Properties

Label 189.4.e.h.163.3
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(-0.0640761 - 0.110983i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.h.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64637 + 2.85159i) q^{2} +(-1.42105 - 2.46133i) q^{4} +(-10.8582 + 18.8070i) q^{5} +(1.08769 + 18.4883i) q^{7} -16.9836 q^{8} +O(q^{10})\) \(q+(-1.64637 + 2.85159i) q^{2} +(-1.42105 - 2.46133i) q^{4} +(-10.8582 + 18.8070i) q^{5} +(1.08769 + 18.4883i) q^{7} -16.9836 q^{8} +(-35.7533 - 61.9265i) q^{10} +(20.9820 + 36.3419i) q^{11} +46.0329 q^{13} +(-54.5118 - 27.3369i) q^{14} +(39.3296 - 68.1209i) q^{16} +(-1.00882 - 1.74732i) q^{17} +(-36.6244 + 63.4352i) q^{19} +61.7204 q^{20} -138.176 q^{22} +(12.0838 - 20.9298i) q^{23} +(-173.303 - 300.169i) q^{25} +(-75.7871 + 131.267i) q^{26} +(43.9602 - 28.9500i) q^{28} +90.7240 q^{29} +(-26.6026 - 46.0771i) q^{31} +(61.5677 + 106.638i) q^{32} +6.64353 q^{34} +(-359.520 - 180.294i) q^{35} +(-33.9309 + 58.7701i) q^{37} +(-120.594 - 208.875i) q^{38} +(184.412 - 319.411i) q^{40} +341.211 q^{41} +509.713 q^{43} +(59.6330 - 103.287i) q^{44} +(39.7889 + 68.9164i) q^{46} +(-19.2351 + 33.3162i) q^{47} +(-340.634 + 40.2191i) q^{49} +1141.28 q^{50} +(-65.4151 - 113.302i) q^{52} +(-194.694 - 337.220i) q^{53} -911.311 q^{55} +(-18.4729 - 313.998i) q^{56} +(-149.365 + 258.708i) q^{58} +(-225.310 - 390.249i) q^{59} +(-112.951 + 195.638i) q^{61} +175.191 q^{62} +223.822 q^{64} +(-499.836 + 865.742i) q^{65} +(386.006 + 668.582i) q^{67} +(-2.86716 + 4.96606i) q^{68} +(1106.03 - 728.374i) q^{70} -962.655 q^{71} +(526.897 + 912.612i) q^{73} +(-111.726 - 193.514i) q^{74} +208.180 q^{76} +(-649.078 + 427.450i) q^{77} +(-16.7953 + 29.0904i) q^{79} +(854.101 + 1479.35i) q^{80} +(-561.759 + 972.995i) q^{82} +446.386 q^{83} +43.8159 q^{85} +(-839.175 + 1453.49i) q^{86} +(-356.350 - 617.216i) q^{88} +(-244.899 + 424.178i) q^{89} +(50.0695 + 851.070i) q^{91} -68.6870 q^{92} +(-63.3361 - 109.701i) q^{94} +(-795.352 - 1377.59i) q^{95} +460.958 q^{97} +(446.120 - 1037.56i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64637 + 2.85159i −0.582079 + 1.00819i 0.413154 + 0.910661i \(0.364427\pi\)
−0.995233 + 0.0975288i \(0.968906\pi\)
\(3\) 0 0
\(4\) −1.42105 2.46133i −0.177631 0.307667i
\(5\) −10.8582 + 18.8070i −0.971190 + 1.68215i −0.279217 + 0.960228i \(0.590075\pi\)
−0.691973 + 0.721923i \(0.743258\pi\)
\(6\) 0 0
\(7\) 1.08769 + 18.4883i 0.0587298 + 0.998274i
\(8\) −16.9836 −0.750576
\(9\) 0 0
\(10\) −35.7533 61.9265i −1.13062 1.95829i
\(11\) 20.9820 + 36.3419i 0.575119 + 0.996136i 0.996029 + 0.0890334i \(0.0283778\pi\)
−0.420909 + 0.907103i \(0.638289\pi\)
\(12\) 0 0
\(13\) 46.0329 0.982095 0.491047 0.871133i \(-0.336614\pi\)
0.491047 + 0.871133i \(0.336614\pi\)
\(14\) −54.5118 27.3369i −1.04064 0.521863i
\(15\) 0 0
\(16\) 39.3296 68.1209i 0.614526 1.06439i
\(17\) −1.00882 1.74732i −0.0143926 0.0249287i 0.858739 0.512413i \(-0.171248\pi\)
−0.873132 + 0.487484i \(0.837915\pi\)
\(18\) 0 0
\(19\) −36.6244 + 63.4352i −0.442221 + 0.765950i −0.997854 0.0654782i \(-0.979143\pi\)
0.555633 + 0.831428i \(0.312476\pi\)
\(20\) 61.7204 0.690055
\(21\) 0 0
\(22\) −138.176 −1.33906
\(23\) 12.0838 20.9298i 0.109550 0.189747i −0.806038 0.591864i \(-0.798392\pi\)
0.915588 + 0.402117i \(0.131726\pi\)
\(24\) 0 0
\(25\) −173.303 300.169i −1.38642 2.40135i
\(26\) −75.7871 + 131.267i −0.571656 + 0.990138i
\(27\) 0 0
\(28\) 43.9602 28.9500i 0.296703 0.195394i
\(29\) 90.7240 0.580932 0.290466 0.956885i \(-0.406190\pi\)
0.290466 + 0.956885i \(0.406190\pi\)
\(30\) 0 0
\(31\) −26.6026 46.0771i −0.154128 0.266958i 0.778613 0.627504i \(-0.215923\pi\)
−0.932741 + 0.360547i \(0.882590\pi\)
\(32\) 61.5677 + 106.638i 0.340117 + 0.589099i
\(33\) 0 0
\(34\) 6.64353 0.0335105
\(35\) −359.520 180.294i −1.73629 0.870722i
\(36\) 0 0
\(37\) −33.9309 + 58.7701i −0.150762 + 0.261128i −0.931508 0.363721i \(-0.881506\pi\)
0.780745 + 0.624849i \(0.214840\pi\)
\(38\) −120.594 208.875i −0.514815 0.891686i
\(39\) 0 0
\(40\) 184.412 319.411i 0.728952 1.26258i
\(41\) 341.211 1.29971 0.649856 0.760057i \(-0.274829\pi\)
0.649856 + 0.760057i \(0.274829\pi\)
\(42\) 0 0
\(43\) 509.713 1.80769 0.903843 0.427863i \(-0.140734\pi\)
0.903843 + 0.427863i \(0.140734\pi\)
\(44\) 59.6330 103.287i 0.204318 0.353890i
\(45\) 0 0
\(46\) 39.7889 + 68.9164i 0.127534 + 0.220895i
\(47\) −19.2351 + 33.3162i −0.0596963 + 0.103397i −0.894329 0.447410i \(-0.852347\pi\)
0.834633 + 0.550807i \(0.185680\pi\)
\(48\) 0 0
\(49\) −340.634 + 40.2191i −0.993102 + 0.117257i
\(50\) 1141.28 3.22803
\(51\) 0 0
\(52\) −65.4151 113.302i −0.174451 0.302158i
\(53\) −194.694 337.220i −0.504590 0.873976i −0.999986 0.00530861i \(-0.998310\pi\)
0.495396 0.868668i \(-0.335023\pi\)
\(54\) 0 0
\(55\) −911.311 −2.23420
\(56\) −18.4729 313.998i −0.0440811 0.749280i
\(57\) 0 0
\(58\) −149.365 + 258.708i −0.338148 + 0.585690i
\(59\) −225.310 390.249i −0.497168 0.861120i 0.502827 0.864387i \(-0.332293\pi\)
−0.999995 + 0.00326692i \(0.998960\pi\)
\(60\) 0 0
\(61\) −112.951 + 195.638i −0.237081 + 0.410636i −0.959875 0.280427i \(-0.909524\pi\)
0.722794 + 0.691063i \(0.242857\pi\)
\(62\) 175.191 0.358859
\(63\) 0 0
\(64\) 223.822 0.437152
\(65\) −499.836 + 865.742i −0.953801 + 1.65203i
\(66\) 0 0
\(67\) 386.006 + 668.582i 0.703853 + 1.21911i 0.967104 + 0.254382i \(0.0818719\pi\)
−0.263251 + 0.964727i \(0.584795\pi\)
\(68\) −2.86716 + 4.96606i −0.00511315 + 0.00885623i
\(69\) 0 0
\(70\) 1106.03 728.374i 1.88851 1.24368i
\(71\) −962.655 −1.60910 −0.804550 0.593885i \(-0.797593\pi\)
−0.804550 + 0.593885i \(0.797593\pi\)
\(72\) 0 0
\(73\) 526.897 + 912.612i 0.844775 + 1.46319i 0.885816 + 0.464036i \(0.153599\pi\)
−0.0410408 + 0.999157i \(0.513067\pi\)
\(74\) −111.726 193.514i −0.175511 0.303994i
\(75\) 0 0
\(76\) 208.180 0.314209
\(77\) −649.078 + 427.450i −0.960640 + 0.632630i
\(78\) 0 0
\(79\) −16.7953 + 29.0904i −0.0239193 + 0.0414294i −0.877737 0.479142i \(-0.840948\pi\)
0.853818 + 0.520572i \(0.174281\pi\)
\(80\) 854.101 + 1479.35i 1.19364 + 2.06745i
\(81\) 0 0
\(82\) −561.759 + 972.995i −0.756535 + 1.31036i
\(83\) 446.386 0.590328 0.295164 0.955447i \(-0.404626\pi\)
0.295164 + 0.955447i \(0.404626\pi\)
\(84\) 0 0
\(85\) 43.8159 0.0559117
\(86\) −839.175 + 1453.49i −1.05222 + 1.82249i
\(87\) 0 0
\(88\) −356.350 617.216i −0.431671 0.747676i
\(89\) −244.899 + 424.178i −0.291677 + 0.505199i −0.974206 0.225659i \(-0.927547\pi\)
0.682529 + 0.730858i \(0.260880\pi\)
\(90\) 0 0
\(91\) 50.0695 + 851.070i 0.0576782 + 0.980399i
\(92\) −68.6870 −0.0778382
\(93\) 0 0
\(94\) −63.3361 109.701i −0.0694959 0.120370i
\(95\) −795.352 1377.59i −0.858962 1.48777i
\(96\) 0 0
\(97\) 460.958 0.482507 0.241253 0.970462i \(-0.422441\pi\)
0.241253 + 0.970462i \(0.422441\pi\)
\(98\) 446.120 1037.56i 0.459846 1.06949i
\(99\) 0 0
\(100\) −492.544 + 853.111i −0.492544 + 0.853111i
\(101\) 771.372 + 1336.06i 0.759945 + 1.31626i 0.942878 + 0.333137i \(0.108107\pi\)
−0.182934 + 0.983125i \(0.558559\pi\)
\(102\) 0 0
\(103\) −571.318 + 989.552i −0.546540 + 0.946635i 0.451968 + 0.892034i \(0.350722\pi\)
−0.998508 + 0.0546011i \(0.982611\pi\)
\(104\) −781.804 −0.737136
\(105\) 0 0
\(106\) 1282.15 1.17485
\(107\) 401.280 695.038i 0.362554 0.627961i −0.625827 0.779962i \(-0.715238\pi\)
0.988380 + 0.152001i \(0.0485717\pi\)
\(108\) 0 0
\(109\) −749.480 1298.14i −0.658598 1.14073i −0.980979 0.194115i \(-0.937816\pi\)
0.322380 0.946610i \(-0.395517\pi\)
\(110\) 1500.35 2598.69i 1.30048 2.25250i
\(111\) 0 0
\(112\) 1302.22 + 653.043i 1.09864 + 0.550954i
\(113\) −651.941 −0.542738 −0.271369 0.962475i \(-0.587476\pi\)
−0.271369 + 0.962475i \(0.587476\pi\)
\(114\) 0 0
\(115\) 262.418 + 454.522i 0.212788 + 0.368560i
\(116\) −128.923 223.302i −0.103192 0.178733i
\(117\) 0 0
\(118\) 1483.77 1.15756
\(119\) 31.2077 20.5518i 0.0240404 0.0158318i
\(120\) 0 0
\(121\) −214.990 + 372.373i −0.161525 + 0.279769i
\(122\) −371.919 644.182i −0.276000 0.478045i
\(123\) 0 0
\(124\) −75.6073 + 130.956i −0.0547559 + 0.0948401i
\(125\) 4812.49 3.44354
\(126\) 0 0
\(127\) −634.311 −0.443197 −0.221598 0.975138i \(-0.571127\pi\)
−0.221598 + 0.975138i \(0.571127\pi\)
\(128\) −861.035 + 1491.36i −0.594574 + 1.02983i
\(129\) 0 0
\(130\) −1645.83 2850.66i −1.11037 1.92322i
\(131\) 1145.08 1983.33i 0.763709 1.32278i −0.177217 0.984172i \(-0.556709\pi\)
0.940926 0.338611i \(-0.109957\pi\)
\(132\) 0 0
\(133\) −1212.65 608.124i −0.790599 0.396474i
\(134\) −2542.03 −1.63879
\(135\) 0 0
\(136\) 17.1333 + 29.6758i 0.0108027 + 0.0187109i
\(137\) −365.175 632.501i −0.227730 0.394440i 0.729405 0.684082i \(-0.239797\pi\)
−0.957135 + 0.289642i \(0.906464\pi\)
\(138\) 0 0
\(139\) −1195.39 −0.729436 −0.364718 0.931118i \(-0.618835\pi\)
−0.364718 + 0.931118i \(0.618835\pi\)
\(140\) 67.1327 + 1141.11i 0.0405268 + 0.688864i
\(141\) 0 0
\(142\) 1584.88 2745.10i 0.936623 1.62228i
\(143\) 965.863 + 1672.92i 0.564822 + 0.978300i
\(144\) 0 0
\(145\) −985.103 + 1706.25i −0.564195 + 0.977215i
\(146\) −3469.86 −1.96690
\(147\) 0 0
\(148\) 192.870 0.107121
\(149\) −634.691 + 1099.32i −0.348966 + 0.604427i −0.986066 0.166354i \(-0.946800\pi\)
0.637100 + 0.770781i \(0.280134\pi\)
\(150\) 0 0
\(151\) −219.486 380.160i −0.118288 0.204881i 0.800801 0.598930i \(-0.204407\pi\)
−0.919089 + 0.394049i \(0.871074\pi\)
\(152\) 622.013 1077.36i 0.331921 0.574903i
\(153\) 0 0
\(154\) −150.293 2554.65i −0.0786426 1.33675i
\(155\) 1155.43 0.598751
\(156\) 0 0
\(157\) 893.137 + 1546.96i 0.454013 + 0.786374i 0.998631 0.0523103i \(-0.0166585\pi\)
−0.544618 + 0.838685i \(0.683325\pi\)
\(158\) −55.3026 95.7870i −0.0278458 0.0482304i
\(159\) 0 0
\(160\) −2674.07 −1.32127
\(161\) 400.100 + 200.644i 0.195853 + 0.0982174i
\(162\) 0 0
\(163\) 423.616 733.724i 0.203559 0.352575i −0.746114 0.665819i \(-0.768082\pi\)
0.949673 + 0.313244i \(0.101416\pi\)
\(164\) −484.878 839.834i −0.230870 0.399878i
\(165\) 0 0
\(166\) −734.915 + 1272.91i −0.343617 + 0.595163i
\(167\) 1454.66 0.674040 0.337020 0.941498i \(-0.390581\pi\)
0.337020 + 0.941498i \(0.390581\pi\)
\(168\) 0 0
\(169\) −77.9721 −0.0354903
\(170\) −72.1370 + 124.945i −0.0325450 + 0.0563696i
\(171\) 0 0
\(172\) −724.328 1254.57i −0.321102 0.556165i
\(173\) −424.755 + 735.698i −0.186668 + 0.323318i −0.944137 0.329552i \(-0.893102\pi\)
0.757469 + 0.652871i \(0.226436\pi\)
\(174\) 0 0
\(175\) 5361.11 3530.56i 2.31578 1.52506i
\(176\) 3300.86 1.41370
\(177\) 0 0
\(178\) −806.388 1396.70i −0.339558 0.588132i
\(179\) −660.009 1143.17i −0.275595 0.477344i 0.694690 0.719309i \(-0.255541\pi\)
−0.970285 + 0.241965i \(0.922208\pi\)
\(180\) 0 0
\(181\) −4005.73 −1.64499 −0.822495 0.568772i \(-0.807419\pi\)
−0.822495 + 0.568772i \(0.807419\pi\)
\(182\) −2509.34 1258.40i −1.02200 0.512519i
\(183\) 0 0
\(184\) −205.227 + 355.464i −0.0822257 + 0.142419i
\(185\) −736.861 1276.28i −0.292838 0.507211i
\(186\) 0 0
\(187\) 42.3340 73.3246i 0.0165549 0.0286739i
\(188\) 109.336 0.0424157
\(189\) 0 0
\(190\) 5237.77 1.99993
\(191\) 855.755 1482.21i 0.324190 0.561514i −0.657158 0.753753i \(-0.728242\pi\)
0.981348 + 0.192239i \(0.0615750\pi\)
\(192\) 0 0
\(193\) −2191.97 3796.61i −0.817521 1.41599i −0.907503 0.420045i \(-0.862014\pi\)
0.0899819 0.995943i \(-0.471319\pi\)
\(194\) −758.906 + 1314.46i −0.280857 + 0.486459i
\(195\) 0 0
\(196\) 583.050 + 781.260i 0.212482 + 0.284716i
\(197\) −1269.36 −0.459076 −0.229538 0.973300i \(-0.573721\pi\)
−0.229538 + 0.973300i \(0.573721\pi\)
\(198\) 0 0
\(199\) −293.283 507.981i −0.104474 0.180954i 0.809049 0.587741i \(-0.199983\pi\)
−0.913523 + 0.406787i \(0.866649\pi\)
\(200\) 2943.30 + 5097.95i 1.04061 + 1.80240i
\(201\) 0 0
\(202\) −5079.85 −1.76939
\(203\) 98.6796 + 1677.33i 0.0341180 + 0.579929i
\(204\) 0 0
\(205\) −3704.95 + 6417.16i −1.26227 + 2.18631i
\(206\) −1881.20 3258.33i −0.636259 1.10203i
\(207\) 0 0
\(208\) 1810.46 3135.80i 0.603522 1.04533i
\(209\) −3073.81 −1.01732
\(210\) 0 0
\(211\) 1037.46 0.338491 0.169246 0.985574i \(-0.445867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(212\) −553.340 + 958.414i −0.179262 + 0.310491i
\(213\) 0 0
\(214\) 1321.31 + 2288.58i 0.422069 + 0.731046i
\(215\) −5534.59 + 9586.19i −1.75561 + 3.04080i
\(216\) 0 0
\(217\) 822.951 541.954i 0.257445 0.169540i
\(218\) 4935.68 1.53342
\(219\) 0 0
\(220\) 1295.02 + 2243.04i 0.396864 + 0.687389i
\(221\) −46.4387 80.4342i −0.0141349 0.0244823i
\(222\) 0 0
\(223\) 5421.68 1.62808 0.814041 0.580807i \(-0.197263\pi\)
0.814041 + 0.580807i \(0.197263\pi\)
\(224\) −1904.59 + 1254.27i −0.568107 + 0.374127i
\(225\) 0 0
\(226\) 1073.33 1859.07i 0.315916 0.547183i
\(227\) 915.300 + 1585.35i 0.267624 + 0.463538i 0.968248 0.249993i \(-0.0804282\pi\)
−0.700624 + 0.713531i \(0.747095\pi\)
\(228\) 0 0
\(229\) −34.3935 + 59.5713i −0.00992483 + 0.0171903i −0.870945 0.491380i \(-0.836493\pi\)
0.861020 + 0.508571i \(0.169826\pi\)
\(230\) −1728.15 −0.495438
\(231\) 0 0
\(232\) −1540.82 −0.436033
\(233\) 2435.97 4219.22i 0.684916 1.18631i −0.288547 0.957466i \(-0.593172\pi\)
0.973463 0.228844i \(-0.0734945\pi\)
\(234\) 0 0
\(235\) −417.719 723.510i −0.115953 0.200836i
\(236\) −640.355 + 1109.13i −0.176625 + 0.305924i
\(237\) 0 0
\(238\) 7.22610 + 122.827i 0.00196806 + 0.0334526i
\(239\) −3786.86 −1.02490 −0.512451 0.858716i \(-0.671263\pi\)
−0.512451 + 0.858716i \(0.671263\pi\)
\(240\) 0 0
\(241\) −903.300 1564.56i −0.241438 0.418184i 0.719686 0.694300i \(-0.244286\pi\)
−0.961124 + 0.276116i \(0.910953\pi\)
\(242\) −707.904 1226.12i −0.188040 0.325695i
\(243\) 0 0
\(244\) 642.039 0.168452
\(245\) 2942.28 6843.02i 0.767247 1.78443i
\(246\) 0 0
\(247\) −1685.93 + 2920.11i −0.434303 + 0.752235i
\(248\) 451.808 + 782.554i 0.115685 + 0.200372i
\(249\) 0 0
\(250\) −7923.12 + 13723.3i −2.00441 + 3.47174i
\(251\) 235.616 0.0592508 0.0296254 0.999561i \(-0.490569\pi\)
0.0296254 + 0.999561i \(0.490569\pi\)
\(252\) 0 0
\(253\) 1014.17 0.252018
\(254\) 1044.31 1808.80i 0.257975 0.446826i
\(255\) 0 0
\(256\) −1939.87 3359.96i −0.473601 0.820302i
\(257\) −1042.18 + 1805.10i −0.252954 + 0.438129i −0.964338 0.264675i \(-0.914735\pi\)
0.711384 + 0.702804i \(0.248069\pi\)
\(258\) 0 0
\(259\) −1123.47 563.401i −0.269532 0.135166i
\(260\) 2841.17 0.677700
\(261\) 0 0
\(262\) 3770.44 + 6530.59i 0.889078 + 1.53993i
\(263\) 2942.36 + 5096.32i 0.689862 + 1.19488i 0.971882 + 0.235468i \(0.0756621\pi\)
−0.282020 + 0.959408i \(0.591005\pi\)
\(264\) 0 0
\(265\) 8456.14 1.96021
\(266\) 3730.58 2456.77i 0.859912 0.566295i
\(267\) 0 0
\(268\) 1097.07 1900.18i 0.250053 0.433104i
\(269\) −3538.31 6128.53i −0.801987 1.38908i −0.918306 0.395870i \(-0.870443\pi\)
0.116320 0.993212i \(-0.462890\pi\)
\(270\) 0 0
\(271\) −1409.33 + 2441.03i −0.315907 + 0.547167i −0.979630 0.200812i \(-0.935642\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(272\) −158.705 −0.0353784
\(273\) 0 0
\(274\) 2404.85 0.530227
\(275\) 7272.48 12596.3i 1.59472 2.76213i
\(276\) 0 0
\(277\) −2184.43 3783.55i −0.473826 0.820691i 0.525725 0.850655i \(-0.323794\pi\)
−0.999551 + 0.0299636i \(0.990461\pi\)
\(278\) 1968.05 3408.76i 0.424589 0.735410i
\(279\) 0 0
\(280\) 6105.94 + 3062.04i 1.30321 + 0.653543i
\(281\) 520.957 0.110597 0.0552984 0.998470i \(-0.482389\pi\)
0.0552984 + 0.998470i \(0.482389\pi\)
\(282\) 0 0
\(283\) 1416.36 + 2453.20i 0.297504 + 0.515292i 0.975564 0.219714i \(-0.0705124\pi\)
−0.678060 + 0.735006i \(0.737179\pi\)
\(284\) 1367.98 + 2369.41i 0.285827 + 0.495066i
\(285\) 0 0
\(286\) −6360.66 −1.31508
\(287\) 371.132 + 6308.41i 0.0763318 + 1.29747i
\(288\) 0 0
\(289\) 2454.46 4251.26i 0.499586 0.865308i
\(290\) −3243.68 5618.22i −0.656812 1.13763i
\(291\) 0 0
\(292\) 1497.49 2593.74i 0.300117 0.519818i
\(293\) 3591.98 0.716196 0.358098 0.933684i \(-0.383425\pi\)
0.358098 + 0.933684i \(0.383425\pi\)
\(294\) 0 0
\(295\) 9785.90 1.93138
\(296\) 576.269 998.128i 0.113159 0.195997i
\(297\) 0 0
\(298\) −2089.87 3619.76i −0.406251 0.703648i
\(299\) 556.254 963.461i 0.107589 0.186349i
\(300\) 0 0
\(301\) 554.410 + 9423.73i 0.106165 + 1.80457i
\(302\) 1445.42 0.275412
\(303\) 0 0
\(304\) 2880.84 + 4989.77i 0.543512 + 0.941391i
\(305\) −2452.91 4248.56i −0.460502 0.797612i
\(306\) 0 0
\(307\) 2168.14 0.403069 0.201535 0.979481i \(-0.435407\pi\)
0.201535 + 0.979481i \(0.435407\pi\)
\(308\) 1974.47 + 990.168i 0.365279 + 0.183182i
\(309\) 0 0
\(310\) −1902.26 + 3294.81i −0.348520 + 0.603654i
\(311\) 3609.01 + 6250.99i 0.658032 + 1.13975i 0.981124 + 0.193378i \(0.0619443\pi\)
−0.323092 + 0.946368i \(0.604722\pi\)
\(312\) 0 0
\(313\) −1522.27 + 2636.64i −0.274900 + 0.476140i −0.970110 0.242666i \(-0.921978\pi\)
0.695210 + 0.718807i \(0.255311\pi\)
\(314\) −5881.73 −1.05709
\(315\) 0 0
\(316\) 95.4682 0.0169953
\(317\) −3055.39 + 5292.08i −0.541349 + 0.937644i 0.457478 + 0.889221i \(0.348753\pi\)
−0.998827 + 0.0484229i \(0.984580\pi\)
\(318\) 0 0
\(319\) 1903.57 + 3297.08i 0.334105 + 0.578687i
\(320\) −2430.31 + 4209.43i −0.424558 + 0.735356i
\(321\) 0 0
\(322\) −1230.87 + 810.588i −0.213024 + 0.140287i
\(323\) 147.789 0.0254588
\(324\) 0 0
\(325\) −7977.63 13817.7i −1.36160 2.35836i
\(326\) 1394.85 + 2415.96i 0.236975 + 0.410453i
\(327\) 0 0
\(328\) −5794.99 −0.975533
\(329\) −636.881 319.386i −0.106725 0.0535208i
\(330\) 0 0
\(331\) −748.710 + 1296.80i −0.124329 + 0.215344i −0.921470 0.388449i \(-0.873011\pi\)
0.797142 + 0.603792i \(0.206344\pi\)
\(332\) −634.337 1098.70i −0.104861 0.181624i
\(333\) 0 0
\(334\) −2394.90 + 4148.09i −0.392344 + 0.679560i
\(335\) −16765.4 −2.73430
\(336\) 0 0
\(337\) −8157.61 −1.31861 −0.659307 0.751873i \(-0.729150\pi\)
−0.659307 + 0.751873i \(0.729150\pi\)
\(338\) 128.371 222.345i 0.0206581 0.0357809i
\(339\) 0 0
\(340\) −62.2646 107.845i −0.00993168 0.0172022i
\(341\) 1116.35 1933.58i 0.177284 0.307065i
\(342\) 0 0
\(343\) −1114.09 6253.99i −0.175379 0.984501i
\(344\) −8656.76 −1.35681
\(345\) 0 0
\(346\) −1398.61 2422.46i −0.217311 0.376394i
\(347\) 4566.56 + 7909.51i 0.706472 + 1.22364i 0.966158 + 0.257952i \(0.0830475\pi\)
−0.259686 + 0.965693i \(0.583619\pi\)
\(348\) 0 0
\(349\) −9528.48 −1.46145 −0.730727 0.682670i \(-0.760819\pi\)
−0.730727 + 0.682670i \(0.760819\pi\)
\(350\) 1241.36 + 21100.3i 0.189581 + 3.22245i
\(351\) 0 0
\(352\) −2583.63 + 4474.97i −0.391215 + 0.677605i
\(353\) 1678.67 + 2907.55i 0.253107 + 0.438394i 0.964380 0.264522i \(-0.0852143\pi\)
−0.711273 + 0.702916i \(0.751881\pi\)
\(354\) 0 0
\(355\) 10452.7 18104.7i 1.56274 2.70675i
\(356\) 1392.06 0.207244
\(357\) 0 0
\(358\) 4346.47 0.641671
\(359\) −46.4867 + 80.5174i −0.00683420 + 0.0118372i −0.869422 0.494070i \(-0.835509\pi\)
0.862588 + 0.505907i \(0.168842\pi\)
\(360\) 0 0
\(361\) 746.814 + 1293.52i 0.108881 + 0.188587i
\(362\) 6594.90 11422.7i 0.957514 1.65846i
\(363\) 0 0
\(364\) 2023.61 1332.65i 0.291391 0.191895i
\(365\) −22884.7 −3.28175
\(366\) 0 0
\(367\) 3392.95 + 5876.77i 0.482590 + 0.835871i 0.999800 0.0199876i \(-0.00636268\pi\)
−0.517210 + 0.855859i \(0.673029\pi\)
\(368\) −950.506 1646.32i −0.134643 0.233208i
\(369\) 0 0
\(370\) 4852.57 0.681820
\(371\) 6022.86 3966.35i 0.842833 0.555048i
\(372\) 0 0
\(373\) 3725.53 6452.80i 0.517159 0.895746i −0.482642 0.875818i \(-0.660323\pi\)
0.999801 0.0199284i \(-0.00634382\pi\)
\(374\) 139.395 + 241.438i 0.0192725 + 0.0333810i
\(375\) 0 0
\(376\) 326.681 565.828i 0.0448066 0.0776073i
\(377\) 4176.29 0.570530
\(378\) 0 0
\(379\) 4014.67 0.544115 0.272058 0.962281i \(-0.412296\pi\)
0.272058 + 0.962281i \(0.412296\pi\)
\(380\) −2260.47 + 3915.25i −0.305157 + 0.528548i
\(381\) 0 0
\(382\) 2817.78 + 4880.53i 0.377408 + 0.653690i
\(383\) 3232.44 5598.74i 0.431253 0.746951i −0.565729 0.824591i \(-0.691405\pi\)
0.996981 + 0.0776399i \(0.0247384\pi\)
\(384\) 0 0
\(385\) −991.224 16848.6i −0.131214 2.23035i
\(386\) 14435.2 1.90345
\(387\) 0 0
\(388\) −655.044 1134.57i −0.0857084 0.148451i
\(389\) 3472.03 + 6013.73i 0.452542 + 0.783826i 0.998543 0.0539584i \(-0.0171838\pi\)
−0.546001 + 0.837785i \(0.683850\pi\)
\(390\) 0 0
\(391\) −48.7615 −0.00630684
\(392\) 5785.19 683.064i 0.745398 0.0880101i
\(393\) 0 0
\(394\) 2089.83 3619.69i 0.267218 0.462835i
\(395\) −364.736 631.741i −0.0464604 0.0804717i
\(396\) 0 0
\(397\) −681.535 + 1180.45i −0.0861594 + 0.149232i −0.905885 0.423524i \(-0.860793\pi\)
0.819725 + 0.572757i \(0.194126\pi\)
\(398\) 1931.41 0.243248
\(399\) 0 0
\(400\) −27263.7 −3.40797
\(401\) −1944.54 + 3368.04i −0.242158 + 0.419431i −0.961329 0.275403i \(-0.911189\pi\)
0.719170 + 0.694834i \(0.244522\pi\)
\(402\) 0 0
\(403\) −1224.60 2121.06i −0.151368 0.262178i
\(404\) 2192.32 3797.21i 0.269980 0.467619i
\(405\) 0 0
\(406\) −4945.53 2480.11i −0.604538 0.303167i
\(407\) −2847.76 −0.346826
\(408\) 0 0
\(409\) 4186.88 + 7251.88i 0.506180 + 0.876730i 0.999974 + 0.00715125i \(0.00227633\pi\)
−0.493794 + 0.869579i \(0.664390\pi\)
\(410\) −12199.4 21130.0i −1.46948 2.54521i
\(411\) 0 0
\(412\) 3247.49 0.388331
\(413\) 6969.97 4590.07i 0.830435 0.546883i
\(414\) 0 0
\(415\) −4846.97 + 8395.19i −0.573321 + 0.993021i
\(416\) 2834.14 + 4908.87i 0.334027 + 0.578551i
\(417\) 0 0
\(418\) 5060.62 8765.25i 0.592160 1.02565i
\(419\) −11115.8 −1.29604 −0.648022 0.761621i \(-0.724404\pi\)
−0.648022 + 0.761621i \(0.724404\pi\)
\(420\) 0 0
\(421\) 9201.47 1.06521 0.532604 0.846365i \(-0.321214\pi\)
0.532604 + 0.846365i \(0.321214\pi\)
\(422\) −1708.04 + 2958.41i −0.197028 + 0.341263i
\(423\) 0 0
\(424\) 3306.60 + 5727.21i 0.378733 + 0.655985i
\(425\) −349.661 + 605.631i −0.0399084 + 0.0691233i
\(426\) 0 0
\(427\) −3739.86 1875.48i −0.423851 0.212555i
\(428\) −2280.96 −0.257603
\(429\) 0 0
\(430\) −18223.9 31564.8i −2.04380 3.53997i
\(431\) −1498.56 2595.58i −0.167478 0.290081i 0.770054 0.637978i \(-0.220229\pi\)
−0.937533 + 0.347898i \(0.886896\pi\)
\(432\) 0 0
\(433\) −4285.85 −0.475669 −0.237835 0.971306i \(-0.576438\pi\)
−0.237835 + 0.971306i \(0.576438\pi\)
\(434\) 190.553 + 3238.98i 0.0210757 + 0.358239i
\(435\) 0 0
\(436\) −2130.10 + 3689.44i −0.233975 + 0.405257i
\(437\) 885.126 + 1533.08i 0.0968909 + 0.167820i
\(438\) 0 0
\(439\) −1525.58 + 2642.37i −0.165858 + 0.287275i −0.936960 0.349437i \(-0.886373\pi\)
0.771102 + 0.636712i \(0.219706\pi\)
\(440\) 15477.3 1.67694
\(441\) 0 0
\(442\) 305.821 0.0329104
\(443\) 5785.50 10020.8i 0.620491 1.07472i −0.368904 0.929468i \(-0.620267\pi\)
0.989394 0.145254i \(-0.0463998\pi\)
\(444\) 0 0
\(445\) −5318.35 9211.65i −0.566548 0.981290i
\(446\) −8926.07 + 15460.4i −0.947672 + 1.64142i
\(447\) 0 0
\(448\) 243.449 + 4138.09i 0.0256739 + 0.436398i
\(449\) −3588.18 −0.377142 −0.188571 0.982060i \(-0.560386\pi\)
−0.188571 + 0.982060i \(0.560386\pi\)
\(450\) 0 0
\(451\) 7159.29 + 12400.3i 0.747490 + 1.29469i
\(452\) 926.441 + 1604.64i 0.0964073 + 0.166982i
\(453\) 0 0
\(454\) −6027.68 −0.623113
\(455\) −16549.8 8299.46i −1.70520 0.855131i
\(456\) 0 0
\(457\) 4683.70 8112.41i 0.479419 0.830377i −0.520303 0.853982i \(-0.674181\pi\)
0.999721 + 0.0236044i \(0.00751421\pi\)
\(458\) −113.249 196.152i −0.0115541 0.0200122i
\(459\) 0 0
\(460\) 745.820 1291.80i 0.0755957 0.130936i
\(461\) 1091.46 0.110269 0.0551346 0.998479i \(-0.482441\pi\)
0.0551346 + 0.998479i \(0.482441\pi\)
\(462\) 0 0
\(463\) 13226.1 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(464\) 3568.14 6180.20i 0.356997 0.618338i
\(465\) 0 0
\(466\) 8020.99 + 13892.8i 0.797350 + 1.38105i
\(467\) 5670.70 9821.95i 0.561903 0.973245i −0.435427 0.900224i \(-0.643403\pi\)
0.997330 0.0730211i \(-0.0232640\pi\)
\(468\) 0 0
\(469\) −11941.1 + 7863.80i −1.17567 + 0.774236i
\(470\) 2750.87 0.269975
\(471\) 0 0
\(472\) 3826.58 + 6627.83i 0.373162 + 0.646336i
\(473\) 10694.8 + 18523.9i 1.03964 + 1.80070i
\(474\) 0 0
\(475\) 25388.4 2.45242
\(476\) −94.9326 47.6073i −0.00914124 0.00458420i
\(477\) 0 0
\(478\) 6234.57 10798.6i 0.596574 1.03330i
\(479\) 8512.21 + 14743.6i 0.811968 + 1.40637i 0.911485 + 0.411334i \(0.134937\pi\)
−0.0995168 + 0.995036i \(0.531730\pi\)
\(480\) 0 0
\(481\) −1561.94 + 2705.36i −0.148063 + 0.256453i
\(482\) 5948.66 0.562145
\(483\) 0 0
\(484\) 1222.04 0.114767
\(485\) −5005.19 + 8669.24i −0.468606 + 0.811650i
\(486\) 0 0
\(487\) −4862.35 8421.84i −0.452431 0.783634i 0.546105 0.837717i \(-0.316110\pi\)
−0.998536 + 0.0540825i \(0.982777\pi\)
\(488\) 1918.32 3322.63i 0.177947 0.308214i
\(489\) 0 0
\(490\) 14669.4 + 19656.3i 1.35244 + 1.81221i
\(491\) 16363.4 1.50402 0.752008 0.659154i \(-0.229085\pi\)
0.752008 + 0.659154i \(0.229085\pi\)
\(492\) 0 0
\(493\) −91.5238 158.524i −0.00836111 0.0144819i
\(494\) −5551.30 9615.14i −0.505597 0.875720i
\(495\) 0 0
\(496\) −4185.08 −0.378862
\(497\) −1047.07 17797.8i −0.0945020 1.60632i
\(498\) 0 0
\(499\) 2726.23 4721.96i 0.244575 0.423616i −0.717437 0.696623i \(-0.754685\pi\)
0.962012 + 0.273007i \(0.0880184\pi\)
\(500\) −6838.79 11845.1i −0.611680 1.05946i
\(501\) 0 0
\(502\) −387.910 + 671.880i −0.0344886 + 0.0597360i
\(503\) 3703.99 0.328336 0.164168 0.986432i \(-0.447506\pi\)
0.164168 + 0.986432i \(0.447506\pi\)
\(504\) 0 0
\(505\) −33503.0 −2.95220
\(506\) −1669.70 + 2892.01i −0.146694 + 0.254082i
\(507\) 0 0
\(508\) 901.388 + 1561.25i 0.0787256 + 0.136357i
\(509\) 826.843 1432.13i 0.0720023 0.124712i −0.827776 0.561058i \(-0.810394\pi\)
0.899779 + 0.436346i \(0.143728\pi\)
\(510\) 0 0
\(511\) −16299.5 + 10734.1i −1.41105 + 0.929250i
\(512\) −1001.60 −0.0864546
\(513\) 0 0
\(514\) −3431.61 5943.72i −0.294478 0.510051i
\(515\) −12407.0 21489.6i −1.06159 1.83873i
\(516\) 0 0
\(517\) −1614.36 −0.137330
\(518\) 3456.23 2276.10i 0.293162 0.193062i
\(519\) 0 0
\(520\) 8489.01 14703.4i 0.715900 1.23997i
\(521\) −1550.15 2684.94i −0.130352 0.225776i 0.793460 0.608622i \(-0.208277\pi\)
−0.923812 + 0.382846i \(0.874944\pi\)
\(522\) 0 0
\(523\) 1562.72 2706.70i 0.130655 0.226302i −0.793274 0.608865i \(-0.791625\pi\)
0.923929 + 0.382563i \(0.124958\pi\)
\(524\) −6508.85 −0.542635
\(525\) 0 0
\(526\) −19376.8 −1.60622
\(527\) −53.6743 + 92.9666i −0.00443660 + 0.00768442i
\(528\) 0 0
\(529\) 5791.46 + 10031.1i 0.475997 + 0.824452i
\(530\) −13921.9 + 24113.5i −1.14100 + 1.97627i
\(531\) 0 0
\(532\) 226.436 + 3848.90i 0.0184534 + 0.313667i
\(533\) 15706.9 1.27644
\(534\) 0 0
\(535\) 8714.39 + 15093.8i 0.704217 + 1.21974i
\(536\) −6555.77 11354.9i −0.528295 0.915034i
\(537\) 0 0
\(538\) 23301.4 1.86728
\(539\) −8608.82 11535.4i −0.687956 0.921828i
\(540\) 0 0
\(541\) −10757.2 + 18632.0i −0.854874 + 1.48069i 0.0218880 + 0.999760i \(0.493032\pi\)
−0.876762 + 0.480925i \(0.840301\pi\)
\(542\) −4640.55 8037.67i −0.367765 0.636988i
\(543\) 0 0
\(544\) 124.221 215.157i 0.00979031 0.0169573i
\(545\) 32552.2 2.55850
\(546\) 0 0
\(547\) −13104.4 −1.02432 −0.512161 0.858889i \(-0.671155\pi\)
−0.512161 + 0.858889i \(0.671155\pi\)
\(548\) −1037.86 + 1797.63i −0.0809039 + 0.140130i
\(549\) 0 0
\(550\) 23946.3 + 41476.3i 1.85650 + 3.21555i
\(551\) −3322.71 + 5755.10i −0.256900 + 0.444965i
\(552\) 0 0
\(553\) −556.100 278.876i −0.0427627 0.0214449i
\(554\) 14385.5 1.10322
\(555\) 0 0
\(556\) 1698.71 + 2942.25i 0.129571 + 0.224423i
\(557\) 9397.45 + 16276.9i 0.714870 + 1.23819i 0.963009 + 0.269467i \(0.0868477\pi\)
−0.248139 + 0.968724i \(0.579819\pi\)
\(558\) 0 0
\(559\) 23463.6 1.77532
\(560\) −26421.6 + 17399.9i −1.99378 + 1.31300i
\(561\) 0 0
\(562\) −857.687 + 1485.56i −0.0643761 + 0.111503i
\(563\) 8724.85 + 15111.9i 0.653124 + 1.13124i 0.982361 + 0.186996i \(0.0598751\pi\)
−0.329237 + 0.944247i \(0.606792\pi\)
\(564\) 0 0
\(565\) 7078.93 12261.1i 0.527102 0.912968i
\(566\) −9327.38 −0.692684
\(567\) 0 0
\(568\) 16349.3 1.20775
\(569\) −11420.4 + 19780.8i −0.841423 + 1.45739i 0.0472680 + 0.998882i \(0.484949\pi\)
−0.888691 + 0.458506i \(0.848385\pi\)
\(570\) 0 0
\(571\) −448.021 775.995i −0.0328355 0.0568728i 0.849141 0.528167i \(-0.177120\pi\)
−0.881976 + 0.471294i \(0.843787\pi\)
\(572\) 2745.08 4754.62i 0.200660 0.347553i
\(573\) 0 0
\(574\) −18600.0 9327.64i −1.35253 0.678272i
\(575\) −8376.65 −0.607531
\(576\) 0 0
\(577\) 1483.10 + 2568.80i 0.107005 + 0.185339i 0.914556 0.404460i \(-0.132540\pi\)
−0.807550 + 0.589799i \(0.799207\pi\)
\(578\) 8081.90 + 13998.3i 0.581596 + 1.00735i
\(579\) 0 0
\(580\) 5599.52 0.400875
\(581\) 485.530 + 8252.92i 0.0346698 + 0.589309i
\(582\) 0 0
\(583\) 8170.15 14151.1i 0.580399 1.00528i
\(584\) −8948.60 15499.4i −0.634068 1.09824i
\(585\) 0 0
\(586\) −5913.71 + 10242.8i −0.416882 + 0.722062i
\(587\) 1872.80 0.131684 0.0658420 0.997830i \(-0.479027\pi\)
0.0658420 + 0.997830i \(0.479027\pi\)
\(588\) 0 0
\(589\) 3897.21 0.272635
\(590\) −16111.2 + 27905.4i −1.12421 + 1.94720i
\(591\) 0 0
\(592\) 2668.98 + 4622.81i 0.185295 + 0.320940i
\(593\) −8549.50 + 14808.2i −0.592051 + 1.02546i 0.401905 + 0.915681i \(0.368348\pi\)
−0.993956 + 0.109781i \(0.964985\pi\)
\(594\) 0 0
\(595\) 47.6581 + 810.080i 0.00328368 + 0.0558152i
\(596\) 3607.71 0.247949
\(597\) 0 0
\(598\) 1831.60 + 3172.42i 0.125250 + 0.216940i
\(599\) 5709.09 + 9888.44i 0.389428 + 0.674509i 0.992373 0.123274i \(-0.0393395\pi\)
−0.602945 + 0.797783i \(0.706006\pi\)
\(600\) 0 0
\(601\) −10231.6 −0.694432 −0.347216 0.937785i \(-0.612873\pi\)
−0.347216 + 0.937785i \(0.612873\pi\)
\(602\) −27785.4 13934.0i −1.88114 0.943365i
\(603\) 0 0
\(604\) −623.800 + 1080.45i −0.0420233 + 0.0727865i
\(605\) −4668.82 8086.63i −0.313743 0.543418i
\(606\) 0 0
\(607\) 6095.70 10558.1i 0.407606 0.705995i −0.587015 0.809576i \(-0.699697\pi\)
0.994621 + 0.103582i \(0.0330303\pi\)
\(608\) −9019.51 −0.601627
\(609\) 0 0
\(610\) 16153.5 1.07219
\(611\) −885.447 + 1533.64i −0.0586274 + 0.101546i
\(612\) 0 0
\(613\) 3824.87 + 6624.88i 0.252015 + 0.436503i 0.964080 0.265610i \(-0.0855734\pi\)
−0.712065 + 0.702113i \(0.752240\pi\)
\(614\) −3569.55 + 6182.65i −0.234618 + 0.406370i
\(615\) 0 0
\(616\) 11023.7 7259.64i 0.721033 0.474836i
\(617\) 19107.4 1.24673 0.623367 0.781929i \(-0.285764\pi\)
0.623367 + 0.781929i \(0.285764\pi\)
\(618\) 0 0
\(619\) −8831.65 15296.9i −0.573464 0.993269i −0.996207 0.0870189i \(-0.972266\pi\)
0.422743 0.906250i \(-0.361067\pi\)
\(620\) −1641.92 2843.90i −0.106357 0.184216i
\(621\) 0 0
\(622\) −23767.0 −1.53211
\(623\) −8108.70 4066.39i −0.521458 0.261503i
\(624\) 0 0
\(625\) −30592.3 + 52987.4i −1.95791 + 3.39120i
\(626\) −5012.42 8681.77i −0.320027 0.554303i
\(627\) 0 0
\(628\) 2538.39 4396.61i 0.161294 0.279369i
\(629\) 136.920 0.00867944
\(630\) 0 0
\(631\) 5523.07 0.348447 0.174223 0.984706i \(-0.444259\pi\)
0.174223 + 0.984706i \(0.444259\pi\)
\(632\) 285.245 494.059i 0.0179532 0.0310959i
\(633\) 0 0
\(634\) −10060.6 17425.4i −0.630215 1.09157i
\(635\) 6887.50 11929.5i 0.430428 0.745524i
\(636\) 0 0
\(637\) −15680.4 + 1851.40i −0.975320 + 0.115157i
\(638\) −12535.9 −0.777902
\(639\) 0 0
\(640\) −18698.6 32387.0i −1.15489 2.00033i
\(641\) −8727.00 15115.6i −0.537747 0.931405i −0.999025 0.0441491i \(-0.985942\pi\)
0.461278 0.887256i \(-0.347391\pi\)
\(642\) 0 0
\(643\) −8175.22 −0.501398 −0.250699 0.968065i \(-0.580660\pi\)
−0.250699 + 0.968065i \(0.580660\pi\)
\(644\) −74.7102 1269.91i −0.00457142 0.0777039i
\(645\) 0 0
\(646\) −243.315 + 421.434i −0.0148190 + 0.0256673i
\(647\) 12500.3 + 21651.2i 0.759564 + 1.31560i 0.943073 + 0.332586i \(0.107921\pi\)
−0.183509 + 0.983018i \(0.558746\pi\)
\(648\) 0 0
\(649\) 9454.93 16376.4i 0.571862 0.990494i
\(650\) 52536.4 3.17023
\(651\) 0 0
\(652\) −2407.92 −0.144634
\(653\) 384.545 666.052i 0.0230451 0.0399152i −0.854273 0.519825i \(-0.825997\pi\)
0.877318 + 0.479910i \(0.159331\pi\)
\(654\) 0 0
\(655\) 24867.1 + 43071.0i 1.48341 + 2.56935i
\(656\) 13419.7 23243.6i 0.798707 1.38340i
\(657\) 0 0
\(658\) 1959.30 1290.30i 0.116081 0.0764453i
\(659\) 7037.98 0.416025 0.208013 0.978126i \(-0.433300\pi\)
0.208013 + 0.978126i \(0.433300\pi\)
\(660\) 0 0
\(661\) −2044.87 3541.82i −0.120327 0.208413i 0.799569 0.600574i \(-0.205061\pi\)
−0.919897 + 0.392161i \(0.871728\pi\)
\(662\) −2465.30 4270.03i −0.144738 0.250694i
\(663\) 0 0
\(664\) −7581.24 −0.443086
\(665\) 24604.2 16203.1i 1.43475 0.944855i
\(666\) 0 0
\(667\) 1096.29 1898.84i 0.0636412 0.110230i
\(668\) −2067.14 3580.39i −0.119731 0.207379i
\(669\) 0 0
\(670\) 27602.0 47808.0i 1.59158 2.75669i
\(671\) −9479.79 −0.545400
\(672\) 0 0
\(673\) 2151.39 0.123224 0.0616121 0.998100i \(-0.480376\pi\)
0.0616121 + 0.998100i \(0.480376\pi\)
\(674\) 13430.4 23262.2i 0.767538 1.32941i
\(675\) 0 0
\(676\) 110.802 + 191.915i 0.00630418 + 0.0109192i
\(677\) 3837.80 6647.27i 0.217871 0.377364i −0.736286 0.676671i \(-0.763422\pi\)
0.954157 + 0.299307i \(0.0967554\pi\)
\(678\) 0 0
\(679\) 501.379 + 8522.32i 0.0283375 + 0.481674i
\(680\) −744.151 −0.0419660
\(681\) 0 0
\(682\) 3675.85 + 6366.76i 0.206387 + 0.357472i
\(683\) −8049.29 13941.8i −0.450948 0.781065i 0.547497 0.836807i \(-0.315581\pi\)
−0.998445 + 0.0557429i \(0.982247\pi\)
\(684\) 0 0
\(685\) 15860.6 0.884676
\(686\) 19668.0 + 7119.45i 1.09465 + 0.396242i
\(687\) 0 0
\(688\) 20046.8 34722.1i 1.11087 1.92408i
\(689\) −8962.33 15523.2i −0.495555 0.858327i
\(690\) 0 0
\(691\) −9541.91 + 16527.1i −0.525313 + 0.909869i 0.474252 + 0.880389i \(0.342719\pi\)
−0.999565 + 0.0294802i \(0.990615\pi\)
\(692\) 2414.40 0.132632
\(693\) 0 0
\(694\) −30072.9 −1.64489
\(695\) 12979.8 22481.7i 0.708421 1.22702i
\(696\) 0 0
\(697\) −344.219 596.205i −0.0187062 0.0324001i
\(698\) 15687.4 27171.3i 0.850682 1.47342i
\(699\) 0 0
\(700\) −16308.3 8178.37i −0.880565 0.441591i
\(701\) −29898.7 −1.61093 −0.805463 0.592646i \(-0.798083\pi\)
−0.805463 + 0.592646i \(0.798083\pi\)
\(702\) 0 0
\(703\) −2485.40 4304.83i −0.133341 0.230953i
\(704\) 4696.24 + 8134.12i 0.251415 + 0.435463i
\(705\) 0 0
\(706\) −11054.8 −0.589312
\(707\) −23862.4 + 15714.6i −1.26936 + 0.835937i
\(708\) 0 0
\(709\) −9939.56 + 17215.8i −0.526500 + 0.911924i 0.473024 + 0.881050i \(0.343162\pi\)
−0.999523 + 0.0308743i \(0.990171\pi\)
\(710\) 34418.1 + 59613.9i 1.81928 + 3.15108i
\(711\) 0 0
\(712\) 4159.27 7204.06i 0.218926 0.379190i
\(713\) −1285.85 −0.0675390
\(714\) 0 0
\(715\) −41950.3 −2.19420
\(716\) −1875.81 + 3249.00i −0.0979085 + 0.169582i
\(717\) 0 0
\(718\) −153.069 265.122i −0.00795608 0.0137803i
\(719\) 6820.25 11813.0i 0.353758 0.612728i −0.633146 0.774032i \(-0.718237\pi\)
0.986905 + 0.161305i \(0.0515702\pi\)
\(720\) 0 0
\(721\) −18916.5 9486.37i −0.977099 0.490001i
\(722\) −4918.12 −0.253509
\(723\) 0 0
\(724\) 5692.34 + 9859.42i 0.292202 + 0.506108i
\(725\) −15722.7 27232.5i −0.805416 1.39502i
\(726\) 0 0
\(727\) −10021.8 −0.511262 −0.255631 0.966774i \(-0.582283\pi\)
−0.255631 + 0.966774i \(0.582283\pi\)
\(728\) −850.361 14454.2i −0.0432918 0.735864i
\(729\) 0 0
\(730\) 37676.6 65257.8i 1.91024 3.30863i
\(731\) −514.207 890.632i −0.0260173 0.0450632i
\(732\) 0 0
\(733\) 12044.0 20860.8i 0.606898 1.05118i −0.384851 0.922979i \(-0.625747\pi\)
0.991749 0.128199i \(-0.0409195\pi\)
\(734\) −22344.2 −1.12362
\(735\) 0 0
\(736\) 2975.90 0.149039
\(737\) −16198.4 + 28056.4i −0.809599 + 1.40227i
\(738\) 0 0
\(739\) −12328.9 21354.4i −0.613705 1.06297i −0.990610 0.136716i \(-0.956345\pi\)
0.376906 0.926252i \(-0.376988\pi\)
\(740\) −2094.23 + 3627.32i −0.104034 + 0.180193i
\(741\) 0 0
\(742\) 1394.58 + 23704.8i 0.0689984 + 1.17282i
\(743\) −13467.0 −0.664948 −0.332474 0.943112i \(-0.607883\pi\)
−0.332474 + 0.943112i \(0.607883\pi\)
\(744\) 0 0
\(745\) −13783.3 23873.3i −0.677825 1.17403i
\(746\) 12267.2 + 21247.4i 0.602055 + 1.04279i
\(747\) 0 0
\(748\) −240.635 −0.0117627
\(749\) 13286.5 + 6663.00i 0.648170 + 0.325048i
\(750\) 0 0
\(751\) 3440.08 5958.39i 0.167151 0.289513i −0.770266 0.637722i \(-0.779877\pi\)
0.937417 + 0.348209i \(0.113210\pi\)
\(752\) 1513.02 + 2620.63i 0.0733698 + 0.127080i
\(753\) 0 0
\(754\) −6875.71 + 11909.1i −0.332093 + 0.575203i
\(755\) 9532.91 0.459521
\(756\) 0 0
\(757\) 33528.2 1.60978 0.804889 0.593425i \(-0.202225\pi\)
0.804889 + 0.593425i \(0.202225\pi\)
\(758\) −6609.62 + 11448.2i −0.316718 + 0.548572i
\(759\) 0 0
\(760\) 13507.9 + 23396.4i 0.644716 + 1.11668i
\(761\) −545.457 + 944.759i −0.0259826 + 0.0450033i −0.878724 0.477330i \(-0.841605\pi\)
0.852742 + 0.522333i \(0.174938\pi\)
\(762\) 0 0
\(763\) 23185.2 15268.6i 1.10008 0.724456i
\(764\) −4864.29 −0.230345
\(765\) 0 0
\(766\) 10643.6 + 18435.2i 0.502046 + 0.869569i
\(767\) −10371.7 17964.3i −0.488266 0.845702i
\(768\) 0 0
\(769\) 30520.8 1.43122 0.715609 0.698501i \(-0.246149\pi\)
0.715609 + 0.698501i \(0.246149\pi\)
\(770\) 49677.2 + 24912.4i 2.32499 + 1.16595i
\(771\) 0 0
\(772\) −6229.81 + 10790.3i −0.290435 + 0.503048i
\(773\) −3924.15 6796.82i −0.182590 0.316255i 0.760172 0.649722i \(-0.225115\pi\)
−0.942762 + 0.333467i \(0.891781\pi\)
\(774\) 0 0
\(775\) −9220.61 + 15970.6i −0.427373 + 0.740231i
\(776\) −7828.72 −0.362158
\(777\) 0 0
\(778\) −22865.0 −1.05366
\(779\) −12496.6 + 21644.8i −0.574760 + 0.995514i
\(780\)