Properties

Label 189.4.e.h.163.5
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.5
Root \(-0.178435 - 0.309059i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.h.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.884622 - 1.53221i) q^{2} +(2.43489 + 4.21735i) q^{4} +(-6.52561 + 11.3027i) q^{5} +(-18.4950 + 0.966772i) q^{7} +22.7698 q^{8} +O(q^{10})\) \(q+(0.884622 - 1.53221i) q^{2} +(2.43489 + 4.21735i) q^{4} +(-6.52561 + 11.3027i) q^{5} +(-18.4950 + 0.966772i) q^{7} +22.7698 q^{8} +(11.5454 + 19.9972i) q^{10} +(-26.4705 - 45.8483i) q^{11} -71.7001 q^{13} +(-14.8798 + 29.1935i) q^{14} +(0.663570 - 1.14934i) q^{16} +(-53.2866 - 92.2950i) q^{17} +(-26.9643 + 46.7035i) q^{19} -63.5565 q^{20} -93.6656 q^{22} +(-9.32943 + 16.1590i) q^{23} +(-22.6672 - 39.2608i) q^{25} +(-63.4275 + 109.860i) q^{26} +(-49.1105 - 75.6459i) q^{28} +261.806 q^{29} +(61.1632 + 105.938i) q^{31} +(89.9051 + 155.720i) q^{32} -188.554 q^{34} +(109.764 - 215.352i) q^{35} +(-139.069 + 240.874i) q^{37} +(47.7064 + 82.6298i) q^{38} +(-148.587 + 257.360i) q^{40} -31.3788 q^{41} -347.239 q^{43} +(128.905 - 223.271i) q^{44} +(16.5060 + 28.5893i) q^{46} +(-271.109 + 469.575i) q^{47} +(341.131 - 35.7609i) q^{49} -80.2078 q^{50} +(-174.582 - 302.384i) q^{52} +(128.528 + 222.618i) q^{53} +690.945 q^{55} +(-421.127 + 22.0132i) q^{56} +(231.599 - 401.142i) q^{58} +(-157.810 - 273.335i) q^{59} +(-69.4019 + 120.208i) q^{61} +216.425 q^{62} +328.745 q^{64} +(467.887 - 810.405i) q^{65} +(-198.950 - 344.592i) q^{67} +(259.493 - 449.456i) q^{68} +(-232.865 - 358.687i) q^{70} -843.419 q^{71} +(436.140 + 755.417i) q^{73} +(246.047 + 426.165i) q^{74} -262.620 q^{76} +(533.897 + 822.373i) q^{77} +(277.456 - 480.568i) q^{79} +(8.66040 + 15.0002i) q^{80} +(-27.7584 + 48.0789i) q^{82} -297.114 q^{83} +1390.91 q^{85} +(-307.176 + 532.044i) q^{86} +(-602.728 - 1043.96i) q^{88} +(-51.2419 + 88.7536i) q^{89} +(1326.09 - 69.3177i) q^{91} -90.8644 q^{92} +(479.659 + 830.793i) q^{94} +(-351.916 - 609.537i) q^{95} -515.437 q^{97} +(246.979 - 554.319i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.884622 1.53221i 0.312761 0.541718i −0.666198 0.745775i \(-0.732079\pi\)
0.978959 + 0.204057i \(0.0654127\pi\)
\(3\) 0 0
\(4\) 2.43489 + 4.21735i 0.304361 + 0.527168i
\(5\) −6.52561 + 11.3027i −0.583669 + 1.01094i 0.411371 + 0.911468i \(0.365050\pi\)
−0.995040 + 0.0994757i \(0.968283\pi\)
\(6\) 0 0
\(7\) −18.4950 + 0.966772i −0.998637 + 0.0522008i
\(8\) 22.7698 1.00629
\(9\) 0 0
\(10\) 11.5454 + 19.9972i 0.365098 + 0.632368i
\(11\) −26.4705 45.8483i −0.725560 1.25671i −0.958743 0.284274i \(-0.908248\pi\)
0.233183 0.972433i \(-0.425086\pi\)
\(12\) 0 0
\(13\) −71.7001 −1.52970 −0.764848 0.644211i \(-0.777186\pi\)
−0.764848 + 0.644211i \(0.777186\pi\)
\(14\) −14.8798 + 29.1935i −0.284057 + 0.557306i
\(15\) 0 0
\(16\) 0.663570 1.14934i 0.0103683 0.0179584i
\(17\) −53.2866 92.2950i −0.760229 1.31676i −0.942732 0.333550i \(-0.891753\pi\)
0.182504 0.983205i \(-0.441580\pi\)
\(18\) 0 0
\(19\) −26.9643 + 46.7035i −0.325580 + 0.563921i −0.981630 0.190797i \(-0.938893\pi\)
0.656049 + 0.754718i \(0.272226\pi\)
\(20\) −63.5565 −0.710583
\(21\) 0 0
\(22\) −93.6656 −0.907708
\(23\) −9.32943 + 16.1590i −0.0845792 + 0.146495i −0.905212 0.424961i \(-0.860288\pi\)
0.820633 + 0.571456i \(0.193621\pi\)
\(24\) 0 0
\(25\) −22.6672 39.2608i −0.181338 0.314086i
\(26\) −63.4275 + 109.860i −0.478429 + 0.828664i
\(27\) 0 0
\(28\) −49.1105 75.6459i −0.331464 0.510562i
\(29\) 261.806 1.67642 0.838208 0.545350i \(-0.183603\pi\)
0.838208 + 0.545350i \(0.183603\pi\)
\(30\) 0 0
\(31\) 61.1632 + 105.938i 0.354362 + 0.613773i 0.987009 0.160667i \(-0.0513646\pi\)
−0.632646 + 0.774441i \(0.718031\pi\)
\(32\) 89.9051 + 155.720i 0.496660 + 0.860241i
\(33\) 0 0
\(34\) −188.554 −0.951081
\(35\) 109.764 215.352i 0.530101 1.04003i
\(36\) 0 0
\(37\) −139.069 + 240.874i −0.617912 + 1.07026i 0.371954 + 0.928251i \(0.378688\pi\)
−0.989866 + 0.142004i \(0.954645\pi\)
\(38\) 47.7064 + 82.6298i 0.203658 + 0.352746i
\(39\) 0 0
\(40\) −148.587 + 257.360i −0.587341 + 1.01730i
\(41\) −31.3788 −0.119525 −0.0597627 0.998213i \(-0.519034\pi\)
−0.0597627 + 0.998213i \(0.519034\pi\)
\(42\) 0 0
\(43\) −347.239 −1.23148 −0.615739 0.787951i \(-0.711142\pi\)
−0.615739 + 0.787951i \(0.711142\pi\)
\(44\) 128.905 223.271i 0.441664 0.764984i
\(45\) 0 0
\(46\) 16.5060 + 28.5893i 0.0529062 + 0.0916362i
\(47\) −271.109 + 469.575i −0.841390 + 1.45733i 0.0473295 + 0.998879i \(0.484929\pi\)
−0.888720 + 0.458451i \(0.848404\pi\)
\(48\) 0 0
\(49\) 341.131 35.7609i 0.994550 0.104259i
\(50\) −80.2078 −0.226862
\(51\) 0 0
\(52\) −174.582 302.384i −0.465579 0.806407i
\(53\) 128.528 + 222.618i 0.333108 + 0.576960i 0.983120 0.182964i \(-0.0585693\pi\)
−0.650012 + 0.759924i \(0.725236\pi\)
\(54\) 0 0
\(55\) 690.945 1.69395
\(56\) −421.127 + 22.0132i −1.00492 + 0.0525292i
\(57\) 0 0
\(58\) 231.599 401.142i 0.524318 0.908146i
\(59\) −157.810 273.335i −0.348223 0.603139i 0.637711 0.770276i \(-0.279881\pi\)
−0.985934 + 0.167136i \(0.946548\pi\)
\(60\) 0 0
\(61\) −69.4019 + 120.208i −0.145672 + 0.252312i −0.929624 0.368511i \(-0.879868\pi\)
0.783951 + 0.620822i \(0.213201\pi\)
\(62\) 216.425 0.443323
\(63\) 0 0
\(64\) 328.745 0.642081
\(65\) 467.887 810.405i 0.892835 1.54644i
\(66\) 0 0
\(67\) −198.950 344.592i −0.362771 0.628338i 0.625645 0.780108i \(-0.284836\pi\)
−0.988416 + 0.151770i \(0.951503\pi\)
\(68\) 259.493 449.456i 0.462768 0.801537i
\(69\) 0 0
\(70\) −232.865 358.687i −0.397610 0.612447i
\(71\) −843.419 −1.40979 −0.704897 0.709309i \(-0.749007\pi\)
−0.704897 + 0.709309i \(0.749007\pi\)
\(72\) 0 0
\(73\) 436.140 + 755.417i 0.699265 + 1.21116i 0.968721 + 0.248151i \(0.0798228\pi\)
−0.269456 + 0.963013i \(0.586844\pi\)
\(74\) 246.047 + 426.165i 0.386518 + 0.669469i
\(75\) 0 0
\(76\) −262.620 −0.396375
\(77\) 533.897 + 822.373i 0.790172 + 1.21712i
\(78\) 0 0
\(79\) 277.456 480.568i 0.395143 0.684407i −0.597977 0.801513i \(-0.704029\pi\)
0.993119 + 0.117106i \(0.0373619\pi\)
\(80\) 8.66040 + 15.0002i 0.0121033 + 0.0209635i
\(81\) 0 0
\(82\) −27.7584 + 48.0789i −0.0373829 + 0.0647492i
\(83\) −297.114 −0.392921 −0.196461 0.980512i \(-0.562945\pi\)
−0.196461 + 0.980512i \(0.562945\pi\)
\(84\) 0 0
\(85\) 1390.91 1.77489
\(86\) −307.176 + 532.044i −0.385158 + 0.667114i
\(87\) 0 0
\(88\) −602.728 1043.96i −0.730125 1.26461i
\(89\) −51.2419 + 88.7536i −0.0610295 + 0.105706i −0.894926 0.446215i \(-0.852772\pi\)
0.833896 + 0.551921i \(0.186105\pi\)
\(90\) 0 0
\(91\) 1326.09 69.3177i 1.52761 0.0798513i
\(92\) −90.8644 −0.102970
\(93\) 0 0
\(94\) 479.659 + 830.793i 0.526308 + 0.911593i
\(95\) −351.916 609.537i −0.380062 0.658286i
\(96\) 0 0
\(97\) −515.437 −0.539533 −0.269766 0.962926i \(-0.586947\pi\)
−0.269766 + 0.962926i \(0.586947\pi\)
\(98\) 246.979 554.319i 0.254578 0.571374i
\(99\) 0 0
\(100\) 110.384 191.191i 0.110384 0.191191i
\(101\) −550.975 954.317i −0.542813 0.940179i −0.998741 0.0501625i \(-0.984026\pi\)
0.455929 0.890016i \(-0.349307\pi\)
\(102\) 0 0
\(103\) 176.814 306.251i 0.169146 0.292969i −0.768974 0.639280i \(-0.779233\pi\)
0.938120 + 0.346311i \(0.112566\pi\)
\(104\) −1632.60 −1.53932
\(105\) 0 0
\(106\) 454.796 0.416733
\(107\) 155.332 269.042i 0.140341 0.243077i −0.787284 0.616590i \(-0.788514\pi\)
0.927625 + 0.373513i \(0.121847\pi\)
\(108\) 0 0
\(109\) 257.492 + 445.989i 0.226268 + 0.391909i 0.956699 0.291078i \(-0.0940140\pi\)
−0.730431 + 0.682987i \(0.760681\pi\)
\(110\) 611.226 1058.67i 0.529801 0.917642i
\(111\) 0 0
\(112\) −11.1616 + 21.8985i −0.00941670 + 0.0184751i
\(113\) 1106.59 0.921233 0.460616 0.887599i \(-0.347628\pi\)
0.460616 + 0.887599i \(0.347628\pi\)
\(114\) 0 0
\(115\) −121.760 210.895i −0.0987324 0.171009i
\(116\) 637.467 + 1104.13i 0.510236 + 0.883754i
\(117\) 0 0
\(118\) −558.410 −0.435642
\(119\) 1074.76 + 1655.48i 0.827928 + 1.27528i
\(120\) 0 0
\(121\) −735.876 + 1274.57i −0.552875 + 0.957607i
\(122\) 122.789 + 212.677i 0.0911212 + 0.157827i
\(123\) 0 0
\(124\) −297.851 + 515.893i −0.215708 + 0.373617i
\(125\) −1039.73 −0.743972
\(126\) 0 0
\(127\) 1591.62 1.11207 0.556037 0.831158i \(-0.312321\pi\)
0.556037 + 0.831158i \(0.312321\pi\)
\(128\) −428.425 + 742.054i −0.295842 + 0.512414i
\(129\) 0 0
\(130\) −827.807 1433.80i −0.558488 0.967330i
\(131\) 408.628 707.764i 0.272534 0.472043i −0.696976 0.717095i \(-0.745472\pi\)
0.969510 + 0.245052i \(0.0788049\pi\)
\(132\) 0 0
\(133\) 453.552 889.849i 0.295699 0.580148i
\(134\) −703.984 −0.453843
\(135\) 0 0
\(136\) −1213.32 2101.54i −0.765012 1.32504i
\(137\) −514.067 890.390i −0.320582 0.555264i 0.660026 0.751242i \(-0.270545\pi\)
−0.980608 + 0.195978i \(0.937212\pi\)
\(138\) 0 0
\(139\) −607.307 −0.370583 −0.185292 0.982684i \(-0.559323\pi\)
−0.185292 + 0.982684i \(0.559323\pi\)
\(140\) 1175.48 61.4446i 0.709614 0.0370930i
\(141\) 0 0
\(142\) −746.107 + 1292.30i −0.440929 + 0.763712i
\(143\) 1897.94 + 3287.33i 1.10989 + 1.92238i
\(144\) 0 0
\(145\) −1708.44 + 2959.11i −0.978472 + 1.69476i
\(146\) 1543.28 0.874813
\(147\) 0 0
\(148\) −1354.47 −0.752273
\(149\) 610.031 1056.60i 0.335407 0.580942i −0.648156 0.761508i \(-0.724459\pi\)
0.983563 + 0.180566i \(0.0577928\pi\)
\(150\) 0 0
\(151\) −976.718 1691.73i −0.526386 0.911726i −0.999527 0.0307402i \(-0.990214\pi\)
0.473142 0.880986i \(-0.343120\pi\)
\(152\) −613.970 + 1063.43i −0.327629 + 0.567469i
\(153\) 0 0
\(154\) 1732.35 90.5533i 0.906471 0.0473831i
\(155\) −1596.51 −0.827320
\(156\) 0 0
\(157\) 765.394 + 1325.70i 0.389077 + 0.673901i 0.992326 0.123652i \(-0.0394606\pi\)
−0.603249 + 0.797553i \(0.706127\pi\)
\(158\) −490.888 850.243i −0.247171 0.428112i
\(159\) 0 0
\(160\) −2346.74 −1.15954
\(161\) 156.926 307.881i 0.0768167 0.150711i
\(162\) 0 0
\(163\) −1141.60 + 1977.31i −0.548570 + 0.950151i 0.449803 + 0.893128i \(0.351494\pi\)
−0.998373 + 0.0570230i \(0.981839\pi\)
\(164\) −76.4038 132.335i −0.0363789 0.0630100i
\(165\) 0 0
\(166\) −262.833 + 455.241i −0.122891 + 0.212853i
\(167\) 1071.13 0.496325 0.248162 0.968718i \(-0.420173\pi\)
0.248162 + 0.968718i \(0.420173\pi\)
\(168\) 0 0
\(169\) 2943.91 1.33997
\(170\) 1230.43 2131.17i 0.555116 0.961489i
\(171\) 0 0
\(172\) −845.488 1464.43i −0.374813 0.649196i
\(173\) −1829.44 + 3168.68i −0.803985 + 1.39254i 0.112989 + 0.993596i \(0.463958\pi\)
−0.916974 + 0.398947i \(0.869376\pi\)
\(174\) 0 0
\(175\) 457.187 + 704.215i 0.197486 + 0.304192i
\(176\) −70.2601 −0.0300912
\(177\) 0 0
\(178\) 90.6595 + 157.027i 0.0381754 + 0.0661217i
\(179\) −405.117 701.683i −0.169161 0.292996i 0.768964 0.639292i \(-0.220772\pi\)
−0.938125 + 0.346296i \(0.887439\pi\)
\(180\) 0 0
\(181\) −1730.05 −0.710462 −0.355231 0.934779i \(-0.615598\pi\)
−0.355231 + 0.934779i \(0.615598\pi\)
\(182\) 1066.88 2093.18i 0.434520 0.852509i
\(183\) 0 0
\(184\) −212.429 + 367.938i −0.0851113 + 0.147417i
\(185\) −1815.02 3143.70i −0.721312 1.24935i
\(186\) 0 0
\(187\) −2821.05 + 4886.19i −1.10318 + 1.91077i
\(188\) −2640.48 −1.02434
\(189\) 0 0
\(190\) −1245.25 −0.475474
\(191\) −537.799 + 931.495i −0.203737 + 0.352883i −0.949730 0.313071i \(-0.898642\pi\)
0.745993 + 0.665954i \(0.231975\pi\)
\(192\) 0 0
\(193\) −2246.86 3891.67i −0.837992 1.45144i −0.891571 0.452881i \(-0.850396\pi\)
0.0535795 0.998564i \(-0.482937\pi\)
\(194\) −455.967 + 789.758i −0.168745 + 0.292275i
\(195\) 0 0
\(196\) 981.431 + 1351.59i 0.357664 + 0.492563i
\(197\) −101.961 −0.0368753 −0.0184377 0.999830i \(-0.505869\pi\)
−0.0184377 + 0.999830i \(0.505869\pi\)
\(198\) 0 0
\(199\) 267.794 + 463.832i 0.0953940 + 0.165227i 0.909773 0.415106i \(-0.136256\pi\)
−0.814379 + 0.580333i \(0.802922\pi\)
\(200\) −516.128 893.960i −0.182479 0.316063i
\(201\) 0 0
\(202\) −1949.62 −0.679083
\(203\) −4842.10 + 253.106i −1.67413 + 0.0875103i
\(204\) 0 0
\(205\) 204.766 354.665i 0.0697633 0.120834i
\(206\) −312.827 541.832i −0.105804 0.183259i
\(207\) 0 0
\(208\) −47.5780 + 82.4076i −0.0158603 + 0.0274709i
\(209\) 2855.03 0.944912
\(210\) 0 0
\(211\) 1247.47 0.407012 0.203506 0.979074i \(-0.434766\pi\)
0.203506 + 0.979074i \(0.434766\pi\)
\(212\) −625.904 + 1084.10i −0.202770 + 0.351208i
\(213\) 0 0
\(214\) −274.820 476.001i −0.0877863 0.152050i
\(215\) 2265.95 3924.74i 0.718774 1.24495i
\(216\) 0 0
\(217\) −1233.63 1900.19i −0.385919 0.594439i
\(218\) 911.133 0.283072
\(219\) 0 0
\(220\) 1682.37 + 2913.96i 0.515571 + 0.892995i
\(221\) 3820.65 + 6617.57i 1.16292 + 2.01423i
\(222\) 0 0
\(223\) 2573.28 0.772734 0.386367 0.922345i \(-0.373730\pi\)
0.386367 + 0.922345i \(0.373730\pi\)
\(224\) −1813.34 2793.13i −0.540888 0.833142i
\(225\) 0 0
\(226\) 978.915 1695.53i 0.288126 0.499049i
\(227\) −744.416 1289.37i −0.217659 0.376997i 0.736433 0.676511i \(-0.236509\pi\)
−0.954092 + 0.299514i \(0.903175\pi\)
\(228\) 0 0
\(229\) 1605.20 2780.28i 0.463207 0.802297i −0.535912 0.844274i \(-0.680032\pi\)
0.999119 + 0.0419764i \(0.0133654\pi\)
\(230\) −430.848 −0.123519
\(231\) 0 0
\(232\) 5961.26 1.68696
\(233\) −1463.84 + 2535.45i −0.411586 + 0.712888i −0.995063 0.0992415i \(-0.968358\pi\)
0.583477 + 0.812129i \(0.301692\pi\)
\(234\) 0 0
\(235\) −3538.31 6128.53i −0.982186 1.70120i
\(236\) 768.500 1331.08i 0.211971 0.367144i
\(237\) 0 0
\(238\) 3487.31 182.289i 0.949784 0.0496472i
\(239\) 4263.99 1.15404 0.577019 0.816731i \(-0.304216\pi\)
0.577019 + 0.816731i \(0.304216\pi\)
\(240\) 0 0
\(241\) 2158.04 + 3737.84i 0.576813 + 0.999069i 0.995842 + 0.0910964i \(0.0290371\pi\)
−0.419029 + 0.907973i \(0.637630\pi\)
\(242\) 1301.94 + 2255.03i 0.345835 + 0.599005i
\(243\) 0 0
\(244\) −675.943 −0.177348
\(245\) −1821.89 + 4089.06i −0.475087 + 1.06629i
\(246\) 0 0
\(247\) 1933.34 3348.64i 0.498038 0.862628i
\(248\) 1392.67 + 2412.18i 0.356592 + 0.617635i
\(249\) 0 0
\(250\) −919.771 + 1593.09i −0.232686 + 0.403023i
\(251\) 2107.60 0.530001 0.265001 0.964248i \(-0.414628\pi\)
0.265001 + 0.964248i \(0.414628\pi\)
\(252\) 0 0
\(253\) 987.819 0.245469
\(254\) 1407.98 2438.70i 0.347814 0.602431i
\(255\) 0 0
\(256\) 2072.97 + 3590.49i 0.506096 + 0.876585i
\(257\) −1410.31 + 2442.73i −0.342307 + 0.592893i −0.984861 0.173348i \(-0.944542\pi\)
0.642554 + 0.766241i \(0.277875\pi\)
\(258\) 0 0
\(259\) 2339.21 4589.42i 0.561202 1.10105i
\(260\) 4557.01 1.08698
\(261\) 0 0
\(262\) −722.963 1252.21i −0.170476 0.295274i
\(263\) −2976.21 5154.95i −0.697799 1.20862i −0.969228 0.246165i \(-0.920829\pi\)
0.271429 0.962459i \(-0.412504\pi\)
\(264\) 0 0
\(265\) −3354.90 −0.777698
\(266\) −962.214 1482.12i −0.221794 0.341634i
\(267\) 0 0
\(268\) 968.843 1678.09i 0.220827 0.382483i
\(269\) −3321.51 5753.02i −0.752847 1.30397i −0.946438 0.322887i \(-0.895347\pi\)
0.193590 0.981082i \(-0.437987\pi\)
\(270\) 0 0
\(271\) −480.913 + 832.966i −0.107799 + 0.186713i −0.914878 0.403730i \(-0.867713\pi\)
0.807080 + 0.590443i \(0.201047\pi\)
\(272\) −141.437 −0.0315291
\(273\) 0 0
\(274\) −1819.02 −0.401062
\(275\) −1200.03 + 2078.51i −0.263143 + 0.455777i
\(276\) 0 0
\(277\) 2800.06 + 4849.84i 0.607362 + 1.05198i 0.991673 + 0.128778i \(0.0411055\pi\)
−0.384312 + 0.923203i \(0.625561\pi\)
\(278\) −537.237 + 930.522i −0.115904 + 0.200752i
\(279\) 0 0
\(280\) 2499.31 4903.52i 0.533436 1.04658i
\(281\) −1044.12 −0.221661 −0.110831 0.993839i \(-0.535351\pi\)
−0.110831 + 0.993839i \(0.535351\pi\)
\(282\) 0 0
\(283\) −1161.99 2012.62i −0.244074 0.422749i 0.717797 0.696253i \(-0.245151\pi\)
−0.961871 + 0.273504i \(0.911817\pi\)
\(284\) −2053.63 3556.99i −0.429086 0.743199i
\(285\) 0 0
\(286\) 6715.84 1.38852
\(287\) 580.351 30.3361i 0.119363 0.00623932i
\(288\) 0 0
\(289\) −3222.42 + 5581.39i −0.655896 + 1.13605i
\(290\) 3022.65 + 5235.39i 0.612056 + 1.06011i
\(291\) 0 0
\(292\) −2123.90 + 3678.71i −0.425658 + 0.737261i
\(293\) 4140.37 0.825540 0.412770 0.910835i \(-0.364561\pi\)
0.412770 + 0.910835i \(0.364561\pi\)
\(294\) 0 0
\(295\) 4119.23 0.812986
\(296\) −3166.56 + 5484.65i −0.621800 + 1.07699i
\(297\) 0 0
\(298\) −1079.29 1869.39i −0.209805 0.363392i
\(299\) 668.921 1158.61i 0.129380 0.224093i
\(300\) 0 0
\(301\) 6422.20 335.701i 1.22980 0.0642841i
\(302\) −3456.11 −0.658532
\(303\) 0 0
\(304\) 35.7853 + 61.9820i 0.00675141 + 0.0116938i
\(305\) −905.780 1568.86i −0.170049 0.294533i
\(306\) 0 0
\(307\) 3074.68 0.571600 0.285800 0.958289i \(-0.407741\pi\)
0.285800 + 0.958289i \(0.407741\pi\)
\(308\) −2168.25 + 4254.01i −0.401129 + 0.786997i
\(309\) 0 0
\(310\) −1412.31 + 2446.19i −0.258754 + 0.448175i
\(311\) 1159.17 + 2007.74i 0.211352 + 0.366073i 0.952138 0.305669i \(-0.0988800\pi\)
−0.740786 + 0.671741i \(0.765547\pi\)
\(312\) 0 0
\(313\) −947.953 + 1641.90i −0.171187 + 0.296504i −0.938835 0.344367i \(-0.888094\pi\)
0.767648 + 0.640871i \(0.221427\pi\)
\(314\) 2708.34 0.486753
\(315\) 0 0
\(316\) 2702.30 0.481064
\(317\) 486.154 842.043i 0.0861360 0.149192i −0.819739 0.572738i \(-0.805881\pi\)
0.905875 + 0.423546i \(0.139215\pi\)
\(318\) 0 0
\(319\) −6930.13 12003.3i −1.21634 2.10676i
\(320\) −2145.27 + 3715.71i −0.374762 + 0.649108i
\(321\) 0 0
\(322\) −332.919 512.802i −0.0576175 0.0887495i
\(323\) 5747.33 0.990062
\(324\) 0 0
\(325\) 1625.24 + 2815.00i 0.277392 + 0.480456i
\(326\) 2019.77 + 3498.34i 0.343143 + 0.594341i
\(327\) 0 0
\(328\) −714.488 −0.120277
\(329\) 4560.19 8946.89i 0.764169 1.49926i
\(330\) 0 0
\(331\) 2234.82 3870.82i 0.371108 0.642779i −0.618628 0.785684i \(-0.712311\pi\)
0.989736 + 0.142905i \(0.0456445\pi\)
\(332\) −723.438 1253.03i −0.119590 0.207136i
\(333\) 0 0
\(334\) 947.542 1641.19i 0.155231 0.268868i
\(335\) 5193.09 0.846952
\(336\) 0 0
\(337\) −8494.45 −1.37306 −0.686532 0.727100i \(-0.740868\pi\)
−0.686532 + 0.727100i \(0.740868\pi\)
\(338\) 2604.25 4510.69i 0.419090 0.725885i
\(339\) 0 0
\(340\) 3386.71 + 5865.95i 0.540206 + 0.935664i
\(341\) 3238.04 5608.45i 0.514222 0.890659i
\(342\) 0 0
\(343\) −6274.64 + 991.194i −0.987752 + 0.156033i
\(344\) −7906.56 −1.23923
\(345\) 0 0
\(346\) 3236.72 + 5606.16i 0.502911 + 0.871067i
\(347\) −4230.65 7327.70i −0.654505 1.13364i −0.982018 0.188789i \(-0.939544\pi\)
0.327513 0.944847i \(-0.393790\pi\)
\(348\) 0 0
\(349\) −5910.68 −0.906566 −0.453283 0.891367i \(-0.649747\pi\)
−0.453283 + 0.891367i \(0.649747\pi\)
\(350\) 1483.44 77.5426i 0.226553 0.0118424i
\(351\) 0 0
\(352\) 4759.67 8243.99i 0.720714 1.24831i
\(353\) 3023.09 + 5236.14i 0.455815 + 0.789494i 0.998735 0.0502901i \(-0.0160146\pi\)
−0.542920 + 0.839785i \(0.682681\pi\)
\(354\) 0 0
\(355\) 5503.82 9532.90i 0.822853 1.42522i
\(356\) −499.073 −0.0743000
\(357\) 0 0
\(358\) −1433.50 −0.211628
\(359\) −5448.34 + 9436.81i −0.800982 + 1.38734i 0.117988 + 0.993015i \(0.462355\pi\)
−0.918970 + 0.394327i \(0.870978\pi\)
\(360\) 0 0
\(361\) 1975.36 + 3421.42i 0.287995 + 0.498822i
\(362\) −1530.44 + 2650.80i −0.222205 + 0.384870i
\(363\) 0 0
\(364\) 3521.23 + 5423.82i 0.507040 + 0.781004i
\(365\) −11384.3 −1.63256
\(366\) 0 0
\(367\) −3887.83 6733.92i −0.552979 0.957787i −0.998058 0.0622958i \(-0.980158\pi\)
0.445079 0.895491i \(-0.353176\pi\)
\(368\) 12.3815 + 21.4453i 0.00175388 + 0.00303781i
\(369\) 0 0
\(370\) −6422.42 −0.902394
\(371\) −2592.35 3993.06i −0.362772 0.558785i
\(372\) 0 0
\(373\) −5964.54 + 10330.9i −0.827969 + 1.43408i 0.0716601 + 0.997429i \(0.477170\pi\)
−0.899629 + 0.436655i \(0.856163\pi\)
\(374\) 4991.12 + 8644.87i 0.690066 + 1.19523i
\(375\) 0 0
\(376\) −6173.10 + 10692.1i −0.846684 + 1.46650i
\(377\) −18771.5 −2.56441
\(378\) 0 0
\(379\) −8130.56 −1.10195 −0.550975 0.834522i \(-0.685744\pi\)
−0.550975 + 0.834522i \(0.685744\pi\)
\(380\) 1713.75 2968.31i 0.231352 0.400713i
\(381\) 0 0
\(382\) 951.498 + 1648.04i 0.127442 + 0.220736i
\(383\) 5425.88 9397.90i 0.723889 1.25381i −0.235540 0.971865i \(-0.575686\pi\)
0.959429 0.281949i \(-0.0909808\pi\)
\(384\) 0 0
\(385\) −12779.0 + 667.986i −1.69164 + 0.0884253i
\(386\) −7950.49 −1.04837
\(387\) 0 0
\(388\) −1255.03 2173.78i −0.164213 0.284425i
\(389\) −5884.87 10192.9i −0.767031 1.32854i −0.939166 0.343463i \(-0.888400\pi\)
0.172135 0.985073i \(-0.444933\pi\)
\(390\) 0 0
\(391\) 1988.53 0.257198
\(392\) 7767.47 814.268i 1.00081 0.104915i
\(393\) 0 0
\(394\) −90.1972 + 156.226i −0.0115332 + 0.0199760i
\(395\) 3621.14 + 6272.00i 0.461265 + 0.798934i
\(396\) 0 0
\(397\) −5066.25 + 8774.99i −0.640472 + 1.10933i 0.344855 + 0.938656i \(0.387928\pi\)
−0.985327 + 0.170675i \(0.945405\pi\)
\(398\) 947.586 0.119342
\(399\) 0 0
\(400\) −60.1652 −0.00752064
\(401\) −2402.12 + 4160.60i −0.299143 + 0.518130i −0.975940 0.218039i \(-0.930034\pi\)
0.676797 + 0.736169i \(0.263367\pi\)
\(402\) 0 0
\(403\) −4385.41 7595.75i −0.542066 0.938886i
\(404\) 2683.12 4647.31i 0.330422 0.572307i
\(405\) 0 0
\(406\) −3895.62 + 7643.02i −0.476197 + 0.934278i
\(407\) 14724.9 1.79333
\(408\) 0 0
\(409\) 4418.75 + 7653.50i 0.534213 + 0.925284i 0.999201 + 0.0399668i \(0.0127252\pi\)
−0.464988 + 0.885317i \(0.653941\pi\)
\(410\) −362.281 627.489i −0.0436385 0.0755841i
\(411\) 0 0
\(412\) 1722.09 0.205925
\(413\) 3182.95 + 4902.77i 0.379232 + 0.584139i
\(414\) 0 0
\(415\) 1938.85 3358.18i 0.229336 0.397221i
\(416\) −6446.21 11165.2i −0.759739 1.31591i
\(417\) 0 0
\(418\) 2525.62 4374.51i 0.295532 0.511876i
\(419\) −5730.73 −0.668173 −0.334086 0.942542i \(-0.608428\pi\)
−0.334086 + 0.942542i \(0.608428\pi\)
\(420\) 0 0
\(421\) 1841.98 0.213236 0.106618 0.994300i \(-0.465998\pi\)
0.106618 + 0.994300i \(0.465998\pi\)
\(422\) 1103.54 1911.39i 0.127298 0.220486i
\(423\) 0 0
\(424\) 2926.56 + 5068.95i 0.335204 + 0.580590i
\(425\) −2415.72 + 4184.15i −0.275717 + 0.477555i
\(426\) 0 0
\(427\) 1167.38 2290.34i 0.132303 0.259572i
\(428\) 1512.86 0.170857
\(429\) 0 0
\(430\) −4009.02 6943.83i −0.449610 0.778747i
\(431\) 4573.50 + 7921.54i 0.511132 + 0.885307i 0.999917 + 0.0129023i \(0.00410704\pi\)
−0.488785 + 0.872404i \(0.662560\pi\)
\(432\) 0 0
\(433\) −2469.71 −0.274103 −0.137052 0.990564i \(-0.543763\pi\)
−0.137052 + 0.990564i \(0.543763\pi\)
\(434\) −4002.79 + 209.234i −0.442719 + 0.0231418i
\(435\) 0 0
\(436\) −1253.93 + 2171.87i −0.137734 + 0.238563i
\(437\) −503.122 871.433i −0.0550746 0.0953920i
\(438\) 0 0
\(439\) 1852.20 3208.10i 0.201368 0.348779i −0.747602 0.664147i \(-0.768795\pi\)
0.948969 + 0.315368i \(0.102128\pi\)
\(440\) 15732.7 1.70460
\(441\) 0 0
\(442\) 13519.3 1.45486
\(443\) −675.693 + 1170.33i −0.0724676 + 0.125517i −0.899982 0.435927i \(-0.856421\pi\)
0.827515 + 0.561444i \(0.189754\pi\)
\(444\) 0 0
\(445\) −668.769 1158.34i −0.0712421 0.123395i
\(446\) 2276.38 3942.81i 0.241681 0.418604i
\(447\) 0 0
\(448\) −6080.15 + 317.822i −0.641205 + 0.0335171i
\(449\) 15461.0 1.62505 0.812526 0.582926i \(-0.198092\pi\)
0.812526 + 0.582926i \(0.198092\pi\)
\(450\) 0 0
\(451\) 830.613 + 1438.66i 0.0867229 + 0.150208i
\(452\) 2694.42 + 4666.88i 0.280387 + 0.485645i
\(453\) 0 0
\(454\) −2634.11 −0.272301
\(455\) −7870.10 + 15440.8i −0.810893 + 1.59093i
\(456\) 0 0
\(457\) −6784.81 + 11751.6i −0.694486 + 1.20288i 0.275868 + 0.961196i \(0.411035\pi\)
−0.970354 + 0.241689i \(0.922299\pi\)
\(458\) −2839.98 4919.00i −0.289746 0.501855i
\(459\) 0 0
\(460\) 592.946 1027.01i 0.0601005 0.104097i
\(461\) 7979.72 0.806188 0.403094 0.915159i \(-0.367935\pi\)
0.403094 + 0.915159i \(0.367935\pi\)
\(462\) 0 0
\(463\) −18086.2 −1.81542 −0.907709 0.419600i \(-0.862170\pi\)
−0.907709 + 0.419600i \(0.862170\pi\)
\(464\) 173.726 300.903i 0.0173816 0.0301057i
\(465\) 0 0
\(466\) 2589.90 + 4485.83i 0.257456 + 0.445927i
\(467\) −2902.27 + 5026.88i −0.287583 + 0.498108i −0.973232 0.229824i \(-0.926185\pi\)
0.685649 + 0.727932i \(0.259518\pi\)
\(468\) 0 0
\(469\) 4012.73 + 6180.90i 0.395076 + 0.608544i
\(470\) −12520.3 −1.22876
\(471\) 0 0
\(472\) −3593.30 6223.78i −0.350414 0.606934i
\(473\) 9191.60 + 15920.3i 0.893510 + 1.54761i
\(474\) 0 0
\(475\) 2444.82 0.236160
\(476\) −4364.81 + 8563.56i −0.420296 + 0.824601i
\(477\) 0 0
\(478\) 3772.02 6533.34i 0.360938 0.625163i
\(479\) −2172.94 3763.65i −0.207274 0.359009i 0.743581 0.668646i \(-0.233126\pi\)
−0.950855 + 0.309637i \(0.899793\pi\)
\(480\) 0 0
\(481\) 9971.24 17270.7i 0.945217 1.63716i
\(482\) 7636.22 0.721619
\(483\) 0 0
\(484\) −7167.10 −0.673093
\(485\) 3363.54 5825.83i 0.314908 0.545437i
\(486\) 0 0
\(487\) 9390.55 + 16264.9i 0.873771 + 1.51342i 0.858066 + 0.513540i \(0.171666\pi\)
0.0157056 + 0.999877i \(0.495001\pi\)
\(488\) −1580.27 + 2737.10i −0.146589 + 0.253899i
\(489\) 0 0
\(490\) 4653.61 + 6408.80i 0.429038 + 0.590857i
\(491\) −7552.56 −0.694180 −0.347090 0.937832i \(-0.612830\pi\)
−0.347090 + 0.937832i \(0.612830\pi\)
\(492\) 0 0
\(493\) −13950.7 24163.4i −1.27446 2.20743i
\(494\) −3420.55 5924.57i −0.311534 0.539593i
\(495\) 0 0
\(496\) 162.344 0.0146965
\(497\) 15599.0 815.394i 1.40787 0.0735924i
\(498\) 0 0
\(499\) −4450.95 + 7709.27i −0.399302 + 0.691612i −0.993640 0.112604i \(-0.964081\pi\)
0.594338 + 0.804216i \(0.297414\pi\)
\(500\) −2531.63 4384.91i −0.226436 0.392199i
\(501\) 0 0
\(502\) 1864.43 3229.28i 0.165764 0.287111i
\(503\) −18241.5 −1.61700 −0.808498 0.588500i \(-0.799719\pi\)
−0.808498 + 0.588500i \(0.799719\pi\)
\(504\) 0 0
\(505\) 14381.8 1.26729
\(506\) 873.847 1513.55i 0.0767732 0.132975i
\(507\) 0 0
\(508\) 3875.41 + 6712.41i 0.338472 + 0.586250i
\(509\) 4492.39 7781.04i 0.391201 0.677581i −0.601407 0.798943i \(-0.705393\pi\)
0.992608 + 0.121362i \(0.0387263\pi\)
\(510\) 0 0
\(511\) −8796.74 13549.8i −0.761536 1.17301i
\(512\) 480.383 0.0414651
\(513\) 0 0
\(514\) 2495.19 + 4321.79i 0.214121 + 0.370868i
\(515\) 2307.64 + 3996.95i 0.197450 + 0.341993i
\(516\) 0 0
\(517\) 28705.6 2.44192
\(518\) −4962.64 7644.06i −0.420938 0.648380i
\(519\) 0 0
\(520\) 10653.7 18452.7i 0.898452 1.55617i
\(521\) −4444.36 7697.87i −0.373726 0.647312i 0.616410 0.787426i \(-0.288587\pi\)
−0.990135 + 0.140114i \(0.955253\pi\)
\(522\) 0 0
\(523\) 10519.5 18220.2i 0.879510 1.52336i 0.0276313 0.999618i \(-0.491204\pi\)
0.851879 0.523738i \(-0.175463\pi\)
\(524\) 3979.85 0.331795
\(525\) 0 0
\(526\) −10531.3 −0.872978
\(527\) 6518.35 11290.1i 0.538793 0.933217i
\(528\) 0 0
\(529\) 5909.42 + 10235.4i 0.485693 + 0.841244i
\(530\) −2967.82 + 5140.42i −0.243234 + 0.421294i
\(531\) 0 0
\(532\) 4857.15 253.893i 0.395835 0.0206911i
\(533\) 2249.86 0.182838
\(534\) 0 0
\(535\) 2027.27 + 3511.33i 0.163825 + 0.283753i
\(536\) −4530.06 7846.29i −0.365053 0.632291i
\(537\) 0 0
\(538\) −11753.1 −0.941846
\(539\) −10669.5 14693.6i −0.852629 1.17421i
\(540\) 0 0
\(541\) −4003.07 + 6933.51i −0.318124 + 0.551007i −0.980097 0.198521i \(-0.936386\pi\)
0.661972 + 0.749528i \(0.269720\pi\)
\(542\) 850.854 + 1473.72i 0.0674304 + 0.116793i
\(543\) 0 0
\(544\) 9581.47 16595.6i 0.755151 1.30796i
\(545\) −6721.17 −0.528263
\(546\) 0 0
\(547\) 22259.4 1.73993 0.869965 0.493114i \(-0.164141\pi\)
0.869965 + 0.493114i \(0.164141\pi\)
\(548\) 2503.39 4336.00i 0.195145 0.338001i
\(549\) 0 0
\(550\) 2123.14 + 3677.39i 0.164602 + 0.285099i
\(551\) −7059.39 + 12227.2i −0.545808 + 0.945367i
\(552\) 0 0
\(553\) −4666.95 + 9156.35i −0.358877 + 0.704101i
\(554\) 9907.98 0.759837
\(555\) 0 0
\(556\) −1478.72 2561.22i −0.112791 0.195360i
\(557\) 3741.96 + 6481.27i 0.284653 + 0.493034i 0.972525 0.232798i \(-0.0747881\pi\)
−0.687872 + 0.725832i \(0.741455\pi\)
\(558\) 0 0
\(559\) 24897.1 1.88378
\(560\) −174.676 269.057i −0.0131811 0.0203031i
\(561\) 0 0
\(562\) −923.649 + 1599.81i −0.0693270 + 0.120078i
\(563\) −3146.34 5449.63i −0.235529 0.407947i 0.723898 0.689907i \(-0.242349\pi\)
−0.959426 + 0.281960i \(0.909015\pi\)
\(564\) 0 0
\(565\) −7221.18 + 12507.5i −0.537695 + 0.931314i
\(566\) −4111.69 −0.305348
\(567\) 0 0
\(568\) −19204.5 −1.41866
\(569\) −5169.22 + 8953.36i −0.380853 + 0.659656i −0.991184 0.132490i \(-0.957703\pi\)
0.610332 + 0.792146i \(0.291036\pi\)
\(570\) 0 0
\(571\) 7269.81 + 12591.7i 0.532806 + 0.922847i 0.999266 + 0.0383046i \(0.0121957\pi\)
−0.466460 + 0.884542i \(0.654471\pi\)
\(572\) −9242.53 + 16008.5i −0.675611 + 1.17019i
\(573\) 0 0
\(574\) 466.910 916.056i 0.0339520 0.0666123i
\(575\) 845.889 0.0613496
\(576\) 0 0
\(577\) 5972.54 + 10344.7i 0.430919 + 0.746373i 0.996953 0.0780089i \(-0.0248562\pi\)
−0.566034 + 0.824382i \(0.691523\pi\)
\(578\) 5701.25 + 9874.85i 0.410278 + 0.710622i
\(579\) 0 0
\(580\) −16639.4 −1.19123
\(581\) 5495.12 287.241i 0.392385 0.0205108i
\(582\) 0 0
\(583\) 6804.42 11785.6i 0.483380 0.837238i
\(584\) 9930.82 + 17200.7i 0.703665 + 1.21878i
\(585\) 0 0
\(586\) 3662.67 6343.93i 0.258197 0.447210i
\(587\) −27431.6 −1.92883 −0.964414 0.264398i \(-0.914827\pi\)
−0.964414 + 0.264398i \(0.914827\pi\)
\(588\) 0 0
\(589\) −6596.88 −0.461493
\(590\) 3643.97 6311.53i 0.254271 0.440410i
\(591\) 0 0
\(592\) 184.564 + 319.673i 0.0128134 + 0.0221934i
\(593\) −1824.41 + 3159.98i −0.126340 + 0.218827i −0.922256 0.386580i \(-0.873656\pi\)
0.795916 + 0.605407i \(0.206990\pi\)
\(594\) 0 0
\(595\) −25724.9 + 1344.69i −1.77247 + 0.0926505i
\(596\) 5941.42 0.408339
\(597\) 0 0
\(598\) −1183.49 2049.86i −0.0809303 0.140175i
\(599\) 5424.85 + 9396.12i 0.370039 + 0.640927i 0.989571 0.144045i \(-0.0460109\pi\)
−0.619532 + 0.784971i \(0.712678\pi\)
\(600\) 0 0
\(601\) 23865.9 1.61982 0.809908 0.586557i \(-0.199517\pi\)
0.809908 + 0.586557i \(0.199517\pi\)
\(602\) 5166.85 10137.1i 0.349809 0.686310i
\(603\) 0 0
\(604\) 4756.40 8238.32i 0.320422 0.554988i
\(605\) −9604.08 16634.8i −0.645391 1.11785i
\(606\) 0 0
\(607\) 10759.9 18636.8i 0.719493 1.24620i −0.241708 0.970349i \(-0.577708\pi\)
0.961201 0.275849i \(-0.0889591\pi\)
\(608\) −9696.89 −0.646811
\(609\) 0 0
\(610\) −3205.09 −0.212738
\(611\) 19438.6 33668.6i 1.28707 2.22927i
\(612\) 0 0
\(613\) −3089.48 5351.13i −0.203561 0.352578i 0.746112 0.665820i \(-0.231918\pi\)
−0.949673 + 0.313242i \(0.898585\pi\)
\(614\) 2719.93 4711.06i 0.178774 0.309646i
\(615\) 0 0
\(616\) 12156.7 + 18725.3i 0.795143 + 1.22478i
\(617\) 1011.92 0.0660267 0.0330134 0.999455i \(-0.489490\pi\)
0.0330134 + 0.999455i \(0.489490\pi\)
\(618\) 0 0
\(619\) 1984.27 + 3436.86i 0.128844 + 0.223165i 0.923229 0.384250i \(-0.125540\pi\)
−0.794385 + 0.607415i \(0.792207\pi\)
\(620\) −3887.32 6733.03i −0.251804 0.436137i
\(621\) 0 0
\(622\) 4101.71 0.264411
\(623\) 861.915 1691.04i 0.0554284 0.108748i
\(624\) 0 0
\(625\) 9618.30 16659.4i 0.615571 1.06620i
\(626\) 1677.16 + 2904.93i 0.107081 + 0.185470i
\(627\) 0 0
\(628\) −3727.30 + 6455.86i −0.236840 + 0.410218i
\(629\) 29642.0 1.87902
\(630\) 0 0
\(631\) 9288.00 0.585974 0.292987 0.956116i \(-0.405351\pi\)
0.292987 + 0.956116i \(0.405351\pi\)
\(632\) 6317.62 10942.4i 0.397629 0.688713i
\(633\) 0 0
\(634\) −860.125 1489.78i −0.0538800 0.0933229i
\(635\) −10386.3 + 17989.6i −0.649082 + 1.12424i
\(636\) 0 0
\(637\) −24459.1 + 2564.06i −1.52136 + 0.159485i
\(638\) −24522.2 −1.52170
\(639\) 0 0
\(640\) −5591.47 9684.72i −0.345348 0.598159i
\(641\) 1629.43 + 2822.26i 0.100404 + 0.173904i 0.911851 0.410521i \(-0.134653\pi\)
−0.811447 + 0.584425i \(0.801320\pi\)
\(642\) 0 0
\(643\) −17217.9 −1.05600 −0.528001 0.849244i \(-0.677058\pi\)
−0.528001 + 0.849244i \(0.677058\pi\)
\(644\) 1680.54 87.8451i 0.102830 0.00537513i
\(645\) 0 0
\(646\) 5084.22 8806.12i 0.309653 0.536335i
\(647\) 5015.34 + 8686.82i 0.304750 + 0.527843i 0.977206 0.212295i \(-0.0680937\pi\)
−0.672456 + 0.740138i \(0.734760\pi\)
\(648\) 0 0
\(649\) −8354.63 + 14470.6i −0.505313 + 0.875227i
\(650\) 5750.91 0.347030
\(651\) 0 0
\(652\) −11118.6 −0.667852
\(653\) −15601.8 + 27023.1i −0.934986 + 1.61944i −0.160328 + 0.987064i \(0.551255\pi\)
−0.774658 + 0.632380i \(0.782078\pi\)
\(654\) 0 0
\(655\) 5333.09 + 9237.19i 0.318139 + 0.551033i
\(656\) −20.8220 + 36.0648i −0.00123927 + 0.00214648i
\(657\) 0 0
\(658\) −9674.48 14901.8i −0.573177 0.882876i
\(659\) −2666.60 −0.157627 −0.0788133 0.996889i \(-0.525113\pi\)
−0.0788133 + 0.996889i \(0.525113\pi\)
\(660\) 0 0
\(661\) 10161.2 + 17599.6i 0.597917 + 1.03562i 0.993128 + 0.117032i \(0.0373381\pi\)
−0.395211 + 0.918590i \(0.629329\pi\)
\(662\) −3953.95 6848.44i −0.232137 0.402073i
\(663\) 0 0
\(664\) −6765.21 −0.395393
\(665\) 7097.98 + 10933.2i 0.413907 + 0.637549i
\(666\) 0 0
\(667\) −2442.50 + 4230.53i −0.141790 + 0.245587i
\(668\) 2608.07 + 4517.31i 0.151062 + 0.261647i
\(669\) 0 0
\(670\) 4593.93 7956.91i 0.264894 0.458810i
\(671\) 7348.42 0.422776
\(672\) 0 0
\(673\) −16480.1 −0.943922 −0.471961 0.881619i \(-0.656454\pi\)
−0.471961 + 0.881619i \(0.656454\pi\)
\(674\) −7514.38 + 13015.3i −0.429441 + 0.743814i
\(675\) 0 0
\(676\) 7168.08 + 12415.5i 0.407834 + 0.706388i
\(677\) 9832.02 17029.6i 0.558161 0.966764i −0.439489 0.898248i \(-0.644840\pi\)
0.997650 0.0685158i \(-0.0218264\pi\)
\(678\) 0 0
\(679\) 9533.01 498.310i 0.538797 0.0281640i
\(680\) 31670.7 1.78605
\(681\) 0 0
\(682\) −5728.89 9922.73i −0.321658 0.557127i
\(683\) −6034.92 10452.8i −0.338096 0.585600i 0.645978 0.763356i \(-0.276450\pi\)
−0.984075 + 0.177756i \(0.943116\pi\)
\(684\) 0 0
\(685\) 13418.4 0.748454
\(686\) −4031.97 + 10490.9i −0.224404 + 0.583885i
\(687\) 0 0
\(688\) −230.418 + 399.095i −0.0127683 + 0.0221153i
\(689\) −9215.50 15961.7i −0.509554 0.882573i
\(690\) 0 0
\(691\) 541.776 938.384i 0.0298265 0.0516611i −0.850727 0.525608i \(-0.823838\pi\)
0.880553 + 0.473947i \(0.157171\pi\)
\(692\) −17817.9 −0.978806
\(693\) 0 0
\(694\) −14970.1 −0.818815
\(695\) 3963.05 6864.20i 0.216298 0.374639i
\(696\) 0 0
\(697\) 1672.07 + 2896.11i 0.0908667 + 0.157386i
\(698\) −5228.72 + 9056.42i −0.283539 + 0.491104i
\(699\) 0 0
\(700\) −1856.72 + 3642.80i −0.100253 + 0.196693i
\(701\) −19478.9 −1.04951 −0.524755 0.851253i \(-0.675843\pi\)
−0.524755 + 0.851253i \(0.675843\pi\)
\(702\) 0 0
\(703\) −7499.77 12990.0i −0.402360 0.696908i
\(704\) −8702.06 15072.4i −0.465868 0.806907i
\(705\) 0 0
\(706\) 10697.2 0.570245
\(707\) 11112.9 + 17117.4i 0.591151 + 0.910562i
\(708\) 0 0
\(709\) −13813.4 + 23925.5i −0.731695 + 1.26733i 0.224463 + 0.974483i \(0.427937\pi\)
−0.956158 + 0.292851i \(0.905396\pi\)
\(710\) −9737.61 16866.0i −0.514713 0.891509i
\(711\) 0 0
\(712\) −1166.77 + 2020.90i −0.0614135 + 0.106371i
\(713\) −2282.47 −0.119887
\(714\) 0 0
\(715\) −49540.9 −2.59122
\(716\) 1972.83 3417.03i 0.102972 0.178353i
\(717\) 0 0
\(718\) 9639.45 + 16696.0i 0.501032 + 0.867813i
\(719\) −1067.47 + 1848.91i −0.0553684 + 0.0959009i −0.892381 0.451283i \(-0.850967\pi\)
0.837013 + 0.547183i \(0.184300\pi\)
\(720\) 0 0
\(721\) −2974.10 + 5835.05i −0.153622 + 0.301399i
\(722\) 6989.79 0.360295
\(723\) 0 0
\(724\) −4212.47 7296.22i −0.216237 0.374533i
\(725\) −5934.41 10278.7i −0.303998 0.526540i
\(726\) 0 0
\(727\) 12294.4 0.627198 0.313599 0.949556i \(-0.398465\pi\)
0.313599 + 0.949556i \(0.398465\pi\)
\(728\) 30194.9 1578.35i 1.53722 0.0803537i
\(729\) 0 0
\(730\) −10070.8 + 17443.2i −0.510601 + 0.884386i
\(731\) 18503.2 + 32048.5i 0.936204 + 1.62155i
\(732\) 0 0
\(733\) 9103.87 15768.4i 0.458744 0.794567i −0.540151 0.841568i \(-0.681633\pi\)
0.998895 + 0.0470008i \(0.0149663\pi\)
\(734\) −13757.1 −0.691801
\(735\) 0 0
\(736\) −3355.05 −0.168028
\(737\) −10532.6 + 18243.1i −0.526424 + 0.911794i
\(738\) 0 0
\(739\) −1268.68 2197.42i −0.0631519 0.109382i 0.832721 0.553693i \(-0.186782\pi\)
−0.895873 + 0.444311i \(0.853449\pi\)
\(740\) 8838.72 15309.1i 0.439078 0.760506i
\(741\) 0 0
\(742\) −8411.46 + 439.684i −0.416165 + 0.0217538i
\(743\) 20574.2 1.01587 0.507937 0.861394i \(-0.330408\pi\)
0.507937 + 0.861394i \(0.330408\pi\)
\(744\) 0 0
\(745\) 7961.65 + 13790.0i 0.391533 + 0.678155i
\(746\) 10552.7 + 18277.9i 0.517913 + 0.897052i
\(747\) 0 0
\(748\) −27475.7 −1.34306
\(749\) −2612.76 + 5126.11i −0.127461 + 0.250072i
\(750\) 0 0
\(751\) −12473.3 + 21604.3i −0.606067 + 1.04974i 0.385815 + 0.922576i \(0.373920\pi\)
−0.991882 + 0.127163i \(0.959413\pi\)
\(752\) 359.800 + 623.191i 0.0174475 + 0.0302200i
\(753\) 0 0
\(754\) −16605.7 + 28761.9i −0.802047 + 1.38919i
\(755\) 25494.7 1.22894
\(756\) 0 0
\(757\) −24686.4 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(758\) −7192.47 + 12457.7i −0.344647 + 0.596946i
\(759\) 0 0
\(760\) −8013.06 13879.0i −0.382453 0.662428i
\(761\) 19715.7 34148.5i 0.939148 1.62665i 0.172084 0.985082i \(-0.444950\pi\)
0.767064 0.641570i \(-0.221717\pi\)
\(762\) 0 0
\(763\) −5193.49 7999.64i −0.246418 0.379563i
\(764\) −5237.91 −0.248038
\(765\) 0 0
\(766\) −9599.72 16627.2i −0.452809 0.784289i
\(767\) 11315.0 + 19598.2i 0.532675 + 0.922619i
\(768\) 0 0
\(769\) −2762.60 −0.129547 −0.0647736 0.997900i \(-0.520633\pi\)
−0.0647736 + 0.997900i \(0.520633\pi\)
\(770\) −10281.1 + 20171.1i −0.481177 + 0.944047i
\(771\) 0 0
\(772\) 10941.7 18951.6i 0.510104 0.883525i
\(773\) −371.442 643.357i −0.0172831 0.0299352i 0.857254 0.514893i \(-0.172168\pi\)
−0.874538 + 0.484958i \(0.838835\pi\)
\(774\) 0 0
\(775\) 2772.80 4802.63i 0.128519 0.222601i
\(776\) −11736.4 −0.542927
\(777\) 0 0
\(778\) −20823.6 −0.959590
\(779\) 846.106 1465.50i 0.0389151 0.0674030i
\(780\)