22303.4i −0.640978 1.11021i −0.985215 0.171324i \(-0.945195\pi\)
0.344236 0.938883i \(-0.388138\pi\)
\(740\) −318.561 + 551.764i −0.0158251 + 0.0274098i
\(741\) 0 0
\(742\) 29758.7 + 17322.0i 1.47234 + 0.857020i
\(743\) −5703.55 −0.281619 −0.140809 0.990037i \(-0.544971\pi\)
−0.140809 + 0.990037i \(0.544971\pi\)
\(744\) 0 0
\(745\) −52.2135 90.4364i −0.00256772 0.00444743i
\(746\) 1157.66 + 2005.12i 0.0568160 + 0.0984083i
\(747\) 0 0
\(748\) −71661.7 −3.50296
\(749\) 6677.40 3823.75i 0.325750 0.186538i
\(750\) 0 0
\(751\) −7725.44 + 13380.9i −0.375373 + 0.650166i −0.990383 0.138354i \(-0.955819\pi\)
0.615010 + 0.788520i \(0.289152\pi\)
\(752\) 32499.9 + 56291.4i 1.57600 + 2.72970i
\(753\) 0 0
\(754\) −20604.0 + 35687.2i −0.995164 + 1.72368i
\(755\) 172.784 0.00832879
\(756\) 0 0
\(757\) 12434.7 0.597025 0.298513 0.954406i \(-0.403509\pi\)
0.298513 + 0.954406i \(0.403509\pi\)
\(758\) −26528.8 + 45949.2i −1.27120 + 2.20178i
\(759\) 0 0
\(760\) −159.082 275.538i −0.00759277 0.0131511i
\(761\) 1159.31 2007.98i 0.0552234 0.0956497i −0.837092 0.547062i \(-0.815746\pi\)
0.892316 + 0.451412i \(0.149080\pi\)
\(762\) 0 0
\(763\) 55.3383 15632.5i 0.00262566 0.741722i
\(764\) 39896.1 1.88926
\(765\) 0 0
\(766\) 6046.61 + 10473.0i 0.285212 + 0.494003i
\(767\) −11351.5 19661.3i −0.534391 0.925592i
\(768\) 0 0
\(769\) 23104.3 1.08344 0.541718 0.840560i \(-0.317774\pi\)
0.541718 + 0.840560i \(0.317774\pi\)
\(770\) −496.846 + 284.514i −0.0232533 + 0.0133158i
\(771\) 0 0
\(772\) 8975.09 15545.3i 0.418420 0.724725i
\(773\) 6216.80 + 10767.8i 0.289266 + 0.501024i 0.973635 0.228112i \(-0.0732554\pi\)
−0.684369 + 0.729136i \(0.739922\pi\)
\(774\) 0 0
\(775\) 17603.3 30489.8i 0.815908 1.41319i
\(776\) −63887.6 −2.95545
\(777\) 0 0
\(778\) −41867.1 −1.92932
\(779\) −1173.84 + 2033.14i −0.0539885 + 0.0935108i
\(780\) <