Properties

Label 189.4.e.h.109.7
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.7
Root \(3.25730 - 5.64181i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.h.163.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74618 + 3.02447i) q^{2} +(-2.09829 + 3.63435i) q^{4} +(-3.93765 - 6.82022i) q^{5} +(18.4135 - 1.98614i) q^{7} +13.2829 q^{8} +O(q^{10})\) \(q+(1.74618 + 3.02447i) q^{2} +(-2.09829 + 3.63435i) q^{4} +(-3.93765 - 6.82022i) q^{5} +(18.4135 - 1.98614i) q^{7} +13.2829 q^{8} +(13.7517 - 23.8187i) q^{10} +(27.0018 - 46.7684i) q^{11} -48.9137 q^{13} +(38.1602 + 52.2228i) q^{14} +(39.9807 + 69.2486i) q^{16} +(48.4888 - 83.9850i) q^{17} +(71.1636 + 123.259i) q^{19} +33.0494 q^{20} +188.600 q^{22} +(51.8936 + 89.8823i) q^{23} +(31.4897 - 54.5418i) q^{25} +(-85.4121 - 147.938i) q^{26} +(-31.4185 + 71.0884i) q^{28} -24.5329 q^{29} +(-93.6897 + 162.275i) q^{31} +(-86.4953 + 149.814i) q^{32} +338.680 q^{34} +(-86.0517 - 117.763i) q^{35} +(-73.2774 - 126.920i) q^{37} +(-248.529 + 430.465i) q^{38} +(-52.3035 - 90.5923i) q^{40} -314.180 q^{41} +173.165 q^{43} +(113.315 + 196.268i) q^{44} +(-181.231 + 313.901i) q^{46} +(-129.617 - 224.504i) q^{47} +(335.110 - 73.1434i) q^{49} +219.947 q^{50} +(102.635 - 177.769i) q^{52} +(310.429 - 537.679i) q^{53} -425.295 q^{55} +(244.584 - 26.3817i) q^{56} +(-42.8389 - 74.1991i) q^{58} +(-221.555 + 383.745i) q^{59} +(-56.6478 - 98.1168i) q^{61} -654.396 q^{62} +35.5454 q^{64} +(192.605 + 333.602i) q^{65} +(-314.488 + 544.708i) q^{67} +(203.487 + 352.450i) q^{68} +(205.909 - 465.897i) q^{70} -41.3042 q^{71} +(-223.555 + 387.209i) q^{73} +(255.911 - 443.251i) q^{74} -597.287 q^{76} +(404.307 - 914.798i) q^{77} +(-217.353 - 376.467i) q^{79} +(314.860 - 545.354i) q^{80} +(-548.615 - 950.229i) q^{82} +329.158 q^{83} -763.728 q^{85} +(302.378 + 523.734i) q^{86} +(358.662 - 621.221i) q^{88} +(-12.4354 - 21.5388i) q^{89} +(-900.670 + 97.1494i) q^{91} -435.551 q^{92} +(452.670 - 784.048i) q^{94} +(560.435 - 970.702i) q^{95} -499.239 q^{97} +(806.384 + 885.811i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74618 + 3.02447i 0.617368 + 1.06931i 0.989964 + 0.141319i \(0.0451343\pi\)
−0.372596 + 0.927994i \(0.621532\pi\)
\(3\) 0 0
\(4\) −2.09829 + 3.63435i −0.262286 + 0.454293i
\(5\) −3.93765 6.82022i −0.352195 0.610019i 0.634439 0.772973i \(-0.281231\pi\)
−0.986634 + 0.162954i \(0.947898\pi\)
\(6\) 0 0
\(7\) 18.4135 1.98614i 0.994233 0.107242i
\(8\) 13.2829 0.587027
\(9\) 0 0
\(10\) 13.7517 23.8187i 0.434867 0.753212i
\(11\) 27.0018 46.7684i 0.740122 1.28193i −0.212318 0.977201i \(-0.568101\pi\)
0.952439 0.304728i \(-0.0985655\pi\)
\(12\) 0 0
\(13\) −48.9137 −1.04355 −0.521777 0.853082i \(-0.674731\pi\)
−0.521777 + 0.853082i \(0.674731\pi\)
\(14\) 38.1602 + 52.2228i 0.728482 + 0.996938i
\(15\) 0 0
\(16\) 39.9807 + 69.2486i 0.624698 + 1.08201i
\(17\) 48.4888 83.9850i 0.691780 1.19820i −0.279475 0.960153i \(-0.590160\pi\)
0.971254 0.238044i \(-0.0765063\pi\)
\(18\) 0 0
\(19\) 71.1636 + 123.259i 0.859266 + 1.48829i 0.872631 + 0.488381i \(0.162412\pi\)
−0.0133650 + 0.999911i \(0.504254\pi\)
\(20\) 33.0494 0.369503
\(21\) 0 0
\(22\) 188.600 1.82771
\(23\) 51.8936 + 89.8823i 0.470459 + 0.814859i 0.999429 0.0337813i \(-0.0107550\pi\)
−0.528970 + 0.848640i \(0.677422\pi\)
\(24\) 0 0
\(25\) 31.4897 54.5418i 0.251918 0.436335i
\(26\) −85.4121 147.938i −0.644257 1.11589i
\(27\) 0 0
\(28\) −31.4185 + 71.0884i −0.212055 + 0.479801i
\(29\) −24.5329 −0.157091 −0.0785456 0.996911i \(-0.525028\pi\)
−0.0785456 + 0.996911i \(0.525028\pi\)
\(30\) 0 0
\(31\) −93.6897 + 162.275i −0.542812 + 0.940177i 0.455930 + 0.890016i \(0.349307\pi\)
−0.998741 + 0.0501613i \(0.984026\pi\)
\(32\) −86.4953 + 149.814i −0.477824 + 0.827615i
\(33\) 0 0
\(34\) 338.680 1.70833
\(35\) −86.0517 117.763i −0.415583 0.568731i
\(36\) 0 0
\(37\) −73.2774 126.920i −0.325587 0.563933i 0.656044 0.754723i \(-0.272229\pi\)
−0.981631 + 0.190789i \(0.938895\pi\)
\(38\) −248.529 + 430.465i −1.06097 + 1.83765i
\(39\) 0 0
\(40\) −52.3035 90.5923i −0.206748 0.358098i
\(41\) −314.180 −1.19675 −0.598374 0.801217i \(-0.704186\pi\)
−0.598374 + 0.801217i \(0.704186\pi\)
\(42\) 0 0
\(43\) 173.165 0.614127 0.307064 0.951689i \(-0.400654\pi\)
0.307064 + 0.951689i \(0.400654\pi\)
\(44\) 113.315 + 196.268i 0.388248 + 0.672465i
\(45\) 0 0
\(46\) −181.231 + 313.901i −0.580893 + 1.00614i
\(47\) −129.617 224.504i −0.402269 0.696749i 0.591731 0.806136i \(-0.298445\pi\)
−0.993999 + 0.109386i \(0.965112\pi\)
\(48\) 0 0
\(49\) 335.110 73.1434i 0.976999 0.213246i
\(50\) 219.947 0.622104
\(51\) 0 0
\(52\) 102.635 177.769i 0.273710 0.474080i
\(53\) 310.429 537.679i 0.804541 1.39351i −0.112059 0.993702i \(-0.535744\pi\)
0.916600 0.399805i \(-0.130922\pi\)
\(54\) 0 0
\(55\) −425.295 −1.04267
\(56\) 244.584 26.3817i 0.583642 0.0629537i
\(57\) 0 0
\(58\) −42.8389 74.1991i −0.0969831 0.167980i
\(59\) −221.555 + 383.745i −0.488882 + 0.846768i −0.999918 0.0127908i \(-0.995928\pi\)
0.511036 + 0.859559i \(0.329262\pi\)
\(60\) 0 0
\(61\) −56.6478 98.1168i −0.118902 0.205944i 0.800431 0.599425i \(-0.204604\pi\)
−0.919333 + 0.393481i \(0.871271\pi\)
\(62\) −654.396 −1.34046
\(63\) 0 0
\(64\) 35.5454 0.0694245
\(65\) 192.605 + 333.602i 0.367534 + 0.636588i
\(66\) 0 0
\(67\) −314.488 + 544.708i −0.573444 + 0.993235i 0.422764 + 0.906240i \(0.361060\pi\)
−0.996209 + 0.0869950i \(0.972274\pi\)
\(68\) 203.487 + 352.450i 0.362889 + 0.628542i
\(69\) 0 0
\(70\) 205.909 465.897i 0.351584 0.795504i
\(71\) −41.3042 −0.0690410 −0.0345205 0.999404i \(-0.510990\pi\)
−0.0345205 + 0.999404i \(0.510990\pi\)
\(72\) 0 0
\(73\) −223.555 + 387.209i −0.358427 + 0.620814i −0.987698 0.156372i \(-0.950020\pi\)
0.629271 + 0.777186i \(0.283353\pi\)
\(74\) 255.911 443.251i 0.402014 0.696309i
\(75\) 0 0
\(76\) −597.287 −0.901494
\(77\) 404.307 914.798i 0.598378 1.35391i
\(78\) 0 0
\(79\) −217.353 376.467i −0.309546 0.536149i 0.668717 0.743517i \(-0.266844\pi\)
−0.978263 + 0.207368i \(0.933510\pi\)
\(80\) 314.860 545.354i 0.440031 0.762155i
\(81\) 0 0
\(82\) −548.615 950.229i −0.738834 1.27970i
\(83\) 329.158 0.435299 0.217649 0.976027i \(-0.430161\pi\)
0.217649 + 0.976027i \(0.430161\pi\)
\(84\) 0 0
\(85\) −763.728 −0.974564
\(86\) 302.378 + 523.734i 0.379143 + 0.656694i
\(87\) 0 0
\(88\) 358.662 621.221i 0.434472 0.752527i
\(89\) −12.4354 21.5388i −0.0148107 0.0256529i 0.858525 0.512772i \(-0.171381\pi\)
−0.873336 + 0.487119i \(0.838048\pi\)
\(90\) 0 0
\(91\) −900.670 + 97.1494i −1.03754 + 0.111912i
\(92\) −435.551 −0.493580
\(93\) 0 0
\(94\) 452.670 784.048i 0.496695 0.860302i
\(95\) 560.435 970.702i 0.605257 1.04834i
\(96\) 0 0
\(97\) −499.239 −0.522578 −0.261289 0.965261i \(-0.584148\pi\)
−0.261289 + 0.965261i \(0.584148\pi\)
\(98\) 806.384 + 885.811i 0.831194 + 0.913066i
\(99\) 0 0
\(100\) 132.149 + 228.889i 0.132149 + 0.228889i
\(101\) −129.038 + 223.501i −0.127127 + 0.220190i −0.922562 0.385848i \(-0.873909\pi\)
0.795436 + 0.606038i \(0.207242\pi\)
\(102\) 0 0
\(103\) −480.159 831.659i −0.459334 0.795590i 0.539592 0.841927i \(-0.318579\pi\)
−0.998926 + 0.0463365i \(0.985245\pi\)
\(104\) −649.716 −0.612595
\(105\) 0 0
\(106\) 2168.26 1.98679
\(107\) 1027.13 + 1779.04i 0.928004 + 1.60735i 0.786657 + 0.617391i \(0.211810\pi\)
0.141347 + 0.989960i \(0.454857\pi\)
\(108\) 0 0
\(109\) −892.052 + 1545.08i −0.783881 + 1.35772i 0.145784 + 0.989316i \(0.453430\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(110\) −742.641 1286.29i −0.643709 1.11494i
\(111\) 0 0
\(112\) 873.720 + 1195.70i 0.737132 + 1.00878i
\(113\) −1296.36 −1.07921 −0.539607 0.841917i \(-0.681427\pi\)
−0.539607 + 0.841917i \(0.681427\pi\)
\(114\) 0 0
\(115\) 408.678 707.851i 0.331386 0.573978i
\(116\) 51.4772 89.1611i 0.0412029 0.0713655i
\(117\) 0 0
\(118\) −1547.50 −1.20728
\(119\) 726.040 1642.76i 0.559294 1.26547i
\(120\) 0 0
\(121\) −792.691 1372.98i −0.595561 1.03154i
\(122\) 197.834 342.659i 0.146812 0.254286i
\(123\) 0 0
\(124\) −393.176 681.001i −0.284744 0.493191i
\(125\) −1480.40 −1.05929
\(126\) 0 0
\(127\) −312.058 −0.218037 −0.109018 0.994040i \(-0.534771\pi\)
−0.109018 + 0.994040i \(0.534771\pi\)
\(128\) 754.031 + 1306.02i 0.520684 + 0.901851i
\(129\) 0 0
\(130\) −672.647 + 1165.06i −0.453808 + 0.786018i
\(131\) −41.6352 72.1143i −0.0277686 0.0480966i 0.851807 0.523855i \(-0.175507\pi\)
−0.879576 + 0.475759i \(0.842173\pi\)
\(132\) 0 0
\(133\) 1555.18 + 2128.28i 1.01392 + 1.38756i
\(134\) −2196.61 −1.41610
\(135\) 0 0
\(136\) 644.072 1115.57i 0.406093 0.703374i
\(137\) −1454.79 + 2519.77i −0.907233 + 1.57137i −0.0893421 + 0.996001i \(0.528476\pi\)
−0.817891 + 0.575373i \(0.804857\pi\)
\(138\) 0 0
\(139\) 1414.91 0.863392 0.431696 0.902019i \(-0.357915\pi\)
0.431696 + 0.902019i \(0.357915\pi\)
\(140\) 608.553 65.6407i 0.367372 0.0396261i
\(141\) 0 0
\(142\) −72.1246 124.923i −0.0426237 0.0738264i
\(143\) −1320.76 + 2287.62i −0.772358 + 1.33776i
\(144\) 0 0
\(145\) 96.6021 + 167.320i 0.0553267 + 0.0958286i
\(146\) −1561.47 −0.885125
\(147\) 0 0
\(148\) 615.029 0.341588
\(149\) −1093.31 1893.67i −0.601125 1.04118i −0.992651 0.121012i \(-0.961386\pi\)
0.391526 0.920167i \(-0.371947\pi\)
\(150\) 0 0
\(151\) −819.629 + 1419.64i −0.441725 + 0.765090i −0.997818 0.0660304i \(-0.978967\pi\)
0.556093 + 0.831120i \(0.312300\pi\)
\(152\) 945.259 + 1637.24i 0.504412 + 0.873668i
\(153\) 0 0
\(154\) 3472.77 374.586i 1.81717 0.196006i
\(155\) 1475.67 0.764701
\(156\) 0 0
\(157\) −629.491 + 1090.31i −0.319993 + 0.554244i −0.980486 0.196588i \(-0.937014\pi\)
0.660493 + 0.750832i \(0.270347\pi\)
\(158\) 759.075 1314.76i 0.382207 0.662003i
\(159\) 0 0
\(160\) 1362.35 0.673147
\(161\) 1134.06 + 1551.98i 0.555133 + 0.759707i
\(162\) 0 0
\(163\) 1579.50 + 2735.78i 0.758995 + 1.31462i 0.943364 + 0.331761i \(0.107643\pi\)
−0.184368 + 0.982857i \(0.559024\pi\)
\(164\) 659.241 1141.84i 0.313891 0.543675i
\(165\) 0 0
\(166\) 574.769 + 995.530i 0.268739 + 0.465470i
\(167\) −1848.90 −0.856718 −0.428359 0.903609i \(-0.640908\pi\)
−0.428359 + 0.903609i \(0.640908\pi\)
\(168\) 0 0
\(169\) 195.548 0.0890068
\(170\) −1333.61 2309.87i −0.601665 1.04211i
\(171\) 0 0
\(172\) −363.351 + 629.343i −0.161077 + 0.278994i
\(173\) 311.578 + 539.669i 0.136930 + 0.237169i 0.926333 0.376706i \(-0.122943\pi\)
−0.789403 + 0.613875i \(0.789610\pi\)
\(174\) 0 0
\(175\) 471.507 1066.85i 0.203672 0.460834i
\(176\) 4318.20 1.84941
\(177\) 0 0
\(178\) 43.4290 75.2213i 0.0182873 0.0316746i
\(179\) 1170.33 2027.07i 0.488685 0.846427i −0.511230 0.859444i \(-0.670810\pi\)
0.999915 + 0.0130168i \(0.00414349\pi\)
\(180\) 0 0
\(181\) −461.896 −0.189682 −0.0948411 0.995492i \(-0.530234\pi\)
−0.0948411 + 0.995492i \(0.530234\pi\)
\(182\) −1866.56 2554.41i −0.760211 1.04036i
\(183\) 0 0
\(184\) 689.298 + 1193.90i 0.276172 + 0.478345i
\(185\) −577.082 + 999.535i −0.229340 + 0.397229i
\(186\) 0 0
\(187\) −2618.56 4535.49i −1.02400 1.77362i
\(188\) 1087.90 0.422038
\(189\) 0 0
\(190\) 3914.48 1.49467
\(191\) 1332.90 + 2308.65i 0.504948 + 0.874596i 0.999984 + 0.00572288i \(0.00182166\pi\)
−0.495036 + 0.868873i \(0.664845\pi\)
\(192\) 0 0
\(193\) −65.2845 + 113.076i −0.0243486 + 0.0421730i −0.877943 0.478765i \(-0.841085\pi\)
0.853594 + 0.520938i \(0.174418\pi\)
\(194\) −871.761 1509.93i −0.322623 0.558799i
\(195\) 0 0
\(196\) −437.331 + 1371.38i −0.159377 + 0.499775i
\(197\) 3729.51 1.34882 0.674408 0.738359i \(-0.264399\pi\)
0.674408 + 0.738359i \(0.264399\pi\)
\(198\) 0 0
\(199\) 1886.38 3267.30i 0.671968 1.16388i −0.305377 0.952232i \(-0.598782\pi\)
0.977345 0.211652i \(-0.0678842\pi\)
\(200\) 418.275 724.474i 0.147883 0.256140i
\(201\) 0 0
\(202\) −901.296 −0.313935
\(203\) −451.736 + 48.7258i −0.156185 + 0.0168467i
\(204\) 0 0
\(205\) 1237.13 + 2142.78i 0.421488 + 0.730039i
\(206\) 1676.89 2904.45i 0.567157 0.982344i
\(207\) 0 0
\(208\) −1955.60 3387.20i −0.651907 1.12914i
\(209\) 7686.17 2.54384
\(210\) 0 0
\(211\) 2398.28 0.782484 0.391242 0.920288i \(-0.372046\pi\)
0.391242 + 0.920288i \(0.372046\pi\)
\(212\) 1302.74 + 2256.41i 0.422040 + 0.730995i
\(213\) 0 0
\(214\) −3587.11 + 6213.06i −1.14584 + 1.98465i
\(215\) −681.866 1181.03i −0.216292 0.374629i
\(216\) 0 0
\(217\) −1402.85 + 3174.13i −0.438855 + 0.992967i
\(218\) −6230.73 −1.93577
\(219\) 0 0
\(220\) 892.392 1545.67i 0.273477 0.473677i
\(221\) −2371.76 + 4108.02i −0.721910 + 1.25038i
\(222\) 0 0
\(223\) −3338.23 −1.00244 −0.501220 0.865320i \(-0.667115\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(224\) −1295.12 + 2930.39i −0.386313 + 0.874084i
\(225\) 0 0
\(226\) −2263.68 3920.80i −0.666272 1.15402i
\(227\) −634.521 + 1099.02i −0.185527 + 0.321342i −0.943754 0.330649i \(-0.892733\pi\)
0.758227 + 0.651991i \(0.226066\pi\)
\(228\) 0 0
\(229\) 1025.74 + 1776.63i 0.295995 + 0.512678i 0.975216 0.221256i \(-0.0710155\pi\)
−0.679221 + 0.733934i \(0.737682\pi\)
\(230\) 2854.50 0.818349
\(231\) 0 0
\(232\) −325.868 −0.0922169
\(233\) −2475.22 4287.20i −0.695953 1.20543i −0.969859 0.243669i \(-0.921649\pi\)
0.273906 0.961756i \(-0.411684\pi\)
\(234\) 0 0
\(235\) −1020.78 + 1768.04i −0.283354 + 0.490783i
\(236\) −929.774 1610.42i −0.256454 0.444192i
\(237\) 0 0
\(238\) 6236.28 672.667i 1.69848 0.183204i
\(239\) 262.671 0.0710910 0.0355455 0.999368i \(-0.488683\pi\)
0.0355455 + 0.999368i \(0.488683\pi\)
\(240\) 0 0
\(241\) −1451.19 + 2513.53i −0.387880 + 0.671829i −0.992164 0.124941i \(-0.960126\pi\)
0.604284 + 0.796769i \(0.293459\pi\)
\(242\) 2768.36 4794.95i 0.735360 1.27368i
\(243\) 0 0
\(244\) 475.454 0.124745
\(245\) −1818.40 1997.51i −0.474178 0.520883i
\(246\) 0 0
\(247\) −3480.87 6029.05i −0.896691 1.55311i
\(248\) −1244.47 + 2155.49i −0.318645 + 0.551910i
\(249\) 0 0
\(250\) −2585.04 4477.42i −0.653969 1.13271i
\(251\) −6265.68 −1.57564 −0.787821 0.615904i \(-0.788791\pi\)
−0.787821 + 0.615904i \(0.788791\pi\)
\(252\) 0 0
\(253\) 5604.87 1.39279
\(254\) −544.909 943.810i −0.134609 0.233149i
\(255\) 0 0
\(256\) −2491.17 + 4314.83i −0.608195 + 1.05342i
\(257\) 1710.48 + 2962.64i 0.415163 + 0.719083i 0.995446 0.0953322i \(-0.0303913\pi\)
−0.580283 + 0.814415i \(0.697058\pi\)
\(258\) 0 0
\(259\) −1601.37 2191.50i −0.384187 0.525765i
\(260\) −1616.57 −0.385597
\(261\) 0 0
\(262\) 145.405 251.849i 0.0342869 0.0593866i
\(263\) −4111.26 + 7120.91i −0.963921 + 1.66956i −0.251435 + 0.967874i \(0.580902\pi\)
−0.712486 + 0.701686i \(0.752431\pi\)
\(264\) 0 0
\(265\) −4889.45 −1.13342
\(266\) −3721.31 + 8419.95i −0.857775 + 1.94083i
\(267\) 0 0
\(268\) −1319.77 2285.91i −0.300813 0.521024i
\(269\) 2746.67 4757.37i 0.622555 1.07830i −0.366453 0.930436i \(-0.619428\pi\)
0.989008 0.147860i \(-0.0472386\pi\)
\(270\) 0 0
\(271\) 548.242 + 949.584i 0.122891 + 0.212853i 0.920906 0.389784i \(-0.127450\pi\)
−0.798016 + 0.602637i \(0.794117\pi\)
\(272\) 7754.45 1.72861
\(273\) 0 0
\(274\) −10161.3 −2.24039
\(275\) −1700.56 2945.45i −0.372900 0.645882i
\(276\) 0 0
\(277\) 777.736 1347.08i 0.168699 0.292195i −0.769264 0.638931i \(-0.779377\pi\)
0.937963 + 0.346736i \(0.112710\pi\)
\(278\) 2470.70 + 4279.37i 0.533030 + 0.923236i
\(279\) 0 0
\(280\) −1143.02 1564.24i −0.243958 0.333861i
\(281\) 995.950 0.211435 0.105718 0.994396i \(-0.466286\pi\)
0.105718 + 0.994396i \(0.466286\pi\)
\(282\) 0 0
\(283\) 4317.74 7478.54i 0.906936 1.57086i 0.0886383 0.996064i \(-0.471748\pi\)
0.818297 0.574795i \(-0.194918\pi\)
\(284\) 86.6683 150.114i 0.0181085 0.0313648i
\(285\) 0 0
\(286\) −9225.11 −1.90732
\(287\) −5785.14 + 624.006i −1.18985 + 0.128341i
\(288\) 0 0
\(289\) −2245.82 3889.87i −0.457118 0.791751i
\(290\) −337.369 + 584.341i −0.0683139 + 0.118323i
\(291\) 0 0
\(292\) −938.168 1624.95i −0.188021 0.325662i
\(293\) 2180.01 0.434667 0.217333 0.976097i \(-0.430264\pi\)
0.217333 + 0.976097i \(0.430264\pi\)
\(294\) 0 0
\(295\) 3489.63 0.688726
\(296\) −973.336 1685.87i −0.191128 0.331044i
\(297\) 0 0
\(298\) 3818.24 6613.39i 0.742231 1.28558i
\(299\) −2538.31 4396.48i −0.490950 0.850350i
\(300\) 0 0
\(301\) 3188.57 343.931i 0.610586 0.0658600i
\(302\) −5724.88 −1.09083
\(303\) 0 0
\(304\) −5690.34 + 9855.95i −1.07356 + 1.85947i
\(305\) −446.119 + 772.700i −0.0837531 + 0.145065i
\(306\) 0 0
\(307\) 5281.18 0.981800 0.490900 0.871216i \(-0.336668\pi\)
0.490900 + 0.871216i \(0.336668\pi\)
\(308\) 2476.34 + 3388.90i 0.458125 + 0.626950i
\(309\) 0 0
\(310\) 2576.79 + 4463.12i 0.472102 + 0.817705i
\(311\) 2148.74 3721.72i 0.391780 0.678584i −0.600904 0.799321i \(-0.705193\pi\)
0.992684 + 0.120738i \(0.0385260\pi\)
\(312\) 0 0
\(313\) 1180.48 + 2044.65i 0.213178 + 0.369235i 0.952707 0.303889i \(-0.0982852\pi\)
−0.739529 + 0.673124i \(0.764952\pi\)
\(314\) −4396.82 −0.790213
\(315\) 0 0
\(316\) 1824.28 0.324759
\(317\) −4546.33 7874.47i −0.805512 1.39519i −0.915945 0.401304i \(-0.868557\pi\)
0.110433 0.993884i \(-0.464776\pi\)
\(318\) 0 0
\(319\) −662.432 + 1147.37i −0.116267 + 0.201380i
\(320\) −139.965 242.427i −0.0244509 0.0423503i
\(321\) 0 0
\(322\) −2713.64 + 6139.96i −0.469643 + 1.06263i
\(323\) 13802.5 2.37769
\(324\) 0 0
\(325\) −1540.28 + 2667.84i −0.262890 + 0.455339i
\(326\) −5516.19 + 9554.33i −0.937158 + 1.62321i
\(327\) 0 0
\(328\) −4173.23 −0.702524
\(329\) −2832.60 3876.45i −0.474669 0.649591i
\(330\) 0 0
\(331\) −2189.51 3792.34i −0.363584 0.629745i 0.624964 0.780653i \(-0.285114\pi\)
−0.988548 + 0.150908i \(0.951780\pi\)
\(332\) −690.669 + 1196.27i −0.114173 + 0.197753i
\(333\) 0 0
\(334\) −3228.51 5591.94i −0.528910 0.916100i
\(335\) 4953.37 0.807856
\(336\) 0 0
\(337\) 3314.59 0.535778 0.267889 0.963450i \(-0.413674\pi\)
0.267889 + 0.963450i \(0.413674\pi\)
\(338\) 341.462 + 591.429i 0.0549499 + 0.0951760i
\(339\) 0 0
\(340\) 1602.52 2775.65i 0.255615 0.442738i
\(341\) 5059.57 + 8763.44i 0.803493 + 1.39169i
\(342\) 0 0
\(343\) 6025.27 2012.40i 0.948495 0.316791i
\(344\) 2300.14 0.360510
\(345\) 0 0
\(346\) −1088.14 + 1884.72i −0.169072 + 0.292842i
\(347\) 4276.94 7407.87i 0.661666 1.14604i −0.318512 0.947919i \(-0.603183\pi\)
0.980178 0.198120i \(-0.0634835\pi\)
\(348\) 0 0
\(349\) 9832.96 1.50816 0.754078 0.656785i \(-0.228084\pi\)
0.754078 + 0.656785i \(0.228084\pi\)
\(350\) 4049.99 436.846i 0.618517 0.0667154i
\(351\) 0 0
\(352\) 4671.05 + 8090.50i 0.707295 + 1.22507i
\(353\) −3085.71 + 5344.60i −0.465257 + 0.805848i −0.999213 0.0396640i \(-0.987371\pi\)
0.533957 + 0.845512i \(0.320705\pi\)
\(354\) 0 0
\(355\) 162.642 + 281.704i 0.0243159 + 0.0421163i
\(356\) 104.373 0.0155386
\(357\) 0 0
\(358\) 8174.43 1.20679
\(359\) −4773.51 8267.96i −0.701772 1.21551i −0.967844 0.251552i \(-0.919059\pi\)
0.266072 0.963953i \(-0.414274\pi\)
\(360\) 0 0
\(361\) −6699.01 + 11603.0i −0.976675 + 1.69165i
\(362\) −806.554 1396.99i −0.117104 0.202830i
\(363\) 0 0
\(364\) 1536.79 3477.19i 0.221291 0.500699i
\(365\) 3521.14 0.504944
\(366\) 0 0
\(367\) 2014.34 3488.94i 0.286506 0.496243i −0.686467 0.727161i \(-0.740839\pi\)
0.972973 + 0.230918i \(0.0741728\pi\)
\(368\) −4149.48 + 7187.11i −0.587790 + 1.01808i
\(369\) 0 0
\(370\) −4030.76 −0.566349
\(371\) 4648.16 10517.1i 0.650460 1.47175i
\(372\) 0 0
\(373\) −10.0254 17.3646i −0.00139168 0.00241046i 0.865329 0.501205i \(-0.167110\pi\)
−0.866720 + 0.498794i \(0.833776\pi\)
\(374\) 9144.97 15839.6i 1.26437 2.18996i
\(375\) 0 0
\(376\) −1721.69 2982.06i −0.236143 0.409011i
\(377\) 1199.99 0.163933
\(378\) 0 0
\(379\) −3787.79 −0.513366 −0.256683 0.966496i \(-0.582630\pi\)
−0.256683 + 0.966496i \(0.582630\pi\)
\(380\) 2351.91 + 4073.63i 0.317501 + 0.549929i
\(381\) 0 0
\(382\) −4654.96 + 8062.62i −0.623477 + 1.07989i
\(383\) 4000.86 + 6929.69i 0.533771 + 0.924519i 0.999222 + 0.0394450i \(0.0125590\pi\)
−0.465451 + 0.885074i \(0.654108\pi\)
\(384\) 0 0
\(385\) −7831.14 + 844.695i −1.03665 + 0.111817i
\(386\) −455.994 −0.0601282
\(387\) 0 0
\(388\) 1047.55 1814.41i 0.137065 0.237404i
\(389\) 1742.32 3017.79i 0.227093 0.393336i −0.729852 0.683605i \(-0.760411\pi\)
0.956945 + 0.290268i \(0.0937446\pi\)
\(390\) 0 0
\(391\) 10065.0 1.30182
\(392\) 4451.24 971.557i 0.573525 0.125181i
\(393\) 0 0
\(394\) 6512.40 + 11279.8i 0.832716 + 1.44231i
\(395\) −1711.72 + 2964.79i −0.218041 + 0.377658i
\(396\) 0 0
\(397\) 3518.88 + 6094.88i 0.444855 + 0.770512i 0.998042 0.0625455i \(-0.0199218\pi\)
−0.553187 + 0.833057i \(0.686589\pi\)
\(398\) 13175.8 1.65941
\(399\) 0 0
\(400\) 5035.93 0.629491
\(401\) −4194.86 7265.72i −0.522398 0.904820i −0.999660 0.0260589i \(-0.991704\pi\)
0.477263 0.878761i \(-0.341629\pi\)
\(402\) 0 0
\(403\) 4582.71 7937.48i 0.566454 0.981126i
\(404\) −541.519 937.939i −0.0666871 0.115505i
\(405\) 0 0
\(406\) −936.182 1281.18i −0.114438 0.156610i
\(407\) −7914.47 −0.963896
\(408\) 0 0
\(409\) 6772.75 11730.7i 0.818804 1.41821i −0.0877604 0.996142i \(-0.527971\pi\)
0.906564 0.422068i \(-0.138696\pi\)
\(410\) −4320.51 + 7483.35i −0.520427 + 0.901406i
\(411\) 0 0
\(412\) 4030.05 0.481908
\(413\) −3317.43 + 7506.11i −0.395254 + 0.894313i
\(414\) 0 0
\(415\) −1296.11 2244.93i −0.153310 0.265540i
\(416\) 4230.80 7327.97i 0.498635 0.863661i
\(417\) 0 0
\(418\) 13421.4 + 23246.6i 1.57049 + 2.72017i
\(419\) −1450.22 −0.169089 −0.0845443 0.996420i \(-0.526943\pi\)
−0.0845443 + 0.996420i \(0.526943\pi\)
\(420\) 0 0
\(421\) −923.118 −0.106865 −0.0534324 0.998571i \(-0.517016\pi\)
−0.0534324 + 0.998571i \(0.517016\pi\)
\(422\) 4187.82 + 7253.52i 0.483080 + 0.836720i
\(423\) 0 0
\(424\) 4123.40 7141.94i 0.472288 0.818026i
\(425\) −3053.80 5289.33i −0.348543 0.603695i
\(426\) 0 0
\(427\) −1237.95 1694.16i −0.140302 0.192005i
\(428\) −8620.87 −0.973611
\(429\) 0 0
\(430\) 2381.32 4124.57i 0.267064 0.462568i
\(431\) −619.105 + 1072.32i −0.0691908 + 0.119842i −0.898545 0.438881i \(-0.855375\pi\)
0.829355 + 0.558723i \(0.188708\pi\)
\(432\) 0 0
\(433\) 10786.5 1.19715 0.598575 0.801067i \(-0.295734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(434\) −12049.7 + 1299.72i −1.33273 + 0.143753i
\(435\) 0 0
\(436\) −3743.57 6484.05i −0.411203 0.712224i
\(437\) −7385.87 + 12792.7i −0.808499 + 1.40036i
\(438\) 0 0
\(439\) −1676.75 2904.21i −0.182293 0.315741i 0.760368 0.649493i \(-0.225019\pi\)
−0.942661 + 0.333752i \(0.891685\pi\)
\(440\) −5649.15 −0.612074
\(441\) 0 0
\(442\) −16566.1 −1.78274
\(443\) 4045.18 + 7006.46i 0.433843 + 0.751438i 0.997200 0.0747756i \(-0.0238240\pi\)
−0.563358 + 0.826213i \(0.690491\pi\)
\(444\) 0 0
\(445\) −97.9329 + 169.625i −0.0104325 + 0.0180696i
\(446\) −5829.14 10096.4i −0.618874 1.07192i
\(447\) 0 0
\(448\) 654.513 70.5981i 0.0690241 0.00744519i
\(449\) −4211.19 −0.442625 −0.221312 0.975203i \(-0.571034\pi\)
−0.221312 + 0.975203i \(0.571034\pi\)
\(450\) 0 0
\(451\) −8483.42 + 14693.7i −0.885740 + 1.53415i
\(452\) 2720.14 4711.42i 0.283063 0.490280i
\(453\) 0 0
\(454\) −4431.95 −0.458154
\(455\) 4209.11 + 5760.22i 0.433683 + 0.593502i
\(456\) 0 0
\(457\) 4888.81 + 8467.67i 0.500413 + 0.866741i 1.00000 0.000477301i \(0.000151930\pi\)
−0.499587 + 0.866264i \(0.666515\pi\)
\(458\) −3582.26 + 6204.65i −0.365476 + 0.633022i
\(459\) 0 0
\(460\) 1715.05 + 2970.55i 0.173836 + 0.301093i
\(461\) −12360.4 −1.24876 −0.624381 0.781120i \(-0.714649\pi\)
−0.624381 + 0.781120i \(0.714649\pi\)
\(462\) 0 0
\(463\) −16107.0 −1.61675 −0.808377 0.588666i \(-0.799653\pi\)
−0.808377 + 0.588666i \(0.799653\pi\)
\(464\) −980.842 1698.87i −0.0981346 0.169974i
\(465\) 0 0
\(466\) 8644.35 14972.5i 0.859318 1.48838i
\(467\) 6742.68 + 11678.7i 0.668125 + 1.15723i 0.978428 + 0.206588i \(0.0662360\pi\)
−0.310303 + 0.950638i \(0.600431\pi\)
\(468\) 0 0
\(469\) −4708.93 + 10654.6i −0.463621 + 1.04900i
\(470\) −7129.84 −0.699734
\(471\) 0 0
\(472\) −2942.90 + 5097.25i −0.286987 + 0.497076i
\(473\) 4675.77 8098.68i 0.454529 0.787268i
\(474\) 0 0
\(475\) 8963.69 0.865858
\(476\) 4446.91 + 6085.67i 0.428202 + 0.586000i
\(477\) 0 0
\(478\) 458.670 + 794.440i 0.0438893 + 0.0760185i
\(479\) 195.482 338.585i 0.0186468 0.0322972i −0.856551 0.516062i \(-0.827398\pi\)
0.875198 + 0.483764i \(0.160731\pi\)
\(480\) 0 0
\(481\) 3584.26 + 6208.13i 0.339768 + 0.588495i
\(482\) −10136.1 −0.957860
\(483\) 0 0
\(484\) 6653.18 0.624830
\(485\) 1965.83 + 3404.92i 0.184049 + 0.318782i
\(486\) 0 0
\(487\) 7895.75 13675.8i 0.734683 1.27251i −0.220179 0.975460i \(-0.570664\pi\)
0.954862 0.297049i \(-0.0960026\pi\)
\(488\) −752.447 1303.28i −0.0697985 0.120895i
\(489\) 0 0
\(490\) 2866.16 8987.73i 0.264245 0.828621i
\(491\) 191.606 0.0176111 0.00880557 0.999961i \(-0.497197\pi\)
0.00880557 + 0.999961i \(0.497197\pi\)
\(492\) 0 0
\(493\) −1189.57 + 2060.40i −0.108673 + 0.188226i
\(494\) 12156.5 21055.6i 1.10718 1.91769i
\(495\) 0 0
\(496\) −14983.1 −1.35637
\(497\) −760.553 + 82.0360i −0.0686428 + 0.00740406i
\(498\) 0 0
\(499\) −2810.50 4867.93i −0.252135 0.436710i 0.711979 0.702201i \(-0.247799\pi\)
−0.964113 + 0.265491i \(0.914466\pi\)
\(500\) 3106.30 5380.27i 0.277836 0.481226i
\(501\) 0 0
\(502\) −10941.0 18950.4i −0.972751 1.68485i
\(503\) −16936.3 −1.50129 −0.750647 0.660704i \(-0.770258\pi\)
−0.750647 + 0.660704i \(0.770258\pi\)
\(504\) 0 0
\(505\) 2032.43 0.179093
\(506\) 9787.12 + 16951.8i 0.859863 + 1.48933i
\(507\) 0 0
\(508\) 654.788 1134.13i 0.0571880 0.0990526i
\(509\) 2112.88 + 3659.62i 0.183992 + 0.318684i 0.943236 0.332122i \(-0.107765\pi\)
−0.759244 + 0.650806i \(0.774431\pi\)
\(510\) 0 0
\(511\) −3347.37 + 7573.87i −0.289783 + 0.655672i
\(512\) −5335.61 −0.460552
\(513\) 0 0
\(514\) −5973.61 + 10346.6i −0.512616 + 0.887877i
\(515\) −3781.40 + 6549.57i −0.323550 + 0.560405i
\(516\) 0 0
\(517\) −13999.6 −1.19091
\(518\) 3831.85 8670.05i 0.325022 0.735406i
\(519\) 0 0
\(520\) 2558.36 + 4431.20i 0.215753 + 0.373695i
\(521\) −2042.06 + 3536.95i −0.171716 + 0.297421i −0.939020 0.343863i \(-0.888265\pi\)
0.767304 + 0.641284i \(0.221598\pi\)
\(522\) 0 0
\(523\) −8485.69 14697.7i −0.709471 1.22884i −0.965054 0.262053i \(-0.915601\pi\)
0.255582 0.966787i \(-0.417733\pi\)
\(524\) 349.451 0.0291333
\(525\) 0 0
\(526\) −28716.0 −2.38038
\(527\) 9085.79 + 15737.1i 0.751012 + 1.30079i
\(528\) 0 0
\(529\) 697.611 1208.30i 0.0573363 0.0993095i
\(530\) −8537.86 14788.0i −0.699737 1.21198i
\(531\) 0 0
\(532\) −10998.1 + 1186.30i −0.896295 + 0.0966776i
\(533\) 15367.7 1.24887
\(534\) 0 0
\(535\) 8088.97 14010.5i 0.653676 1.13220i
\(536\) −4177.31 + 7235.31i −0.336627 + 0.583056i
\(537\) 0 0
\(538\) 19184.7 1.53738
\(539\) 5627.77 17647.6i 0.449732 1.41027i
\(540\) 0 0
\(541\) −315.493 546.451i −0.0250723 0.0434265i 0.853217 0.521556i \(-0.174648\pi\)
−0.878289 + 0.478130i \(0.841315\pi\)
\(542\) −1914.66 + 3316.29i −0.151737 + 0.262817i
\(543\) 0 0
\(544\) 8388.10 + 14528.6i 0.661097 + 1.14505i
\(545\) 14050.4 1.10431
\(546\) 0 0
\(547\) 14377.3 1.12382 0.561910 0.827198i \(-0.310067\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(548\) −6105.14 10574.4i −0.475910 0.824300i
\(549\) 0 0
\(550\) 5938.96 10286.6i 0.460433 0.797493i
\(551\) −1745.85 3023.90i −0.134983 0.233798i
\(552\) 0 0
\(553\) −4749.94 6500.35i −0.365258 0.499861i
\(554\) 5432.27 0.416598
\(555\) 0 0
\(556\) −2968.90 + 5142.29i −0.226456 + 0.392233i
\(557\) 6374.78 11041.4i 0.484934 0.839930i −0.514917 0.857240i \(-0.672177\pi\)
0.999850 + 0.0173106i \(0.00551041\pi\)
\(558\) 0 0
\(559\) −8470.16 −0.640876
\(560\) 4714.51 10667.2i 0.355758 0.804949i
\(561\) 0 0
\(562\) 1739.11 + 3012.22i 0.130533 + 0.226091i
\(563\) −7040.02 + 12193.7i −0.527001 + 0.912792i 0.472504 + 0.881328i \(0.343350\pi\)
−0.999505 + 0.0314637i \(0.989983\pi\)
\(564\) 0 0
\(565\) 5104.61 + 8841.45i 0.380093 + 0.658341i
\(566\) 30158.2 2.23965
\(567\) 0 0
\(568\) −548.640 −0.0405289
\(569\) 488.954 + 846.893i 0.0360246 + 0.0623965i 0.883476 0.468477i \(-0.155197\pi\)
−0.847451 + 0.530874i \(0.821864\pi\)
\(570\) 0 0
\(571\) 2438.76 4224.06i 0.178737 0.309582i −0.762711 0.646740i \(-0.776132\pi\)
0.941448 + 0.337157i \(0.109465\pi\)
\(572\) −5542.66 9600.17i −0.405158 0.701754i
\(573\) 0 0
\(574\) −11989.2 16407.4i −0.871810 1.19308i
\(575\) 6536.46 0.474068
\(576\) 0 0
\(577\) −4436.83 + 7684.82i −0.320117 + 0.554460i −0.980512 0.196459i \(-0.937056\pi\)
0.660395 + 0.750919i \(0.270389\pi\)
\(578\) 7843.21 13584.8i 0.564420 0.977604i
\(579\) 0 0
\(580\) −810.797 −0.0580457
\(581\) 6060.94 653.754i 0.432788 0.0466821i
\(582\) 0 0
\(583\) −16764.3 29036.6i −1.19092 2.06273i
\(584\) −2969.47 + 5143.27i −0.210406 + 0.364435i
\(585\) 0 0
\(586\) 3806.69 + 6593.37i 0.268349 + 0.464795i
\(587\) −17470.2 −1.22840 −0.614201 0.789150i \(-0.710521\pi\)
−0.614201 + 0.789150i \(0.710521\pi\)
\(588\) 0 0
\(589\) −26669.2 −1.86568
\(590\) 6093.53 + 10554.3i 0.425198 + 0.736464i
\(591\) 0 0
\(592\) 5859.36 10148.7i 0.406787 0.704576i
\(593\) −8785.24 15216.5i −0.608376 1.05374i −0.991508 0.130044i \(-0.958488\pi\)
0.383133 0.923693i \(-0.374845\pi\)
\(594\) 0 0
\(595\) −14062.9 + 1516.87i −0.968944 + 0.104514i
\(596\) 9176.35 0.630668
\(597\) 0 0
\(598\) 8864.68 15354.1i 0.606194 1.04996i
\(599\) 1235.30 2139.61i 0.0842623 0.145947i −0.820814 0.571195i \(-0.806480\pi\)
0.905077 + 0.425249i \(0.139813\pi\)
\(600\) 0 0
\(601\) −7760.05 −0.526688 −0.263344 0.964702i \(-0.584825\pi\)
−0.263344 + 0.964702i \(0.584825\pi\)
\(602\) 6608.03 + 9043.19i 0.447381 + 0.612247i
\(603\) 0 0
\(604\) −3439.64 5957.63i −0.231717 0.401345i
\(605\) −6242.69 + 10812.7i −0.419506 + 0.726606i
\(606\) 0 0
\(607\) 11692.1 + 20251.3i 0.781823 + 1.35416i 0.930879 + 0.365328i \(0.119043\pi\)
−0.149056 + 0.988829i \(0.547623\pi\)
\(608\) −24621.3 −1.64231
\(609\) 0 0
\(610\) −3116.01 −0.206826
\(611\) 6340.06 + 10981.3i 0.419789 + 0.727096i
\(612\) 0 0
\(613\) −9741.70 + 16873.1i −0.641865 + 1.11174i 0.343150 + 0.939280i \(0.388506\pi\)
−0.985016 + 0.172463i \(0.944827\pi\)
\(614\) 9221.89 + 15972.8i 0.606132 + 1.04985i
\(615\) 0 0
\(616\) 5370.37 12151.2i 0.351264 0.794781i
\(617\) 11177.6 0.729327 0.364664 0.931139i \(-0.381184\pi\)
0.364664 + 0.931139i \(0.381184\pi\)
\(618\) 0 0
\(619\) −3126.64 + 5415.50i −0.203021 + 0.351643i −0.949500 0.313766i \(-0.898409\pi\)
0.746479 + 0.665409i \(0.231743\pi\)
\(620\) −3096.38 + 5363.10i −0.200571 + 0.347399i
\(621\) 0 0
\(622\) 15008.3 0.967491
\(623\) −271.758 371.905i −0.0174764 0.0239166i
\(624\) 0 0
\(625\) 1893.07 + 3278.90i 0.121157 + 0.209850i
\(626\) −4122.67 + 7140.67i −0.263219 + 0.455908i
\(627\) 0 0
\(628\) −2641.71 4575.58i −0.167859 0.290741i
\(629\) −14212.5 −0.900938
\(630\) 0 0
\(631\) −19733.2 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(632\) −2887.08 5000.57i −0.181712 0.314734i
\(633\) 0 0
\(634\) 15877.4 27500.5i 0.994594 1.72269i
\(635\) 1228.78 + 2128.30i 0.0767913 + 0.133006i
\(636\) 0 0
\(637\) −16391.5 + 3577.71i −1.01955 + 0.222534i
\(638\) −4626.90 −0.287117
\(639\) 0 0
\(640\) 5938.23 10285.3i 0.366764 0.635254i
\(641\) −71.8842 + 124.507i −0.00442941 + 0.00767197i −0.868232 0.496159i \(-0.834743\pi\)
0.863802 + 0.503831i \(0.168077\pi\)
\(642\) 0 0
\(643\) 29565.4 1.81329 0.906645 0.421894i \(-0.138634\pi\)
0.906645 + 0.421894i \(0.138634\pi\)
\(644\) −8020.00 + 865.066i −0.490734 + 0.0529323i
\(645\) 0 0
\(646\) 24101.7 + 41745.4i 1.46791 + 2.54249i
\(647\) 11890.4 20594.7i 0.722501 1.25141i −0.237493 0.971389i \(-0.576326\pi\)
0.959994 0.280020i \(-0.0903410\pi\)
\(648\) 0 0
\(649\) 11964.8 + 20723.6i 0.723664 + 1.25342i
\(650\) −10758.4 −0.649200
\(651\) 0 0
\(652\) −13257.0 −0.796296
\(653\) 870.797 + 1508.26i 0.0521851 + 0.0903873i 0.890938 0.454125i \(-0.150048\pi\)
−0.838753 + 0.544512i \(0.816715\pi\)
\(654\) 0 0
\(655\) −327.890 + 567.923i −0.0195599 + 0.0338787i
\(656\) −12561.1 21756.5i −0.747607 1.29489i
\(657\) 0 0
\(658\) 6777.99 15336.1i 0.401571 0.908607i
\(659\) 8493.45 0.502061 0.251030 0.967979i \(-0.419231\pi\)
0.251030 + 0.967979i \(0.419231\pi\)
\(660\) 0 0
\(661\) −12507.4 + 21663.4i −0.735976 + 1.27475i 0.218318 + 0.975878i \(0.429943\pi\)
−0.954294 + 0.298869i \(0.903390\pi\)
\(662\) 7646.55 13244.2i 0.448930 0.777569i
\(663\) 0 0
\(664\) 4372.18 0.255532
\(665\) 8391.60 18987.1i 0.489342 1.10720i
\(666\) 0 0
\(667\) −1273.10 2205.08i −0.0739050 0.128007i
\(668\) 3879.52 6719.53i 0.224706 0.389201i
\(669\) 0 0
\(670\) 8649.48 + 14981.3i 0.498744 + 0.863850i
\(671\) −6118.36 −0.352007
\(672\) 0 0
\(673\) 29696.5 1.70091 0.850456 0.526046i \(-0.176326\pi\)
0.850456 + 0.526046i \(0.176326\pi\)
\(674\) 5787.87 + 10024.9i 0.330772 + 0.572914i
\(675\) 0 0
\(676\) −410.316 + 710.688i −0.0233453 + 0.0404352i
\(677\) −1856.63 3215.78i −0.105401 0.182559i 0.808501 0.588495i \(-0.200279\pi\)
−0.913902 + 0.405935i \(0.866946\pi\)
\(678\) 0 0
\(679\) −9192.71 + 991.559i −0.519564 + 0.0560420i
\(680\) −10144.5 −0.572096
\(681\) 0 0
\(682\) −17669.9 + 30605.1i −0.992102 + 1.71837i
\(683\) −12127.3 + 21005.2i −0.679414 + 1.17678i 0.295743 + 0.955268i \(0.404433\pi\)
−0.975157 + 0.221513i \(0.928901\pi\)
\(684\) 0 0
\(685\) 22913.8 1.27809
\(686\) 16607.7 + 14709.2i 0.924319 + 0.818661i
\(687\) 0 0
\(688\) 6923.27 + 11991.5i 0.383644 + 0.664491i
\(689\) −15184.2 + 26299.8i −0.839583 + 1.45420i
\(690\) 0 0
\(691\) −7149.36 12383.1i −0.393595 0.681727i 0.599325 0.800506i \(-0.295436\pi\)
−0.992921 + 0.118778i \(0.962102\pi\)
\(692\) −2615.13 −0.143659
\(693\) 0 0
\(694\) 29873.2 1.63396
\(695\) −5571.45 9650.03i −0.304082 0.526685i
\(696\) 0 0
\(697\) −15234.2 + 26386.4i −0.827886 + 1.43394i
\(698\) 17170.1 + 29739.5i 0.931087 + 1.61269i
\(699\) 0 0
\(700\) 2887.93 + 3952.17i 0.155934 + 0.213397i
\(701\) −28913.3 −1.55783 −0.778916 0.627128i \(-0.784230\pi\)
−0.778916 + 0.627128i \(0.784230\pi\)
\(702\) 0 0
\(703\) 10429.4 18064.2i 0.559532 0.969137i
\(704\) 959.787 1662.40i 0.0513826 0.0889973i
\(705\) 0 0
\(706\) −21552.8 −1.14894
\(707\) −1932.14 + 4371.71i −0.102780 + 0.232553i
\(708\) 0 0
\(709\) −5287.60 9158.39i −0.280085 0.485121i 0.691321 0.722548i \(-0.257029\pi\)
−0.971405 + 0.237427i \(0.923696\pi\)
\(710\) −568.004 + 983.811i −0.0300237 + 0.0520025i
\(711\) 0 0
\(712\) −165.179 286.098i −0.00869429 0.0150590i
\(713\) −19447.6 −1.02148
\(714\) 0 0
\(715\) 20802.7 1.08808
\(716\) 4911.38 + 8506.77i 0.256351 + 0.444012i
\(717\) 0 0
\(718\) 16670.8 28874.7i 0.866503 1.50083i
\(719\) 2673.63 + 4630.87i 0.138678 + 0.240198i 0.926997 0.375070i \(-0.122381\pi\)
−0.788318 + 0.615268i \(0.789048\pi\)
\(720\) 0 0
\(721\) −10493.2 14360.1i −0.542006 0.741743i
\(722\) −46790.7 −2.41187
\(723\) 0 0
\(724\) 969.193 1678.69i 0.0497511 0.0861714i
\(725\) −772.535 + 1338.07i −0.0395741 + 0.0685444i
\(726\) 0 0
\(727\) −19629.1 −1.00138 −0.500689 0.865627i \(-0.666920\pi\)
−0.500689 + 0.865627i \(0.666920\pi\)
\(728\) −11963.5 + 1290.43i −0.609062 + 0.0656956i
\(729\) 0 0
\(730\) 6148.54 + 10649.6i 0.311736 + 0.539943i
\(731\) 8396.58 14543.3i 0.424841 0.735846i
\(732\) 0 0
\(733\) −1202.43 2082.68i −0.0605906 0.104946i 0.834139 0.551554i \(-0.185965\pi\)
−0.894730 + 0.446608i \(0.852632\pi\)
\(734\) 14069.6 0.707519
\(735\) 0 0
\(736\) −17954.2 −0.899186
\(737\) 16983.4 + 29416.2i 0.848837 + 1.47023i
\(738\) 0 0
\(739\) 9654.49 16722.1i 0.480577 0.832383i −0.519175 0.854668i \(-0.673761\pi\)
0.999752 + 0.0222847i \(0.00709403\pi\)
\(740\) −2421.77 4194.63i −0.120305 0.208375i
\(741\) 0 0
\(742\) 39925.1 4306.47i 1.97533 0.213067i
\(743\) −801.314 −0.0395658 −0.0197829 0.999804i \(-0.506297\pi\)
−0.0197829 + 0.999804i \(0.506297\pi\)
\(744\) 0 0
\(745\) −8610.18 + 14913.3i −0.423426 + 0.733396i
\(746\) 35.0124 60.6433i 0.00171836 0.00297629i
\(747\) 0 0
\(748\) 21978.0 1.07433
\(749\) 22446.4 + 30718.3i 1.09503 + 1.49856i
\(750\) 0 0
\(751\) −7436.36 12880.2i −0.361327 0.625837i 0.626853 0.779138i \(-0.284343\pi\)
−0.988180 + 0.153301i \(0.951010\pi\)
\(752\) 10364.4 17951.6i 0.502593 0.870516i
\(753\) 0 0
\(754\) 2095.41 + 3629.35i 0.101207 + 0.175296i
\(755\) 12909.7 0.622292
\(756\) 0 0
\(757\) 9127.52 0.438237 0.219118 0.975698i \(-0.429682\pi\)
0.219118 + 0.975698i \(0.429682\pi\)
\(758\) −6614.16 11456.1i −0.316935 0.548948i
\(759\) 0 0
\(760\) 7444.21 12893.8i 0.355303 0.615402i
\(761\) −15497.2 26841.9i −0.738203 1.27861i −0.953304 0.302014i \(-0.902341\pi\)
0.215100 0.976592i \(-0.430992\pi\)
\(762\) 0 0
\(763\) −13357.0 + 30222.0i −0.633756 + 1.43396i
\(764\) −11187.2 −0.529764
\(765\) 0 0
\(766\) −13972.4 + 24201.0i −0.659066 + 1.14154i
\(767\) 10837.1 18770.4i 0.510175 0.883649i
\(768\) 0 0
\(769\) 12979.5 0.608653 0.304326 0.952568i \(-0.401569\pi\)
0.304326 + 0.952568i \(0.401569\pi\)
\(770\) −16229.3 22210.1i −0.759565 1.03948i
\(771\) 0 0
\(772\) −273.972 474.533i −0.0127726 0.0221228i
\(773\) 14404.1 24948.6i 0.670217 1.16085i −0.307625 0.951508i \(-0.599534\pi\)
0.977842 0.209343i \(-0.0671325\pi\)
\(774\) 0 0
\(775\) 5900.53 + 10220.0i 0.273488 + 0.473695i
\(776\) −6631.35 −0.306767
\(777\) 0 0
\(778\) 12169.6 0.560799
\(779\) −22358.2 38725.5i −1.02832 1.78111i
\(780\)