Properties

Label 189.4.e.h.109.8
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.8
Root \(1.06000 - 1.83598i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.h.163.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.73089 + 4.73004i) q^{2} +(-10.9155 + 18.9063i) q^{4} +(0.0995681 + 0.172457i) q^{5} +(-16.0061 + 9.31685i) q^{7} -75.5424 q^{8} +O(q^{10})\) \(q+(2.73089 + 4.73004i) q^{2} +(-10.9155 + 18.9063i) q^{4} +(0.0995681 + 0.172457i) q^{5} +(-16.0061 + 9.31685i) q^{7} -75.5424 q^{8} +(-0.543819 + 0.941923i) q^{10} +(14.2117 - 24.6153i) q^{11} +32.5809 q^{13} +(-87.7801 - 50.2664i) q^{14} +(-118.974 - 206.069i) q^{16} +(-57.7439 + 100.015i) q^{17} +(-10.5750 - 18.3164i) q^{19} -4.34736 q^{20} +155.242 q^{22} +(46.8828 + 81.2034i) q^{23} +(62.4802 - 108.219i) q^{25} +(88.9749 + 154.109i) q^{26} +(-1.43126 - 404.315i) q^{28} -231.571 q^{29} +(-140.871 + 243.996i) q^{31} +(347.640 - 602.130i) q^{32} -630.770 q^{34} +(-3.20045 - 1.83271i) q^{35} +(73.2770 + 126.919i) q^{37} +(57.7583 - 100.040i) q^{38} +(-7.52161 - 13.0278i) q^{40} +111.001 q^{41} +392.361 q^{43} +(310.256 + 537.380i) q^{44} +(-256.064 + 443.516i) q^{46} +(136.584 + 236.571i) q^{47} +(169.393 - 298.253i) q^{49} +682.506 q^{50} +(-355.638 + 615.984i) q^{52} +(-170.201 + 294.798i) q^{53} +5.66011 q^{55} +(1209.14 - 703.817i) q^{56} +(-632.395 - 1095.34i) q^{58} +(-348.408 + 603.461i) q^{59} +(185.001 + 320.431i) q^{61} -1538.81 q^{62} +1893.89 q^{64} +(3.24402 + 5.61880i) q^{65} +(-43.5681 + 75.4622i) q^{67} +(-1260.61 - 2183.45i) q^{68} +(-0.0713061 - 20.1432i) q^{70} +88.3772 q^{71} +(401.518 - 695.450i) q^{73} +(-400.223 + 693.207i) q^{74} +461.727 q^{76} +(1.86345 + 526.404i) q^{77} +(-182.308 - 315.766i) q^{79} +(23.6920 - 41.0357i) q^{80} +(303.132 + 525.040i) q^{82} -921.684 q^{83} -22.9978 q^{85} +(1071.50 + 1855.88i) q^{86} +(-1073.58 + 1859.50i) q^{88} +(-105.698 - 183.074i) q^{89} +(-521.494 + 303.551i) q^{91} -2047.01 q^{92} +(-745.993 + 1292.10i) q^{94} +(2.10586 - 3.64746i) q^{95} +845.718 q^{97} +(1873.35 - 13.2633i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.73089 + 4.73004i 0.965516 + 1.67232i 0.708222 + 0.705990i \(0.249498\pi\)
0.257295 + 0.966333i \(0.417169\pi\)
\(3\) 0 0
\(4\) −10.9155 + 18.9063i −1.36444 + 2.36328i
\(5\) 0.0995681 + 0.172457i 0.00890564 + 0.0154250i 0.870444 0.492268i \(-0.163832\pi\)
−0.861538 + 0.507693i \(0.830499\pi\)
\(6\) 0 0
\(7\) −16.0061 + 9.31685i −0.864250 + 0.503063i
\(8\) −75.5424 −3.33854
\(9\) 0 0
\(10\) −0.543819 + 0.941923i −0.0171971 + 0.0297862i
\(11\) 14.2117 24.6153i 0.389544 0.674710i −0.602844 0.797859i \(-0.705966\pi\)
0.992388 + 0.123149i \(0.0392994\pi\)
\(12\) 0 0
\(13\) 32.5809 0.695101 0.347551 0.937661i \(-0.387013\pi\)
0.347551 + 0.937661i \(0.387013\pi\)
\(14\) −87.7801 50.2664i −1.67573 0.959590i
\(15\) 0 0
\(16\) −118.974 206.069i −1.85897 3.21983i
\(17\) −57.7439 + 100.015i −0.823821 + 1.42690i 0.0789952 + 0.996875i \(0.474829\pi\)
−0.902817 + 0.430026i \(0.858505\pi\)
\(18\) 0 0
\(19\) −10.5750 18.3164i −0.127688 0.221162i 0.795093 0.606488i \(-0.207422\pi\)
−0.922780 + 0.385326i \(0.874089\pi\)
\(20\) −4.34736 −0.0486049
\(21\) 0 0
\(22\) 155.242 1.50444
\(23\) 46.8828 + 81.2034i 0.425032 + 0.736177i 0.996423 0.0845003i \(-0.0269294\pi\)
−0.571391 + 0.820678i \(0.693596\pi\)
\(24\) 0 0
\(25\) 62.4802 108.219i 0.499841 0.865751i
\(26\) 88.9749 + 154.109i 0.671132 + 1.16243i
\(27\) 0 0
\(28\) −1.43126 404.315i −0.00966007 2.72887i
\(29\) −231.571 −1.48282 −0.741408 0.671055i \(-0.765841\pi\)
−0.741408 + 0.671055i \(0.765841\pi\)
\(30\) 0 0
\(31\) −140.871 + 243.996i −0.816167 + 1.41364i 0.0923206 + 0.995729i \(0.470572\pi\)
−0.908487 + 0.417913i \(0.862762\pi\)
\(32\) 347.640 602.130i 1.92046 3.32633i
\(33\) 0 0
\(34\) −630.770 −3.18165
\(35\) −3.20045 1.83271i −0.0154564 0.00885098i
\(36\) 0 0
\(37\) 73.2770 + 126.919i 0.325585 + 0.563931i 0.981631 0.190791i \(-0.0611053\pi\)
−0.656045 + 0.754722i \(0.727772\pi\)
\(38\) 57.7583 100.040i 0.246569 0.427070i
\(39\) 0 0
\(40\) −7.52161 13.0278i −0.0297318 0.0514970i
\(41\) 111.001 0.422816 0.211408 0.977398i \(-0.432195\pi\)
0.211408 + 0.977398i \(0.432195\pi\)
\(42\) 0 0
\(43\) 392.361 1.39150 0.695750 0.718284i \(-0.255072\pi\)
0.695750 + 0.718284i \(0.255072\pi\)
\(44\) 310.256 + 537.380i 1.06302 + 1.84121i
\(45\) 0 0
\(46\) −256.064 + 443.516i −0.820751 + 1.42158i
\(47\) 136.584 + 236.571i 0.423890 + 0.734199i 0.996316 0.0857573i \(-0.0273310\pi\)
−0.572426 + 0.819956i \(0.693998\pi\)
\(48\) 0 0
\(49\) 169.393 298.253i 0.493856 0.869544i
\(50\) 682.506 1.93042
\(51\) 0 0
\(52\) −355.638 + 615.984i −0.948426 + 1.64272i
\(53\) −170.201 + 294.798i −0.441113 + 0.764030i −0.997772 0.0667111i \(-0.978749\pi\)
0.556660 + 0.830741i \(0.312083\pi\)
\(54\) 0 0
\(55\) 5.66011 0.0138765
\(56\) 1209.14 703.817i 2.88533 1.67949i
\(57\) 0 0
\(58\) −632.395 1095.34i −1.43168 2.47975i
\(59\) −348.408 + 603.461i −0.768795 + 1.33159i 0.169421 + 0.985544i \(0.445810\pi\)
−0.938217 + 0.346049i \(0.887523\pi\)
\(60\) 0 0
\(61\) 185.001 + 320.431i 0.388311 + 0.672574i 0.992222 0.124477i \(-0.0397254\pi\)
−0.603912 + 0.797051i \(0.706392\pi\)
\(62\) −1538.81 −3.15209
\(63\) 0 0
\(64\) 1893.89 3.69900
\(65\) 3.24402 + 5.61880i 0.00619032 + 0.0107220i
\(66\) 0 0
\(67\) −43.5681 + 75.4622i −0.0794431 + 0.137600i −0.903010 0.429620i \(-0.858648\pi\)
0.823567 + 0.567219i \(0.191981\pi\)
\(68\) −1260.61 2183.45i −2.24812 3.89385i
\(69\) 0 0
\(70\) −0.0713061 20.1432i −0.000121753 0.0343939i
\(71\) 88.3772 0.147725 0.0738623 0.997268i \(-0.476467\pi\)
0.0738623 + 0.997268i \(0.476467\pi\)
\(72\) 0 0
\(73\) 401.518 695.450i 0.643755 1.11502i −0.340832 0.940124i \(-0.610709\pi\)
0.984587 0.174893i \(-0.0559579\pi\)
\(74\) −400.223 + 693.207i −0.628716 + 1.08897i
\(75\) 0 0
\(76\) 461.727 0.696891
\(77\) 1.86345 + 526.404i 0.00275792 + 0.779083i
\(78\) 0 0
\(79\) −182.308 315.766i −0.259636 0.449702i 0.706509 0.707705i \(-0.250269\pi\)
−0.966144 + 0.258002i \(0.916936\pi\)
\(80\) 23.6920 41.0357i 0.0331106 0.0573492i
\(81\) 0 0
\(82\) 303.132 + 525.040i 0.408236 + 0.707085i
\(83\) −921.684 −1.21889 −0.609446 0.792828i \(-0.708608\pi\)
−0.609446 + 0.792828i \(0.708608\pi\)
\(84\) 0 0
\(85\) −22.9978 −0.0293466
\(86\) 1071.50 + 1855.88i 1.34351 + 2.32704i
\(87\) 0 0
\(88\) −1073.58 + 1859.50i −1.30051 + 2.25254i
\(89\) −105.698 183.074i −0.125887 0.218043i 0.796192 0.605044i \(-0.206844\pi\)
−0.922079 + 0.387001i \(0.873511\pi\)
\(90\) 0 0
\(91\) −521.494 + 303.551i −0.600741 + 0.349679i
\(92\) −2047.01 −2.31973
\(93\) 0 0
\(94\) −745.993 + 1292.10i −0.818545 + 1.41776i
\(95\) 2.10586 3.64746i 0.00227428 0.00393917i
\(96\) 0 0
\(97\) 845.718 0.885254 0.442627 0.896706i \(-0.354047\pi\)
0.442627 + 0.896706i \(0.354047\pi\)
\(98\) 1873.35 13.2633i 1.93098 0.0136714i
\(99\) 0 0
\(100\) 1364.01 + 2362.54i 1.36401 + 2.36254i
\(101\) −78.4758 + 135.924i −0.0773132 + 0.133910i −0.902090 0.431548i \(-0.857967\pi\)
0.824777 + 0.565459i \(0.191301\pi\)
\(102\) 0 0
\(103\) 69.6626 + 120.659i 0.0666414 + 0.115426i 0.897421 0.441175i \(-0.145438\pi\)
−0.830780 + 0.556602i \(0.812105\pi\)
\(104\) −2461.24 −2.32062
\(105\) 0 0
\(106\) −1859.21 −1.70361
\(107\) −207.738 359.813i −0.187690 0.325088i 0.756790 0.653658i \(-0.226767\pi\)
−0.944480 + 0.328570i \(0.893433\pi\)
\(108\) 0 0
\(109\) 422.040 730.995i 0.370863 0.642354i −0.618835 0.785521i \(-0.712395\pi\)
0.989699 + 0.143167i \(0.0457285\pi\)
\(110\) 15.4572 + 26.7726i 0.0133980 + 0.0232061i
\(111\) 0 0
\(112\) 3824.22 + 2189.90i 3.22639 + 1.84756i
\(113\) 1342.21 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(114\) 0 0
\(115\) −9.33606 + 16.1705i −0.00757037 + 0.0131123i
\(116\) 2527.72 4378.14i 2.02322 3.50431i
\(117\) 0 0
\(118\) −3805.86 −2.96914
\(119\) −7.57144 2138.85i −0.00583254 1.64763i
\(120\) 0 0
\(121\) 261.557 + 453.029i 0.196511 + 0.340368i
\(122\) −1010.44 + 1750.13i −0.749841 + 1.29876i
\(123\) 0 0
\(124\) −3075.37 5326.69i −2.22723 3.85767i
\(125\) 49.7761 0.0356169
\(126\) 0 0
\(127\) 978.750 0.683858 0.341929 0.939726i \(-0.388920\pi\)
0.341929 + 0.939726i \(0.388920\pi\)
\(128\) 2390.88 + 4141.13i 1.65099 + 2.85959i
\(129\) 0 0
\(130\) −17.7181 + 30.6887i −0.0119537 + 0.0207044i
\(131\) 1186.40 + 2054.91i 0.791271 + 1.37052i 0.925180 + 0.379528i \(0.123914\pi\)
−0.133909 + 0.990994i \(0.542753\pi\)
\(132\) 0 0
\(133\) 339.916 + 194.649i 0.221612 + 0.126904i
\(134\) −475.919 −0.306815
\(135\) 0 0
\(136\) 4362.12 7555.41i 2.75036 4.76376i
\(137\) 801.337 1387.96i 0.499729 0.865556i −0.500271 0.865869i \(-0.666766\pi\)
1.00000 0.000312974i \(9.96229e-5\pi\)
\(138\) 0 0
\(139\) 2101.78 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(140\) 69.5844 40.5037i 0.0420068 0.0244513i
\(141\) 0 0
\(142\) 241.349 + 418.028i 0.142631 + 0.247043i
\(143\) 463.029 801.990i 0.270772 0.468992i
\(144\) 0 0
\(145\) −23.0571 39.9360i −0.0132054 0.0228724i
\(146\) 4386.01 2.48623
\(147\) 0 0
\(148\) −3199.43 −1.77697
\(149\) 262.200 + 454.144i 0.144163 + 0.249697i 0.929060 0.369928i \(-0.120618\pi\)
−0.784897 + 0.619626i \(0.787284\pi\)
\(150\) 0 0
\(151\) 433.833 751.420i 0.233807 0.404965i −0.725119 0.688624i \(-0.758215\pi\)
0.958925 + 0.283659i \(0.0915484\pi\)
\(152\) 798.860 + 1383.67i 0.426290 + 0.738356i
\(153\) 0 0
\(154\) −2484.83 + 1446.37i −1.30022 + 0.756829i
\(155\) −56.1050 −0.0290739
\(156\) 0 0
\(157\) 2.96000 5.12687i 0.00150467 0.00260617i −0.865272 0.501303i \(-0.832854\pi\)
0.866777 + 0.498696i \(0.166188\pi\)
\(158\) 995.726 1724.65i 0.501365 0.868390i
\(159\) 0 0
\(160\) 138.455 0.0684116
\(161\) −1506.97 862.953i −0.737677 0.422424i
\(162\) 0 0
\(163\) 416.480 + 721.364i 0.200130 + 0.346636i 0.948570 0.316567i \(-0.102530\pi\)
−0.748440 + 0.663202i \(0.769197\pi\)
\(164\) −1211.64 + 2098.62i −0.576909 + 0.999235i
\(165\) 0 0
\(166\) −2517.02 4359.61i −1.17686 2.03838i
\(167\) 566.798 0.262636 0.131318 0.991340i \(-0.458079\pi\)
0.131318 + 0.991340i \(0.458079\pi\)
\(168\) 0 0
\(169\) −1135.48 −0.516834
\(170\) −62.8045 108.781i −0.0283346 0.0490770i
\(171\) 0 0
\(172\) −4282.83 + 7418.08i −1.89862 + 3.28851i
\(173\) −2062.88 3573.02i −0.906579 1.57024i −0.818783 0.574103i \(-0.805351\pi\)
−0.0877960 0.996138i \(-0.527982\pi\)
\(174\) 0 0
\(175\) 8.19246 + 2314.28i 0.00353881 + 0.999676i
\(176\) −6763.27 −2.89660
\(177\) 0 0
\(178\) 577.299 999.912i 0.243092 0.421048i
\(179\) 463.823 803.365i 0.193675 0.335454i −0.752791 0.658260i \(-0.771293\pi\)
0.946465 + 0.322806i \(0.104626\pi\)
\(180\) 0 0
\(181\) 1211.67 0.497585 0.248792 0.968557i \(-0.419966\pi\)
0.248792 + 0.968557i \(0.419966\pi\)
\(182\) −2859.96 1637.73i −1.16480 0.667013i
\(183\) 0 0
\(184\) −3541.64 6134.30i −1.41899 2.45775i
\(185\) −14.5921 + 25.2742i −0.00579909 + 0.0100443i
\(186\) 0 0
\(187\) 1641.28 + 2842.77i 0.641829 + 1.11168i
\(188\) −5963.56 −2.31350
\(189\) 0 0
\(190\) 23.0035 0.00878342
\(191\) −913.746 1582.65i −0.346159 0.599565i 0.639405 0.768870i \(-0.279181\pi\)
−0.985564 + 0.169306i \(0.945848\pi\)
\(192\) 0 0
\(193\) 411.115 712.072i 0.153330 0.265576i −0.779120 0.626875i \(-0.784334\pi\)
0.932450 + 0.361300i \(0.117667\pi\)
\(194\) 2309.56 + 4000.28i 0.854727 + 1.48043i
\(195\) 0 0
\(196\) 3789.85 + 6458.18i 1.38114 + 2.35357i
\(197\) 4873.12 1.76241 0.881207 0.472731i \(-0.156732\pi\)
0.881207 + 0.472731i \(0.156732\pi\)
\(198\) 0 0
\(199\) 741.113 1283.65i 0.264001 0.457262i −0.703301 0.710892i \(-0.748291\pi\)
0.967301 + 0.253630i \(0.0816246\pi\)
\(200\) −4719.90 + 8175.11i −1.66874 + 2.89034i
\(201\) 0 0
\(202\) −857.236 −0.298589
\(203\) 3706.56 2157.51i 1.28152 0.745949i
\(204\) 0 0
\(205\) 11.0522 + 19.1429i 0.00376545 + 0.00652195i
\(206\) −380.482 + 659.015i −0.128687 + 0.222892i
\(207\) 0 0
\(208\) −3876.28 6713.91i −1.29217 2.23810i
\(209\) −601.153 −0.198960
\(210\) 0 0
\(211\) −4359.21 −1.42228 −0.711138 0.703053i \(-0.751820\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(212\) −3715.68 6435.75i −1.20375 2.08495i
\(213\) 0 0
\(214\) 1134.62 1965.22i 0.362435 0.627755i
\(215\) 39.0666 + 67.6653i 0.0123922 + 0.0214639i
\(216\) 0 0
\(217\) −18.4711 5217.90i −0.00577835 1.63232i
\(218\) 4610.18 1.43230
\(219\) 0 0
\(220\) −61.7832 + 107.012i −0.0189338 + 0.0327942i
\(221\) −1881.35 + 3258.59i −0.572639 + 0.991841i
\(222\) 0 0
\(223\) −3312.73 −0.994784 −0.497392 0.867526i \(-0.665709\pi\)
−0.497392 + 0.867526i \(0.665709\pi\)
\(224\) 45.5829 + 12876.7i 0.0135966 + 3.84089i
\(225\) 0 0
\(226\) 3665.43 + 6348.71i 1.07885 + 1.86863i
\(227\) −399.161 + 691.366i −0.116710 + 0.202148i −0.918462 0.395509i \(-0.870568\pi\)
0.801752 + 0.597657i \(0.203902\pi\)
\(228\) 0 0
\(229\) 177.457 + 307.365i 0.0512083 + 0.0886954i 0.890493 0.454996i \(-0.150359\pi\)
−0.839285 + 0.543692i \(0.817026\pi\)
\(230\) −101.983 −0.0292372
\(231\) 0 0
\(232\) 17493.4 4.95043
\(233\) −2236.95 3874.52i −0.628960 1.08939i −0.987761 0.155977i \(-0.950148\pi\)
0.358801 0.933414i \(-0.383186\pi\)
\(234\) 0 0
\(235\) −27.1988 + 47.1097i −0.00755002 + 0.0130770i
\(236\) −7606.14 13174.2i −2.09795 3.63376i
\(237\) 0 0
\(238\) 10096.2 5876.79i 2.74974 1.60057i
\(239\) 1494.65 0.404523 0.202262 0.979332i \(-0.435171\pi\)
0.202262 + 0.979332i \(0.435171\pi\)
\(240\) 0 0
\(241\) 78.4424 135.866i 0.0209665 0.0363150i −0.855352 0.518048i \(-0.826659\pi\)
0.876318 + 0.481733i \(0.159992\pi\)
\(242\) −1428.57 + 2474.35i −0.379470 + 0.657261i
\(243\) 0 0
\(244\) −8077.55 −2.11931
\(245\) 68.3020 0.483578i 0.0178108 0.000126101i
\(246\) 0 0
\(247\) −344.543 596.765i −0.0887559 0.153730i
\(248\) 10641.7 18432.0i 2.72480 4.71949i
\(249\) 0 0
\(250\) 135.933 + 235.443i 0.0343887 + 0.0595630i
\(251\) −3498.68 −0.879819 −0.439909 0.898042i \(-0.644989\pi\)
−0.439909 + 0.898042i \(0.644989\pi\)
\(252\) 0 0
\(253\) 2665.13 0.662275
\(254\) 2672.86 + 4629.53i 0.660276 + 1.14363i
\(255\) 0 0
\(256\) −5482.93 + 9496.72i −1.33861 + 2.31853i
\(257\) 2369.55 + 4104.18i 0.575130 + 0.996155i 0.996027 + 0.0890463i \(0.0283819\pi\)
−0.420897 + 0.907108i \(0.638285\pi\)
\(258\) 0 0
\(259\) −2355.37 1348.78i −0.565080 0.323587i
\(260\) −141.641 −0.0337854
\(261\) 0 0
\(262\) −6479.88 + 11223.5i −1.52797 + 2.64652i
\(263\) −1682.22 + 2913.69i −0.394411 + 0.683141i −0.993026 0.117897i \(-0.962385\pi\)
0.598614 + 0.801037i \(0.295718\pi\)
\(264\) 0 0
\(265\) −67.7865 −0.0157136
\(266\) 7.57332 + 2139.38i 0.00174568 + 0.493135i
\(267\) 0 0
\(268\) −951.139 1647.42i −0.216791 0.375494i
\(269\) −2603.64 + 4509.63i −0.590136 + 1.02215i 0.404078 + 0.914725i \(0.367592\pi\)
−0.994214 + 0.107421i \(0.965741\pi\)
\(270\) 0 0
\(271\) 1156.00 + 2002.25i 0.259122 + 0.448813i 0.966007 0.258516i \(-0.0832334\pi\)
−0.706885 + 0.707329i \(0.749900\pi\)
\(272\) 27480.1 6.12583
\(273\) 0 0
\(274\) 8753.46 1.92999
\(275\) −1775.90 3075.94i −0.389420 0.674495i
\(276\) 0 0
\(277\) −1303.36 + 2257.49i −0.282713 + 0.489673i −0.972052 0.234766i \(-0.924568\pi\)
0.689339 + 0.724439i \(0.257901\pi\)
\(278\) 5739.74 + 9941.52i 1.23830 + 2.14479i
\(279\) 0 0
\(280\) 241.770 + 138.447i 0.0516019 + 0.0295493i
\(281\) 5271.62 1.11914 0.559570 0.828783i \(-0.310966\pi\)
0.559570 + 0.828783i \(0.310966\pi\)
\(282\) 0 0
\(283\) −2904.11 + 5030.06i −0.610004 + 1.05656i 0.381235 + 0.924478i \(0.375499\pi\)
−0.991239 + 0.132080i \(0.957834\pi\)
\(284\) −964.686 + 1670.88i −0.201562 + 0.349115i
\(285\) 0 0
\(286\) 5057.93 1.04574
\(287\) −1776.70 + 1034.18i −0.365419 + 0.212703i
\(288\) 0 0
\(289\) −4212.23 7295.79i −0.857364 1.48500i
\(290\) 125.933 218.122i 0.0255001 0.0441674i
\(291\) 0 0
\(292\) 8765.58 + 15182.4i 1.75674 + 3.04275i
\(293\) 1979.70 0.394729 0.197364 0.980330i \(-0.436762\pi\)
0.197364 + 0.980330i \(0.436762\pi\)
\(294\) 0 0
\(295\) −138.761 −0.0273864
\(296\) −5535.52 9587.81i −1.08698 1.88270i
\(297\) 0 0
\(298\) −1432.08 + 2480.43i −0.278383 + 0.482174i
\(299\) 1527.48 + 2645.68i 0.295441 + 0.511718i
\(300\) 0 0
\(301\) −6280.18 + 3655.57i −1.20260 + 0.700011i
\(302\) 4739.00 0.902977
\(303\) 0 0
\(304\) −2516.29 + 4358.35i −0.474735 + 0.822264i
\(305\) −36.8404 + 63.8094i −0.00691631 + 0.0119794i
\(306\) 0 0
\(307\) 924.005 0.171778 0.0858888 0.996305i \(-0.472627\pi\)
0.0858888 + 0.996305i \(0.472627\pi\)
\(308\) −9972.69 5710.76i −1.84496 1.05650i
\(309\) 0 0
\(310\) −153.217 265.379i −0.0280714 0.0486210i
\(311\) −5054.30 + 8754.31i −0.921554 + 1.59618i −0.124542 + 0.992214i \(0.539746\pi\)
−0.797012 + 0.603964i \(0.793587\pi\)
\(312\) 0 0
\(313\) −3415.26 5915.40i −0.616747 1.06824i −0.990075 0.140538i \(-0.955117\pi\)
0.373328 0.927699i \(-0.378217\pi\)
\(314\) 32.3337 0.00581114
\(315\) 0 0
\(316\) 7959.96 1.41703
\(317\) −3811.81 6602.25i −0.675371 1.16978i −0.976360 0.216149i \(-0.930650\pi\)
0.300989 0.953627i \(-0.402683\pi\)
\(318\) 0 0
\(319\) −3291.01 + 5700.20i −0.577621 + 1.00047i
\(320\) 188.571 + 326.614i 0.0329419 + 0.0570571i
\(321\) 0 0
\(322\) −33.5753 9484.68i −0.00581081 1.64149i
\(323\) 2442.56 0.420768
\(324\) 0 0
\(325\) 2035.66 3525.87i 0.347440 0.601784i
\(326\) −2274.72 + 3939.94i −0.386458 + 0.669364i
\(327\) 0 0
\(328\) −8385.30 −1.41159
\(329\) −4390.27 2514.05i −0.735695 0.421288i
\(330\) 0 0
\(331\) −1241.60 2150.52i −0.206177 0.357110i 0.744330 0.667812i \(-0.232769\pi\)
−0.950507 + 0.310702i \(0.899436\pi\)
\(332\) 10060.7 17425.6i 1.66311 2.88059i
\(333\) 0 0
\(334\) 1547.86 + 2680.98i 0.253579 + 0.439211i
\(335\) −17.3520 −0.00282997
\(336\) 0 0
\(337\) 7895.47 1.27624 0.638121 0.769936i \(-0.279712\pi\)
0.638121 + 0.769936i \(0.279712\pi\)
\(338\) −3100.89 5370.89i −0.499012 0.864314i
\(339\) 0 0
\(340\) 251.034 434.803i 0.0400418 0.0693544i
\(341\) 4004.02 + 6935.17i 0.635865 + 1.10135i
\(342\) 0 0
\(343\) 67.4606 + 6352.09i 0.0106196 + 0.999944i
\(344\) −29639.9 −4.64557
\(345\) 0 0
\(346\) 11267.0 19515.1i 1.75063 3.03219i
\(347\) 444.712 770.263i 0.0687994 0.119164i −0.829574 0.558397i \(-0.811417\pi\)
0.898373 + 0.439233i \(0.144750\pi\)
\(348\) 0 0
\(349\) 6962.20 1.06785 0.533923 0.845533i \(-0.320717\pi\)
0.533923 + 0.845533i \(0.320717\pi\)
\(350\) −10924.3 + 6358.81i −1.66837 + 0.971122i
\(351\) 0 0
\(352\) −9881.09 17114.6i −1.49620 2.59150i
\(353\) −5780.30 + 10011.8i −0.871542 + 1.50956i −0.0111411 + 0.999938i \(0.503546\pi\)
−0.860401 + 0.509617i \(0.829787\pi\)
\(354\) 0 0
\(355\) 8.79955 + 15.2413i 0.00131558 + 0.00227865i
\(356\) 4615.00 0.687064
\(357\) 0 0
\(358\) 5066.60 0.747984
\(359\) 4228.51 + 7323.99i 0.621649 + 1.07673i 0.989179 + 0.146716i \(0.0468705\pi\)
−0.367529 + 0.930012i \(0.619796\pi\)
\(360\) 0 0
\(361\) 3205.84 5552.68i 0.467392 0.809546i
\(362\) 3308.95 + 5731.26i 0.480426 + 0.832123i
\(363\) 0 0
\(364\) −46.6316 13172.9i −0.00671473 1.89684i
\(365\) 159.914 0.0229322
\(366\) 0 0
\(367\) −3456.46 + 5986.77i −0.491623 + 0.851517i −0.999953 0.00964558i \(-0.996930\pi\)
0.508330 + 0.861162i \(0.330263\pi\)
\(368\) 11155.7 19322.2i 1.58024 2.73706i
\(369\) 0 0
\(370\) −159.398 −0.0223965
\(371\) −22.3170 6304.31i −0.00312302 0.882220i
\(372\) 0 0
\(373\) −211.956 367.118i −0.0294226 0.0509615i 0.850939 0.525264i \(-0.176034\pi\)
−0.880362 + 0.474303i \(0.842700\pi\)
\(374\) −8964.30 + 15526.6i −1.23939 + 2.14669i
\(375\) 0 0
\(376\) −10317.9 17871.1i −1.41517 2.45115i
\(377\) −7544.79 −1.03071
\(378\) 0 0
\(379\) −9714.33 −1.31660 −0.658300 0.752756i \(-0.728724\pi\)
−0.658300 + 0.752756i \(0.728724\pi\)
\(380\) 45.9732 + 79.6280i 0.00620626 + 0.0107496i
\(381\) 0 0
\(382\) 4990.68 8644.12i 0.668444 1.15778i
\(383\) −1107.08 1917.51i −0.147699 0.255823i 0.782677 0.622428i \(-0.213854\pi\)
−0.930377 + 0.366605i \(0.880520\pi\)
\(384\) 0 0
\(385\) −90.5966 + 52.7344i −0.0119928 + 0.00698077i
\(386\) 4490.84 0.592171
\(387\) 0 0
\(388\) −9231.47 + 15989.4i −1.20788 + 2.09211i
\(389\) −3832.73 + 6638.48i −0.499556 + 0.865256i −1.00000 0.000513038i \(-0.999837\pi\)
0.500444 + 0.865769i \(0.333170\pi\)
\(390\) 0 0
\(391\) −10828.8 −1.40060
\(392\) −12796.3 + 22530.8i −1.64876 + 2.90300i
\(393\) 0 0
\(394\) 13308.0 + 23050.1i 1.70164 + 2.94732i
\(395\) 36.3041 62.8805i 0.00462444 0.00800977i
\(396\) 0 0
\(397\) −2489.10 4311.24i −0.314671 0.545026i 0.664697 0.747113i \(-0.268561\pi\)
−0.979367 + 0.202088i \(0.935227\pi\)
\(398\) 8095.60 1.01959
\(399\) 0 0
\(400\) −29734.0 −3.71675
\(401\) −2385.10 4131.12i −0.297023 0.514460i 0.678430 0.734665i \(-0.262661\pi\)
−0.975454 + 0.220205i \(0.929327\pi\)
\(402\) 0 0
\(403\) −4589.70 + 7949.60i −0.567319 + 0.982625i
\(404\) −1713.21 2967.37i −0.210979 0.365426i
\(405\) 0 0
\(406\) 20327.3 + 11640.2i 2.48480 + 1.42290i
\(407\) 4165.56 0.507319
\(408\) 0 0
\(409\) 298.629 517.240i 0.0361033 0.0625327i −0.847409 0.530940i \(-0.821839\pi\)
0.883512 + 0.468408i \(0.155172\pi\)
\(410\) −60.3646 + 104.554i −0.00727120 + 0.0125941i
\(411\) 0 0
\(412\) −3041.62 −0.363714
\(413\) −45.6836 12905.1i −0.00544296 1.53758i
\(414\) 0 0
\(415\) −91.7703 158.951i −0.0108550 0.0188014i
\(416\) 11326.4 19617.9i 1.33491 2.31214i
\(417\) 0 0
\(418\) −1641.68 2843.48i −0.192099 0.332725i
\(419\) −9571.90 −1.11603 −0.558016 0.829830i \(-0.688437\pi\)
−0.558016 + 0.829830i \(0.688437\pi\)
\(420\) 0 0
\(421\) −5954.33 −0.689303 −0.344651 0.938731i \(-0.612003\pi\)
−0.344651 + 0.938731i \(0.612003\pi\)
\(422\) −11904.5 20619.2i −1.37323 2.37850i
\(423\) 0 0
\(424\) 12857.4 22269.7i 1.47267 2.55074i
\(425\) 7215.70 + 12498.0i 0.823560 + 1.42645i
\(426\) 0 0
\(427\) −5946.56 3405.24i −0.673944 0.385927i
\(428\) 9070.29 1.02437
\(429\) 0 0
\(430\) −213.373 + 369.573i −0.0239297 + 0.0414475i
\(431\) −1271.72 + 2202.69i −0.142127 + 0.246171i −0.928297 0.371839i \(-0.878727\pi\)
0.786170 + 0.618010i \(0.212061\pi\)
\(432\) 0 0
\(433\) 9781.07 1.08556 0.542781 0.839874i \(-0.317371\pi\)
0.542781 + 0.839874i \(0.317371\pi\)
\(434\) 24630.5 14336.9i 2.72419 1.58570i
\(435\) 0 0
\(436\) 9213.59 + 15958.4i 1.01204 + 1.75291i
\(437\) 991.570 1717.45i 0.108543 0.188002i
\(438\) 0 0
\(439\) 8410.13 + 14566.8i 0.914336 + 1.58368i 0.807871 + 0.589360i \(0.200620\pi\)
0.106465 + 0.994316i \(0.466047\pi\)
\(440\) −427.579 −0.0463273
\(441\) 0 0
\(442\) −20551.1 −2.21157
\(443\) 1863.37 + 3227.46i 0.199846 + 0.346143i 0.948478 0.316842i \(-0.102623\pi\)
−0.748633 + 0.662985i \(0.769289\pi\)
\(444\) 0 0
\(445\) 21.0483 36.4567i 0.00224221 0.00388362i
\(446\) −9046.71 15669.4i −0.960480 1.66360i
\(447\) 0 0
\(448\) −30313.8 + 17645.1i −3.19686 + 1.86083i
\(449\) 9287.05 0.976131 0.488065 0.872807i \(-0.337703\pi\)
0.488065 + 0.872807i \(0.337703\pi\)
\(450\) 0 0
\(451\) 1577.51 2732.33i 0.164705 0.285278i
\(452\) −14650.9 + 25376.2i −1.52461 + 2.64070i
\(453\) 0 0
\(454\) −4360.26 −0.450742
\(455\) −104.274 59.7113i −0.0107438 0.00615233i
\(456\) 0 0
\(457\) −6009.70 10409.1i −0.615147 1.06547i −0.990359 0.138526i \(-0.955764\pi\)
0.375212 0.926939i \(-0.377570\pi\)
\(458\) −969.233 + 1678.76i −0.0988849 + 0.171274i
\(459\) 0 0
\(460\) −203.816 353.020i −0.0206587 0.0357819i
\(461\) 9571.71 0.967026 0.483513 0.875337i \(-0.339361\pi\)
0.483513 + 0.875337i \(0.339361\pi\)
\(462\) 0 0
\(463\) 2265.15 0.227366 0.113683 0.993517i \(-0.463735\pi\)
0.113683 + 0.993517i \(0.463735\pi\)
\(464\) 27550.9 + 47719.5i 2.75650 + 4.77441i
\(465\) 0 0
\(466\) 12217.8 21161.8i 1.21454 2.10365i
\(467\) −2660.47 4608.07i −0.263623 0.456609i 0.703579 0.710617i \(-0.251584\pi\)
−0.967202 + 0.254009i \(0.918251\pi\)
\(468\) 0 0
\(469\) −5.71269 1613.77i −0.000562447 0.158885i
\(470\) −297.108 −0.0291587
\(471\) 0 0
\(472\) 26319.6 45586.9i 2.56665 4.44557i
\(473\) 5576.10 9658.10i 0.542050 0.938858i
\(474\) 0 0
\(475\) −2642.91 −0.255294
\(476\) 40520.4 + 23203.6i 3.90178 + 2.23432i
\(477\) 0 0
\(478\) 4081.74 + 7069.78i 0.390574 + 0.676494i
\(479\) 1883.49 3262.30i 0.179663 0.311186i −0.762102 0.647457i \(-0.775832\pi\)
0.941765 + 0.336271i \(0.109166\pi\)
\(480\) 0 0
\(481\) 2387.43 + 4135.15i 0.226315 + 0.391989i
\(482\) 856.871 0.0809739
\(483\) 0 0
\(484\) −11420.1 −1.07251
\(485\) 84.2065 + 145.850i 0.00788375 + 0.0136551i
\(486\) 0 0
\(487\) −4428.96 + 7671.18i −0.412105 + 0.713787i −0.995120 0.0986744i \(-0.968540\pi\)
0.583014 + 0.812462i \(0.301873\pi\)
\(488\) −13975.4 24206.2i −1.29639 2.24541i
\(489\) 0 0
\(490\) 188.813 + 321.751i 0.0174075 + 0.0296637i
\(491\) 17311.1 1.59112 0.795560 0.605874i \(-0.207177\pi\)
0.795560 + 0.605874i \(0.207177\pi\)
\(492\) 0 0
\(493\) 13371.8 23160.7i 1.22157 2.11583i
\(494\) 1881.82 3259.40i 0.171391 0.296857i
\(495\) 0 0
\(496\) 67039.8 6.06891
\(497\) −1414.58 + 823.397i −0.127671 + 0.0743147i
\(498\) 0 0
\(499\) 3515.22 + 6088.55i 0.315357 + 0.546214i 0.979513 0.201380i \(-0.0645425\pi\)
−0.664157 + 0.747594i \(0.731209\pi\)
\(500\) −543.334 + 941.081i −0.0485972 + 0.0841729i
\(501\) 0 0
\(502\) −9554.51 16548.9i −0.849479 1.47134i
\(503\) −1519.74 −0.134716 −0.0673578 0.997729i \(-0.521457\pi\)
−0.0673578 + 0.997729i \(0.521457\pi\)
\(504\) 0 0
\(505\) −31.2547 −0.00275409
\(506\) 7278.19 + 12606.2i 0.639437 + 1.10754i
\(507\) 0 0
\(508\) −10683.6 + 18504.5i −0.933086 + 1.61615i
\(509\) −9727.68 16848.8i −0.847096 1.46721i −0.883788 0.467887i \(-0.845015\pi\)
0.0366920 0.999327i \(-0.488318\pi\)
\(510\) 0 0
\(511\) 52.6474 + 14872.3i 0.00455770 + 1.28750i
\(512\) −21639.1 −1.86782
\(513\) 0 0
\(514\) −12942.0 + 22416.1i −1.11059 + 1.92361i
\(515\) −13.8723 + 24.0276i −0.00118697 + 0.00205589i
\(516\) 0 0
\(517\) 7764.35 0.660495
\(518\) −52.4776 14824.4i −0.00445122 1.25742i
\(519\) 0 0
\(520\) −245.061 424.458i −0.0206666 0.0357956i
\(521\) 5111.98 8854.21i 0.429866 0.744549i −0.566995 0.823721i \(-0.691894\pi\)
0.996861 + 0.0791720i \(0.0252276\pi\)
\(522\) 0 0
\(523\) −8303.48 14382.1i −0.694237 1.20245i −0.970437 0.241354i \(-0.922409\pi\)
0.276200 0.961100i \(-0.410925\pi\)
\(524\) −51801.0 −4.31858
\(525\) 0 0
\(526\) −18375.9 −1.52324
\(527\) −16268.9 28178.5i −1.34475 2.32918i
\(528\) 0 0
\(529\) 1687.50 2922.84i 0.138695 0.240227i
\(530\) −185.118 320.633i −0.0151717 0.0262781i
\(531\) 0 0
\(532\) −7390.46 + 4301.84i −0.602288 + 0.350580i
\(533\) 3616.52 0.293900
\(534\) 0 0
\(535\) 41.3681 71.6517i 0.00334299 0.00579023i
\(536\) 3291.24 5700.59i 0.265224 0.459381i
\(537\) 0 0
\(538\) −28441.0 −2.27914
\(539\) −4934.26 8408.34i −0.394311 0.671935i
\(540\) 0 0
\(541\) −3291.27 5700.65i −0.261558 0.453032i 0.705098 0.709110i \(-0.250903\pi\)
−0.966656 + 0.256078i \(0.917570\pi\)
\(542\) −6313.83 + 10935.9i −0.500373 + 0.866672i
\(543\) 0 0
\(544\) 40148.2 + 69538.7i 3.16423 + 5.48060i
\(545\) 168.087 0.0132111
\(546\) 0 0
\(547\) 3407.73 0.266369 0.133185 0.991091i \(-0.457480\pi\)
0.133185 + 0.991091i \(0.457480\pi\)
\(548\) 17494.1 + 30300.6i 1.36370 + 2.36200i
\(549\) 0 0
\(550\) 9699.56 16800.1i 0.751983 1.30247i
\(551\) 2448.86 + 4241.55i 0.189337 + 0.327942i
\(552\) 0 0
\(553\) 5859.99 + 3355.66i 0.450619 + 0.258042i
\(554\) −14237.4 −1.09185
\(555\) 0 0
\(556\) −22942.1 + 39736.9i −1.74993 + 3.03097i
\(557\) −4740.05 + 8210.02i −0.360579 + 0.624541i −0.988056 0.154094i \(-0.950754\pi\)
0.627477 + 0.778635i \(0.284088\pi\)
\(558\) 0 0
\(559\) 12783.5 0.967233
\(560\) 3.10652 + 877.558i 0.000234418 + 0.0662207i
\(561\) 0 0
\(562\) 14396.2 + 24935.0i 1.08055 + 1.87156i
\(563\) −10932.2 + 18935.2i −0.818363 + 1.41745i 0.0885250 + 0.996074i \(0.471785\pi\)
−0.906888 + 0.421372i \(0.861549\pi\)
\(564\) 0 0
\(565\) 133.641 + 231.473i 0.00995101 + 0.0172357i
\(566\) −31723.2 −2.35588
\(567\) 0 0
\(568\) −6676.23 −0.493184
\(569\) −571.695 990.204i −0.0421207 0.0729552i 0.844196 0.536034i \(-0.180078\pi\)
−0.886317 + 0.463079i \(0.846745\pi\)
\(570\) 0 0
\(571\) −5235.55 + 9068.24i −0.383715 + 0.664613i −0.991590 0.129419i \(-0.958689\pi\)
0.607875 + 0.794032i \(0.292022\pi\)
\(572\) 10108.4 + 17508.3i 0.738907 + 1.27982i
\(573\) 0 0
\(574\) −9743.70 5579.63i −0.708526 0.405730i
\(575\) 11717.0 0.849795
\(576\) 0 0
\(577\) −2379.80 + 4121.94i −0.171703 + 0.297398i −0.939015 0.343876i \(-0.888260\pi\)
0.767313 + 0.641273i \(0.221594\pi\)
\(578\) 23006.3 39848.0i 1.65560 2.86758i
\(579\) 0 0
\(580\) 1006.72 0.0720721
\(581\) 14752.6 8587.19i 1.05343 0.613179i
\(582\) 0 0
\(583\) 4837.70 + 8379.14i 0.343665 + 0.595246i
\(584\) −30331.7 + 52536.0i −2.14920 + 3.72252i
\(585\) 0 0
\(586\) 5406.36 + 9364.08i 0.381117 + 0.660114i
\(587\) 6307.45 0.443503 0.221751 0.975103i \(-0.428823\pi\)
0.221751 + 0.975103i \(0.428823\pi\)
\(588\) 0 0
\(589\) 5958.83 0.416858
\(590\) −378.942 656.348i −0.0264421 0.0457990i
\(591\) 0 0
\(592\) 17436.1 30200.2i 1.21051 2.09666i
\(593\) 8865.93 + 15356.2i 0.613963 + 1.06342i 0.990565 + 0.137041i \(0.0437591\pi\)
−0.376602 + 0.926375i \(0.622908\pi\)
\(594\) 0 0
\(595\) 368.106 214.267i 0.0253628 0.0147632i
\(596\) −11448.2 −0.786808
\(597\) 0 0
\(598\) −8342.79 + 14450.1i −0.570505 + 0.988144i
\(599\) 9555.03 16549.8i 0.651766 1.12889i −0.330928 0.943656i \(-0.607362\pi\)
0.982694 0.185236i \(-0.0593050\pi\)
\(600\) 0 0
\(601\) −13118.3 −0.890357 −0.445179 0.895442i \(-0.646860\pi\)
−0.445179 + 0.895442i \(0.646860\pi\)
\(602\) −34441.5 19722.6i −2.33178 1.33527i
\(603\) 0 0
\(604\) 9471.04 + 16404.3i 0.638032 + 1.10510i
\(605\) −52.0854 + 90.2145i −0.00350012 + 0.00606238i
\(606\) 0 0
\(607\) −8736.71 15132.4i −0.584204 1.01187i −0.994974 0.100133i \(-0.968073\pi\)
0.410770 0.911739i \(-0.365260\pi\)
\(608\) −14705.1 −0.980876
\(609\) 0 0
\(610\) −402.429 −0.0267112
\(611\) 4450.03 + 7707.68i 0.294647 + 0.510343i
\(612\) 0 0
\(613\) −1547.70 + 2680.69i −0.101975 + 0.176626i −0.912498 0.409080i \(-0.865850\pi\)
0.810523 + 0.585707i \(0.199183\pi\)
\(614\) 2523.36 + 4370.58i 0.165854 + 0.287268i
\(615\) 0 0
\(616\) −140.769 39765.9i −0.00920740 2.60099i
\(617\) −26334.8 −1.71831 −0.859157 0.511712i \(-0.829011\pi\)
−0.859157 + 0.511712i \(0.829011\pi\)
\(618\) 0 0
\(619\) 1343.02 2326.18i 0.0872061 0.151045i −0.819123 0.573618i \(-0.805539\pi\)
0.906329 + 0.422572i \(0.138873\pi\)
\(620\) 612.416 1060.74i 0.0396697 0.0687100i
\(621\) 0 0
\(622\) −55211.0 −3.55910
\(623\) 3397.49 + 1945.54i 0.218487 + 0.125115i
\(624\) 0 0
\(625\) −7805.07 13518.8i −0.499524 0.865201i
\(626\) 18653.4 32308.7i 1.19096 2.06280i
\(627\) 0 0
\(628\) 64.6200 + 111.925i 0.00410608 + 0.00711194i
\(629\) −16925.2 −1.07290
\(630\) 0 0
\(631\) 22414.2 1.41409 0.707047 0.707167i \(-0.250027\pi\)
0.707047 + 0.707167i \(0.250027\pi\)
\(632\) 13772.0 + 23853.8i 0.866803 + 1.50135i
\(633\) 0 0
\(634\) 20819.3 36060.1i 1.30416 2.25888i
\(635\) 97.4522 + 168.792i 0.00609019 + 0.0105485i
\(636\) 0 0
\(637\) 5518.97 9717.37i 0.343280 0.604421i
\(638\) −35949.6 −2.23081
\(639\) 0 0
\(640\) −476.111 + 824.648i −0.0294062 + 0.0509329i
\(641\) 11069.5 19173.0i 0.682092 1.18142i −0.292249 0.956342i \(-0.594404\pi\)
0.974341 0.225076i \(-0.0722630\pi\)
\(642\) 0 0
\(643\) 22523.7 1.38141 0.690707 0.723134i \(-0.257299\pi\)
0.690707 + 0.723134i \(0.257299\pi\)
\(644\) 32764.6 19071.6i 2.00483 1.16697i
\(645\) 0 0
\(646\) 6670.38 + 11553.4i 0.406258 + 0.703659i
\(647\) 5761.75 9979.64i 0.350105 0.606399i −0.636163 0.771555i \(-0.719479\pi\)
0.986267 + 0.165156i \(0.0528127\pi\)
\(648\) 0 0
\(649\) 9902.93 + 17152.4i 0.598959 + 1.03743i
\(650\) 22236.7 1.34184
\(651\) 0 0
\(652\) −18184.4 −1.09226
\(653\) 230.968 + 400.049i 0.0138415 + 0.0239742i 0.872863 0.487965i \(-0.162261\pi\)
−0.859022 + 0.511939i \(0.828927\pi\)
\(654\) 0 0
\(655\) −236.256 + 409.207i −0.0140936 + 0.0244107i
\(656\) −13206.2 22873.9i −0.786001 1.36139i
\(657\) 0 0
\(658\) −97.8152 27631.8i −0.00579519 1.63708i
\(659\) 14373.3 0.849627 0.424813 0.905281i \(-0.360340\pi\)
0.424813 + 0.905281i \(0.360340\pi\)
\(660\) 0 0
\(661\) −33.9245 + 58.7589i −0.00199623 + 0.00345758i −0.867022 0.498270i \(-0.833969\pi\)
0.865026 + 0.501728i \(0.167302\pi\)
\(662\) 6781.38 11745.7i 0.398135 0.689591i
\(663\) 0 0
\(664\) 69626.3 4.06931
\(665\) 0.276122 + 78.0017i 1.61016e−5 + 0.00454853i
\(666\) 0 0
\(667\) −10856.7 18804.3i −0.630244 1.09162i
\(668\) −6186.91 + 10716.0i −0.358351 + 0.620683i
\(669\) 0 0
\(670\) −47.3863 82.0755i −0.00273238 0.00473262i
\(671\) 10516.7 0.605056
\(672\) 0 0
\(673\) 21970.2 1.25838 0.629190 0.777252i \(-0.283387\pi\)
0.629190 + 0.777252i \(0.283387\pi\)
\(674\) 21561.7 + 37345.9i 1.23223 + 2.13429i
\(675\) 0 0
\(676\) 12394.4 21467.8i 0.705191 1.22143i
\(677\) −1496.65 2592.27i −0.0849642 0.147162i 0.820412 0.571773i \(-0.193744\pi\)
−0.905376 + 0.424611i \(0.860411\pi\)
\(678\) 0 0
\(679\) −13536.7 + 7879.43i −0.765081 + 0.445338i
\(680\) 1737.31 0.0979747
\(681\) 0 0
\(682\) −21869.1 + 37878.4i −1.22788 + 2.12674i
\(683\) −2730.95 + 4730.14i −0.152997 + 0.264998i −0.932328 0.361614i \(-0.882226\pi\)
0.779331 + 0.626612i \(0.215559\pi\)
\(684\) 0 0
\(685\) 319.150 0.0178016
\(686\) −29861.4 + 17666.0i −1.66198 + 0.983221i
\(687\) 0 0
\(688\) −46680.7 80853.3i −2.58675 4.48038i
\(689\) −5545.32 + 9604.77i −0.306618 + 0.531078i
\(690\) 0 0
\(691\) 7889.49 + 13665.0i 0.434342 + 0.752303i 0.997242 0.0742225i \(-0.0236475\pi\)
−0.562899 + 0.826525i \(0.690314\pi\)
\(692\) 90070.0 4.94790
\(693\) 0 0
\(694\) 4857.84 0.265708
\(695\) 209.270 + 362.467i 0.0114217 + 0.0197829i
\(696\) 0 0
\(697\) −6409.64 + 11101.8i −0.348325 + 0.603317i
\(698\) 19013.0 + 32931.5i 1.03102 + 1.78578i
\(699\) 0 0
\(700\) −43843.9 25106.8i −2.36735 1.35564i
\(701\) 8058.91 0.434209 0.217105 0.976148i \(-0.430339\pi\)
0.217105 + 0.976148i \(0.430339\pi\)
\(702\) 0 0
\(703\) 1549.81 2684.34i 0.0831466 0.144014i
\(704\) 26915.3 46618.7i 1.44092 2.49575i
\(705\) 0 0
\(706\) −63141.5 −3.36595
\(707\) −10.2898 2906.77i −0.000547367 0.154626i
\(708\) 0 0
\(709\) −13009.5 22533.1i −0.689113 1.19358i −0.972125 0.234462i \(-0.924667\pi\)
0.283013 0.959116i \(-0.408666\pi\)
\(710\) −48.0612 + 83.2445i −0.00254043 + 0.00440016i
\(711\) 0 0
\(712\) 7984.68 + 13829.9i 0.420279 + 0.727944i
\(713\) −26417.7 −1.38759
\(714\) 0 0
\(715\) 184.412 0.00964560
\(716\) 10125.8 + 17538.3i 0.528516 + 0.915416i
\(717\) 0 0
\(718\) −23095.2 + 40002.1i −1.20043 + 2.07920i
\(719\) −2331.73 4038.68i −0.120944 0.209482i 0.799196 0.601070i \(-0.205259\pi\)
−0.920140 + 0.391589i \(0.871926\pi\)
\(720\) 0 0
\(721\) −2239.19 1282.25i −0.115661 0.0662324i
\(722\) 35019.2 1.80510
\(723\) 0 0
\(724\) −13226.1 + 22908.2i −0.678926 + 1.17593i
\(725\) −14468.6 + 25060.3i −0.741172 + 1.28375i
\(726\) 0 0
\(727\) 35484.5 1.81024 0.905121 0.425154i \(-0.139780\pi\)
0.905121 + 0.425154i \(0.139780\pi\)
\(728\) 39395.0 22931.0i 2.00560 1.16742i
\(729\) 0 0
\(730\) 436.707 + 756.398i 0.0221414 + 0.0383501i
\(731\) −22656.5 + 39242.1i −1.14635 + 1.98553i
\(732\) 0 0
\(733\) 7628.55 + 13213.0i 0.384402 + 0.665804i 0.991686 0.128681i \(-0.0410742\pi\)
−0.607284 + 0.794485i \(0.707741\pi\)
\(734\) −37756.9 −1.89868
\(735\) 0 0
\(736\) 65193.4 3.26503
\(737\) 1238.35 + 2144.89i 0.0618932 + 0.107202i
\(738\) 0 0
\(739\) −12876.9 + 22303.4i −0.640978 + 1.11021i 0.344236 + 0.938883i \(0.388138\pi\)
−0.985215 + 0.171324i \(0.945195\pi\)
\(740\) −318.561 551.764i −0.0158251 0.0274098i
\(741\) 0 0
\(742\) 29758.7 17322.0i 1.47234 0.857020i
\(743\) −5703.55 −0.281619 −0.140809 0.990037i \(-0.544971\pi\)
−0.140809 + 0.990037i \(0.544971\pi\)
\(744\) 0 0
\(745\) −52.2135 + 90.4364i −0.00256772 + 0.00444743i
\(746\) 1157.66 2005.12i 0.0568160 0.0984083i
\(747\) 0 0
\(748\) −71661.7 −3.50296
\(749\) 6677.40 + 3823.75i 0.325750 + 0.186538i
\(750\) 0 0
\(751\) −7725.44 13380.9i −0.375373 0.650166i 0.615010 0.788520i \(-0.289152\pi\)
−0.990383 + 0.138354i \(0.955819\pi\)
\(752\) 32499.9 56291.4i 1.57600 2.72970i
\(753\) 0 0
\(754\) −20604.0 35687.2i −0.995164 1.72368i
\(755\) 172.784 0.00832879
\(756\) 0 0
\(757\) 12434.7 0.597025 0.298513 0.954406i \(-0.403509\pi\)
0.298513 + 0.954406i \(0.403509\pi\)
\(758\) −26528.8 45949.2i −1.27120 2.20178i
\(759\) 0 0
\(760\) −159.082 + 275.538i −0.00759277 + 0.0131511i
\(761\) 1159.31 + 2007.98i 0.0552234 + 0.0956497i 0.892316 0.451412i \(-0.149080\pi\)
−0.837092 + 0.547062i \(0.815746\pi\)
\(762\) 0 0
\(763\) 55.3383 + 15632.5i 0.00262566 + 0.741722i
\(764\) 39896.1 1.88926
\(765\) 0 0
\(766\) 6046.61 10473.0i 0.285212 0.494003i
\(767\) −11351.5 + 19661.3i −0.534391 + 0.925592i
\(768\) 0 0
\(769\) 23104.3 1.08344 0.541718 0.840560i \(-0.317774\pi\)
0.541718 + 0.840560i \(0.317774\pi\)
\(770\) −496.846 284.514i −0.0232533 0.0133158i
\(771\) 0 0
\(772\) 8975.09 + 15545.3i 0.418420 + 0.724725i
\(773\) 6216.80 10767.8i 0.289266 0.501024i −0.684369 0.729136i \(-0.739922\pi\)
0.973635 + 0.228112i \(0.0732554\pi\)
\(774\) 0 0
\(775\) 17603.3 + 30489.8i 0.815908 + 1.41319i
\(776\) −63887.6 −2.95545
\(777\) 0 0
\(778\) −41867.1 −1.92932
\(779\) −1173.84 2033.14i −0.0539885 0.0935108i
\(780\) 0