Properties

Label 189.4.e.h.109.6
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.6
Root \(-3.06544 + 5.30949i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.h.163.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64637 + 2.85159i) q^{2} +(-1.42105 + 2.46133i) q^{4} +(10.8582 + 18.8070i) q^{5} +(1.08769 - 18.4883i) q^{7} +16.9836 q^{8} +O(q^{10})\) \(q+(1.64637 + 2.85159i) q^{2} +(-1.42105 + 2.46133i) q^{4} +(10.8582 + 18.8070i) q^{5} +(1.08769 - 18.4883i) q^{7} +16.9836 q^{8} +(-35.7533 + 61.9265i) q^{10} +(-20.9820 + 36.3419i) q^{11} +46.0329 q^{13} +(54.5118 - 27.3369i) q^{14} +(39.3296 + 68.1209i) q^{16} +(1.00882 - 1.74732i) q^{17} +(-36.6244 - 63.4352i) q^{19} -61.7204 q^{20} -138.176 q^{22} +(-12.0838 - 20.9298i) q^{23} +(-173.303 + 300.169i) q^{25} +(75.7871 + 131.267i) q^{26} +(43.9602 + 28.9500i) q^{28} -90.7240 q^{29} +(-26.6026 + 46.0771i) q^{31} +(-61.5677 + 106.638i) q^{32} +6.64353 q^{34} +(359.520 - 180.294i) q^{35} +(-33.9309 - 58.7701i) q^{37} +(120.594 - 208.875i) q^{38} +(184.412 + 319.411i) q^{40} -341.211 q^{41} +509.713 q^{43} +(-59.6330 - 103.287i) q^{44} +(39.7889 - 68.9164i) q^{46} +(19.2351 + 33.3162i) q^{47} +(-340.634 - 40.2191i) q^{49} -1141.28 q^{50} +(-65.4151 + 113.302i) q^{52} +(194.694 - 337.220i) q^{53} -911.311 q^{55} +(18.4729 - 313.998i) q^{56} +(-149.365 - 258.708i) q^{58} +(225.310 - 390.249i) q^{59} +(-112.951 - 195.638i) q^{61} -175.191 q^{62} +223.822 q^{64} +(499.836 + 865.742i) q^{65} +(386.006 - 668.582i) q^{67} +(2.86716 + 4.96606i) q^{68} +(1106.03 + 728.374i) q^{70} +962.655 q^{71} +(526.897 - 912.612i) q^{73} +(111.726 - 193.514i) q^{74} +208.180 q^{76} +(649.078 + 427.450i) q^{77} +(-16.7953 - 29.0904i) q^{79} +(-854.101 + 1479.35i) q^{80} +(-561.759 - 972.995i) q^{82} -446.386 q^{83} +43.8159 q^{85} +(839.175 + 1453.49i) q^{86} +(-356.350 + 617.216i) q^{88} +(244.899 + 424.178i) q^{89} +(50.0695 - 851.070i) q^{91} +68.6870 q^{92} +(-63.3361 + 109.701i) q^{94} +(795.352 - 1377.59i) q^{95} +460.958 q^{97} +(-446.120 - 1037.56i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64637 + 2.85159i 0.582079 + 1.00819i 0.995233 + 0.0975288i \(0.0310938\pi\)
−0.413154 + 0.910661i \(0.635573\pi\)
\(3\) 0 0
\(4\) −1.42105 + 2.46133i −0.177631 + 0.307667i
\(5\) 10.8582 + 18.8070i 0.971190 + 1.68215i 0.691973 + 0.721923i \(0.256742\pi\)
0.279217 + 0.960228i \(0.409925\pi\)
\(6\) 0 0
\(7\) 1.08769 18.4883i 0.0587298 0.998274i
\(8\) 16.9836 0.750576
\(9\) 0 0
\(10\) −35.7533 + 61.9265i −1.13062 + 1.95829i
\(11\) −20.9820 + 36.3419i −0.575119 + 0.996136i 0.420909 + 0.907103i \(0.361711\pi\)
−0.996029 + 0.0890334i \(0.971622\pi\)
\(12\) 0 0
\(13\) 46.0329 0.982095 0.491047 0.871133i \(-0.336614\pi\)
0.491047 + 0.871133i \(0.336614\pi\)
\(14\) 54.5118 27.3369i 1.04064 0.521863i
\(15\) 0 0
\(16\) 39.3296 + 68.1209i 0.614526 + 1.06439i
\(17\) 1.00882 1.74732i 0.0143926 0.0249287i −0.858739 0.512413i \(-0.828752\pi\)
0.873132 + 0.487484i \(0.162085\pi\)
\(18\) 0 0
\(19\) −36.6244 63.4352i −0.442221 0.765950i 0.555633 0.831428i \(-0.312476\pi\)
−0.997854 + 0.0654782i \(0.979143\pi\)
\(20\) −61.7204 −0.690055
\(21\) 0 0
\(22\) −138.176 −1.33906
\(23\) −12.0838 20.9298i −0.109550 0.189747i 0.806038 0.591864i \(-0.201608\pi\)
−0.915588 + 0.402117i \(0.868274\pi\)
\(24\) 0 0
\(25\) −173.303 + 300.169i −1.38642 + 2.40135i
\(26\) 75.7871 + 131.267i 0.571656 + 0.990138i
\(27\) 0 0
\(28\) 43.9602 + 28.9500i 0.296703 + 0.195394i
\(29\) −90.7240 −0.580932 −0.290466 0.956885i \(-0.593810\pi\)
−0.290466 + 0.956885i \(0.593810\pi\)
\(30\) 0 0
\(31\) −26.6026 + 46.0771i −0.154128 + 0.266958i −0.932741 0.360547i \(-0.882590\pi\)
0.778613 + 0.627504i \(0.215923\pi\)
\(32\) −61.5677 + 106.638i −0.340117 + 0.589099i
\(33\) 0 0
\(34\) 6.64353 0.0335105
\(35\) 359.520 180.294i 1.73629 0.870722i
\(36\) 0 0
\(37\) −33.9309 58.7701i −0.150762 0.261128i 0.780745 0.624849i \(-0.214840\pi\)
−0.931508 + 0.363721i \(0.881506\pi\)
\(38\) 120.594 208.875i 0.514815 0.891686i
\(39\) 0 0
\(40\) 184.412 + 319.411i 0.728952 + 1.26258i
\(41\) −341.211 −1.29971 −0.649856 0.760057i \(-0.725171\pi\)
−0.649856 + 0.760057i \(0.725171\pi\)
\(42\) 0 0
\(43\) 509.713 1.80769 0.903843 0.427863i \(-0.140734\pi\)
0.903843 + 0.427863i \(0.140734\pi\)
\(44\) −59.6330 103.287i −0.204318 0.353890i
\(45\) 0 0
\(46\) 39.7889 68.9164i 0.127534 0.220895i
\(47\) 19.2351 + 33.3162i 0.0596963 + 0.103397i 0.894329 0.447410i \(-0.147653\pi\)
−0.834633 + 0.550807i \(0.814320\pi\)
\(48\) 0 0
\(49\) −340.634 40.2191i −0.993102 0.117257i
\(50\) −1141.28 −3.22803
\(51\) 0 0
\(52\) −65.4151 + 113.302i −0.174451 + 0.302158i
\(53\) 194.694 337.220i 0.504590 0.873976i −0.495396 0.868668i \(-0.664977\pi\)
0.999986 0.00530861i \(-0.00168979\pi\)
\(54\) 0 0
\(55\) −911.311 −2.23420
\(56\) 18.4729 313.998i 0.0440811 0.749280i
\(57\) 0 0
\(58\) −149.365 258.708i −0.338148 0.585690i
\(59\) 225.310 390.249i 0.497168 0.861120i −0.502827 0.864387i \(-0.667707\pi\)
0.999995 + 0.00326692i \(0.00103990\pi\)
\(60\) 0 0
\(61\) −112.951 195.638i −0.237081 0.410636i 0.722794 0.691063i \(-0.242857\pi\)
−0.959875 + 0.280427i \(0.909524\pi\)
\(62\) −175.191 −0.358859
\(63\) 0 0
\(64\) 223.822 0.437152
\(65\) 499.836 + 865.742i 0.953801 + 1.65203i
\(66\) 0 0
\(67\) 386.006 668.582i 0.703853 1.21911i −0.263251 0.964727i \(-0.584795\pi\)
0.967104 0.254382i \(-0.0818719\pi\)
\(68\) 2.86716 + 4.96606i 0.00511315 + 0.00885623i
\(69\) 0 0
\(70\) 1106.03 + 728.374i 1.88851 + 1.24368i
\(71\) 962.655 1.60910 0.804550 0.593885i \(-0.202407\pi\)
0.804550 + 0.593885i \(0.202407\pi\)
\(72\) 0 0
\(73\) 526.897 912.612i 0.844775 1.46319i −0.0410408 0.999157i \(-0.513067\pi\)
0.885816 0.464036i \(-0.153599\pi\)
\(74\) 111.726 193.514i 0.175511 0.303994i
\(75\) 0 0
\(76\) 208.180 0.314209
\(77\) 649.078 + 427.450i 0.960640 + 0.632630i
\(78\) 0 0
\(79\) −16.7953 29.0904i −0.0239193 0.0414294i 0.853818 0.520572i \(-0.174281\pi\)
−0.877737 + 0.479142i \(0.840948\pi\)
\(80\) −854.101 + 1479.35i −1.19364 + 2.06745i
\(81\) 0 0
\(82\) −561.759 972.995i −0.756535 1.31036i
\(83\) −446.386 −0.590328 −0.295164 0.955447i \(-0.595374\pi\)
−0.295164 + 0.955447i \(0.595374\pi\)
\(84\) 0 0
\(85\) 43.8159 0.0559117
\(86\) 839.175 + 1453.49i 1.05222 + 1.82249i
\(87\) 0 0
\(88\) −356.350 + 617.216i −0.431671 + 0.747676i
\(89\) 244.899 + 424.178i 0.291677 + 0.505199i 0.974206 0.225659i \(-0.0724534\pi\)
−0.682529 + 0.730858i \(0.739120\pi\)
\(90\) 0 0
\(91\) 50.0695 851.070i 0.0576782 0.980399i
\(92\) 68.6870 0.0778382
\(93\) 0 0
\(94\) −63.3361 + 109.701i −0.0694959 + 0.120370i
\(95\) 795.352 1377.59i 0.858962 1.48777i
\(96\) 0 0
\(97\) 460.958 0.482507 0.241253 0.970462i \(-0.422441\pi\)
0.241253 + 0.970462i \(0.422441\pi\)
\(98\) −446.120 1037.56i −0.459846 1.06949i
\(99\) 0 0
\(100\) −492.544 853.111i −0.492544 0.853111i
\(101\) −771.372 + 1336.06i −0.759945 + 1.31626i 0.182934 + 0.983125i \(0.441441\pi\)
−0.942878 + 0.333137i \(0.891893\pi\)
\(102\) 0 0
\(103\) −571.318 989.552i −0.546540 0.946635i −0.998508 0.0546011i \(-0.982611\pi\)
0.451968 0.892034i \(-0.350722\pi\)
\(104\) 781.804 0.737136
\(105\) 0 0
\(106\) 1282.15 1.17485
\(107\) −401.280 695.038i −0.362554 0.627961i 0.625827 0.779962i \(-0.284762\pi\)
−0.988380 + 0.152001i \(0.951428\pi\)
\(108\) 0 0
\(109\) −749.480 + 1298.14i −0.658598 + 1.14073i 0.322380 + 0.946610i \(0.395517\pi\)
−0.980979 + 0.194115i \(0.937816\pi\)
\(110\) −1500.35 2598.69i −1.30048 2.25250i
\(111\) 0 0
\(112\) 1302.22 653.043i 1.09864 0.550954i
\(113\) 651.941 0.542738 0.271369 0.962475i \(-0.412524\pi\)
0.271369 + 0.962475i \(0.412524\pi\)
\(114\) 0 0
\(115\) 262.418 454.522i 0.212788 0.368560i
\(116\) 128.923 223.302i 0.103192 0.178733i
\(117\) 0 0
\(118\) 1483.77 1.15756
\(119\) −31.2077 20.5518i −0.0240404 0.0158318i
\(120\) 0 0
\(121\) −214.990 372.373i −0.161525 0.279769i
\(122\) 371.919 644.182i 0.276000 0.478045i
\(123\) 0 0
\(124\) −75.6073 130.956i −0.0547559 0.0948401i
\(125\) −4812.49 −3.44354
\(126\) 0 0
\(127\) −634.311 −0.443197 −0.221598 0.975138i \(-0.571127\pi\)
−0.221598 + 0.975138i \(0.571127\pi\)
\(128\) 861.035 + 1491.36i 0.594574 + 1.02983i
\(129\) 0 0
\(130\) −1645.83 + 2850.66i −1.11037 + 1.92322i
\(131\) −1145.08 1983.33i −0.763709 1.32278i −0.940926 0.338611i \(-0.890043\pi\)
0.177217 0.984172i \(-0.443291\pi\)
\(132\) 0 0
\(133\) −1212.65 + 608.124i −0.790599 + 0.396474i
\(134\) 2542.03 1.63879
\(135\) 0 0
\(136\) 17.1333 29.6758i 0.0108027 0.0187109i
\(137\) 365.175 632.501i 0.227730 0.394440i −0.729405 0.684082i \(-0.760203\pi\)
0.957135 + 0.289642i \(0.0935363\pi\)
\(138\) 0 0
\(139\) −1195.39 −0.729436 −0.364718 0.931118i \(-0.618835\pi\)
−0.364718 + 0.931118i \(0.618835\pi\)
\(140\) −67.1327 + 1141.11i −0.0405268 + 0.688864i
\(141\) 0 0
\(142\) 1584.88 + 2745.10i 0.936623 + 1.62228i
\(143\) −965.863 + 1672.92i −0.564822 + 0.978300i
\(144\) 0 0
\(145\) −985.103 1706.25i −0.564195 0.977215i
\(146\) 3469.86 1.96690
\(147\) 0 0
\(148\) 192.870 0.107121
\(149\) 634.691 + 1099.32i 0.348966 + 0.604427i 0.986066 0.166354i \(-0.0531996\pi\)
−0.637100 + 0.770781i \(0.719866\pi\)
\(150\) 0 0
\(151\) −219.486 + 380.160i −0.118288 + 0.204881i −0.919089 0.394049i \(-0.871074\pi\)
0.800801 + 0.598930i \(0.204407\pi\)
\(152\) −622.013 1077.36i −0.331921 0.574903i
\(153\) 0 0
\(154\) −150.293 + 2554.65i −0.0786426 + 1.33675i
\(155\) −1155.43 −0.598751
\(156\) 0 0
\(157\) 893.137 1546.96i 0.454013 0.786374i −0.544618 0.838685i \(-0.683325\pi\)
0.998631 + 0.0523103i \(0.0166585\pi\)
\(158\) 55.3026 95.7870i 0.0278458 0.0482304i
\(159\) 0 0
\(160\) −2674.07 −1.32127
\(161\) −400.100 + 200.644i −0.195853 + 0.0982174i
\(162\) 0 0
\(163\) 423.616 + 733.724i 0.203559 + 0.352575i 0.949673 0.313244i \(-0.101416\pi\)
−0.746114 + 0.665819i \(0.768082\pi\)
\(164\) 484.878 839.834i 0.230870 0.399878i
\(165\) 0 0
\(166\) −734.915 1272.91i −0.343617 0.595163i
\(167\) −1454.66 −0.674040 −0.337020 0.941498i \(-0.609419\pi\)
−0.337020 + 0.941498i \(0.609419\pi\)
\(168\) 0 0
\(169\) −77.9721 −0.0354903
\(170\) 72.1370 + 124.945i 0.0325450 + 0.0563696i
\(171\) 0 0
\(172\) −724.328 + 1254.57i −0.321102 + 0.556165i
\(173\) 424.755 + 735.698i 0.186668 + 0.323318i 0.944137 0.329552i \(-0.106898\pi\)
−0.757469 + 0.652871i \(0.773564\pi\)
\(174\) 0 0
\(175\) 5361.11 + 3530.56i 2.31578 + 1.52506i
\(176\) −3300.86 −1.41370
\(177\) 0 0
\(178\) −806.388 + 1396.70i −0.339558 + 0.588132i
\(179\) 660.009 1143.17i 0.275595 0.477344i −0.694690 0.719309i \(-0.744459\pi\)
0.970285 + 0.241965i \(0.0777920\pi\)
\(180\) 0 0
\(181\) −4005.73 −1.64499 −0.822495 0.568772i \(-0.807419\pi\)
−0.822495 + 0.568772i \(0.807419\pi\)
\(182\) 2509.34 1258.40i 1.02200 0.512519i
\(183\) 0 0
\(184\) −205.227 355.464i −0.0822257 0.142419i
\(185\) 736.861 1276.28i 0.292838 0.507211i
\(186\) 0 0
\(187\) 42.3340 + 73.3246i 0.0165549 + 0.0286739i
\(188\) −109.336 −0.0424157
\(189\) 0 0
\(190\) 5237.77 1.99993
\(191\) −855.755 1482.21i −0.324190 0.561514i 0.657158 0.753753i \(-0.271758\pi\)
−0.981348 + 0.192239i \(0.938425\pi\)
\(192\) 0 0
\(193\) −2191.97 + 3796.61i −0.817521 + 1.41599i 0.0899819 + 0.995943i \(0.471319\pi\)
−0.907503 + 0.420045i \(0.862014\pi\)
\(194\) 758.906 + 1314.46i 0.280857 + 0.486459i
\(195\) 0 0
\(196\) 583.050 781.260i 0.212482 0.284716i
\(197\) 1269.36 0.459076 0.229538 0.973300i \(-0.426279\pi\)
0.229538 + 0.973300i \(0.426279\pi\)
\(198\) 0 0
\(199\) −293.283 + 507.981i −0.104474 + 0.180954i −0.913523 0.406787i \(-0.866649\pi\)
0.809049 + 0.587741i \(0.199983\pi\)
\(200\) −2943.30 + 5097.95i −1.04061 + 1.80240i
\(201\) 0 0
\(202\) −5079.85 −1.76939
\(203\) −98.6796 + 1677.33i −0.0341180 + 0.579929i
\(204\) 0 0
\(205\) −3704.95 6417.16i −1.26227 2.18631i
\(206\) 1881.20 3258.33i 0.636259 1.10203i
\(207\) 0 0
\(208\) 1810.46 + 3135.80i 0.603522 + 1.04533i
\(209\) 3073.81 1.01732
\(210\) 0 0
\(211\) 1037.46 0.338491 0.169246 0.985574i \(-0.445867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(212\) 553.340 + 958.414i 0.179262 + 0.310491i
\(213\) 0 0
\(214\) 1321.31 2288.58i 0.422069 0.731046i
\(215\) 5534.59 + 9586.19i 1.75561 + 3.04080i
\(216\) 0 0
\(217\) 822.951 + 541.954i 0.257445 + 0.169540i
\(218\) −4935.68 −1.53342
\(219\) 0 0
\(220\) 1295.02 2243.04i 0.396864 0.687389i
\(221\) 46.4387 80.4342i 0.0141349 0.0244823i
\(222\) 0 0
\(223\) 5421.68 1.62808 0.814041 0.580807i \(-0.197263\pi\)
0.814041 + 0.580807i \(0.197263\pi\)
\(224\) 1904.59 + 1254.27i 0.568107 + 0.374127i
\(225\) 0 0
\(226\) 1073.33 + 1859.07i 0.315916 + 0.547183i
\(227\) −915.300 + 1585.35i −0.267624 + 0.463538i −0.968248 0.249993i \(-0.919572\pi\)
0.700624 + 0.713531i \(0.252905\pi\)
\(228\) 0 0
\(229\) −34.3935 59.5713i −0.00992483 0.0171903i 0.861020 0.508571i \(-0.169826\pi\)
−0.870945 + 0.491380i \(0.836493\pi\)
\(230\) 1728.15 0.495438
\(231\) 0 0
\(232\) −1540.82 −0.436033
\(233\) −2435.97 4219.22i −0.684916 1.18631i −0.973463 0.228844i \(-0.926506\pi\)
0.288547 0.957466i \(-0.406828\pi\)
\(234\) 0 0
\(235\) −417.719 + 723.510i −0.115953 + 0.200836i
\(236\) 640.355 + 1109.13i 0.176625 + 0.305924i
\(237\) 0 0
\(238\) 7.22610 122.827i 0.00196806 0.0334526i
\(239\) 3786.86 1.02490 0.512451 0.858716i \(-0.328737\pi\)
0.512451 + 0.858716i \(0.328737\pi\)
\(240\) 0 0
\(241\) −903.300 + 1564.56i −0.241438 + 0.418184i −0.961124 0.276116i \(-0.910953\pi\)
0.719686 + 0.694300i \(0.244286\pi\)
\(242\) 707.904 1226.12i 0.188040 0.325695i
\(243\) 0 0
\(244\) 642.039 0.168452
\(245\) −2942.28 6843.02i −0.767247 1.78443i
\(246\) 0 0
\(247\) −1685.93 2920.11i −0.434303 0.752235i
\(248\) −451.808 + 782.554i −0.115685 + 0.200372i
\(249\) 0 0
\(250\) −7923.12 13723.3i −2.00441 3.47174i
\(251\) −235.616 −0.0592508 −0.0296254 0.999561i \(-0.509431\pi\)
−0.0296254 + 0.999561i \(0.509431\pi\)
\(252\) 0 0
\(253\) 1014.17 0.252018
\(254\) −1044.31 1808.80i −0.257975 0.446826i
\(255\) 0 0
\(256\) −1939.87 + 3359.96i −0.473601 + 0.820302i
\(257\) 1042.18 + 1805.10i 0.252954 + 0.438129i 0.964338 0.264675i \(-0.0852646\pi\)
−0.711384 + 0.702804i \(0.751931\pi\)
\(258\) 0 0
\(259\) −1123.47 + 563.401i −0.269532 + 0.135166i
\(260\) −2841.17 −0.677700
\(261\) 0 0
\(262\) 3770.44 6530.59i 0.889078 1.53993i
\(263\) −2942.36 + 5096.32i −0.689862 + 1.19488i 0.282020 + 0.959408i \(0.408995\pi\)
−0.971882 + 0.235468i \(0.924338\pi\)
\(264\) 0 0
\(265\) 8456.14 1.96021
\(266\) −3730.58 2456.77i −0.859912 0.566295i
\(267\) 0 0
\(268\) 1097.07 + 1900.18i 0.250053 + 0.433104i
\(269\) 3538.31 6128.53i 0.801987 1.38908i −0.116320 0.993212i \(-0.537110\pi\)
0.918306 0.395870i \(-0.129557\pi\)
\(270\) 0 0
\(271\) −1409.33 2441.03i −0.315907 0.547167i 0.663723 0.747978i \(-0.268975\pi\)
−0.979630 + 0.200812i \(0.935642\pi\)
\(272\) 158.705 0.0353784
\(273\) 0 0
\(274\) 2404.85 0.530227
\(275\) −7272.48 12596.3i −1.59472 2.76213i
\(276\) 0 0
\(277\) −2184.43 + 3783.55i −0.473826 + 0.820691i −0.999551 0.0299636i \(-0.990461\pi\)
0.525725 + 0.850655i \(0.323794\pi\)
\(278\) −1968.05 3408.76i −0.424589 0.735410i
\(279\) 0 0
\(280\) 6105.94 3062.04i 1.30321 0.653543i
\(281\) −520.957 −0.110597 −0.0552984 0.998470i \(-0.517611\pi\)
−0.0552984 + 0.998470i \(0.517611\pi\)
\(282\) 0 0
\(283\) 1416.36 2453.20i 0.297504 0.515292i −0.678060 0.735006i \(-0.737179\pi\)
0.975564 + 0.219714i \(0.0705124\pi\)
\(284\) −1367.98 + 2369.41i −0.285827 + 0.495066i
\(285\) 0 0
\(286\) −6360.66 −1.31508
\(287\) −371.132 + 6308.41i −0.0763318 + 1.29747i
\(288\) 0 0
\(289\) 2454.46 + 4251.26i 0.499586 + 0.865308i
\(290\) 3243.68 5618.22i 0.656812 1.13763i
\(291\) 0 0
\(292\) 1497.49 + 2593.74i 0.300117 + 0.519818i
\(293\) −3591.98 −0.716196 −0.358098 0.933684i \(-0.616575\pi\)
−0.358098 + 0.933684i \(0.616575\pi\)
\(294\) 0 0
\(295\) 9785.90 1.93138
\(296\) −576.269 998.128i −0.113159 0.195997i
\(297\) 0 0
\(298\) −2089.87 + 3619.76i −0.406251 + 0.703648i
\(299\) −556.254 963.461i −0.107589 0.186349i
\(300\) 0 0
\(301\) 554.410 9423.73i 0.106165 1.80457i
\(302\) −1445.42 −0.275412
\(303\) 0 0
\(304\) 2880.84 4989.77i 0.543512 0.941391i
\(305\) 2452.91 4248.56i 0.460502 0.797612i
\(306\) 0 0
\(307\) 2168.14 0.403069 0.201535 0.979481i \(-0.435407\pi\)
0.201535 + 0.979481i \(0.435407\pi\)
\(308\) −1974.47 + 990.168i −0.365279 + 0.183182i
\(309\) 0 0
\(310\) −1902.26 3294.81i −0.348520 0.603654i
\(311\) −3609.01 + 6250.99i −0.658032 + 1.13975i 0.323092 + 0.946368i \(0.395278\pi\)
−0.981124 + 0.193378i \(0.938056\pi\)
\(312\) 0 0
\(313\) −1522.27 2636.64i −0.274900 0.476140i 0.695210 0.718807i \(-0.255311\pi\)
−0.970110 + 0.242666i \(0.921978\pi\)
\(314\) 5881.73 1.05709
\(315\) 0 0
\(316\) 95.4682 0.0169953
\(317\) 3055.39 + 5292.08i 0.541349 + 0.937644i 0.998827 + 0.0484229i \(0.0154195\pi\)
−0.457478 + 0.889221i \(0.651247\pi\)
\(318\) 0 0
\(319\) 1903.57 3297.08i 0.334105 0.578687i
\(320\) 2430.31 + 4209.43i 0.424558 + 0.735356i
\(321\) 0 0
\(322\) −1230.87 810.588i −0.213024 0.140287i
\(323\) −147.789 −0.0254588
\(324\) 0 0
\(325\) −7977.63 + 13817.7i −1.36160 + 2.35836i
\(326\) −1394.85 + 2415.96i −0.236975 + 0.410453i
\(327\) 0 0
\(328\) −5794.99 −0.975533
\(329\) 636.881 319.386i 0.106725 0.0535208i
\(330\) 0 0
\(331\) −748.710 1296.80i −0.124329 0.215344i 0.797142 0.603792i \(-0.206344\pi\)
−0.921470 + 0.388449i \(0.873011\pi\)
\(332\) 634.337 1098.70i 0.104861 0.181624i
\(333\) 0 0
\(334\) −2394.90 4148.09i −0.392344 0.679560i
\(335\) 16765.4 2.73430
\(336\) 0 0
\(337\) −8157.61 −1.31861 −0.659307 0.751873i \(-0.729150\pi\)
−0.659307 + 0.751873i \(0.729150\pi\)
\(338\) −128.371 222.345i −0.0206581 0.0357809i
\(339\) 0 0
\(340\) −62.2646 + 107.845i −0.00993168 + 0.0172022i
\(341\) −1116.35 1933.58i −0.177284 0.307065i
\(342\) 0 0
\(343\) −1114.09 + 6253.99i −0.175379 + 0.984501i
\(344\) 8656.76 1.35681
\(345\) 0 0
\(346\) −1398.61 + 2422.46i −0.217311 + 0.376394i
\(347\) −4566.56 + 7909.51i −0.706472 + 1.22364i 0.259686 + 0.965693i \(0.416381\pi\)
−0.966158 + 0.257952i \(0.916952\pi\)
\(348\) 0 0
\(349\) −9528.48 −1.46145 −0.730727 0.682670i \(-0.760819\pi\)
−0.730727 + 0.682670i \(0.760819\pi\)
\(350\) −1241.36 + 21100.3i −0.189581 + 3.22245i
\(351\) 0 0
\(352\) −2583.63 4474.97i −0.391215 0.677605i
\(353\) −1678.67 + 2907.55i −0.253107 + 0.438394i −0.964380 0.264522i \(-0.914786\pi\)
0.711273 + 0.702916i \(0.248119\pi\)
\(354\) 0 0
\(355\) 10452.7 + 18104.7i 1.56274 + 2.70675i
\(356\) −1392.06 −0.207244
\(357\) 0 0
\(358\) 4346.47 0.641671
\(359\) 46.4867 + 80.5174i 0.00683420 + 0.0118372i 0.869422 0.494070i \(-0.164491\pi\)
−0.862588 + 0.505907i \(0.831158\pi\)
\(360\) 0 0
\(361\) 746.814 1293.52i 0.108881 0.188587i
\(362\) −6594.90 11422.7i −0.957514 1.65846i
\(363\) 0 0
\(364\) 2023.61 + 1332.65i 0.291391 + 0.191895i
\(365\) 22884.7 3.28175
\(366\) 0 0
\(367\) 3392.95 5876.77i 0.482590 0.835871i −0.517210 0.855859i \(-0.673029\pi\)
0.999800 + 0.0199876i \(0.00636268\pi\)
\(368\) 950.506 1646.32i 0.134643 0.233208i
\(369\) 0 0
\(370\) 4852.57 0.681820
\(371\) −6022.86 3966.35i −0.842833 0.555048i
\(372\) 0 0
\(373\) 3725.53 + 6452.80i 0.517159 + 0.895746i 0.999801 + 0.0199284i \(0.00634382\pi\)
−0.482642 + 0.875818i \(0.660323\pi\)
\(374\) −139.395 + 241.438i −0.0192725 + 0.0333810i
\(375\) 0 0
\(376\) 326.681 + 565.828i 0.0448066 + 0.0776073i
\(377\) −4176.29 −0.570530
\(378\) 0 0
\(379\) 4014.67 0.544115 0.272058 0.962281i \(-0.412296\pi\)
0.272058 + 0.962281i \(0.412296\pi\)
\(380\) 2260.47 + 3915.25i 0.305157 + 0.528548i
\(381\) 0 0
\(382\) 2817.78 4880.53i 0.377408 0.653690i
\(383\) −3232.44 5598.74i −0.431253 0.746951i 0.565729 0.824591i \(-0.308595\pi\)
−0.996981 + 0.0776399i \(0.975262\pi\)
\(384\) 0 0
\(385\) −991.224 + 16848.6i −0.131214 + 2.23035i
\(386\) −14435.2 −1.90345
\(387\) 0 0
\(388\) −655.044 + 1134.57i −0.0857084 + 0.148451i
\(389\) −3472.03 + 6013.73i −0.452542 + 0.783826i −0.998543 0.0539584i \(-0.982816\pi\)
0.546001 + 0.837785i \(0.316150\pi\)
\(390\) 0 0
\(391\) −48.7615 −0.00630684
\(392\) −5785.19 683.064i −0.745398 0.0880101i
\(393\) 0 0
\(394\) 2089.83 + 3619.69i 0.267218 + 0.462835i
\(395\) 364.736 631.741i 0.0464604 0.0804717i
\(396\) 0 0
\(397\) −681.535 1180.45i −0.0861594 0.149232i 0.819725 0.572757i \(-0.194126\pi\)
−0.905885 + 0.423524i \(0.860793\pi\)
\(398\) −1931.41 −0.243248
\(399\) 0 0
\(400\) −27263.7 −3.40797
\(401\) 1944.54 + 3368.04i 0.242158 + 0.419431i 0.961329 0.275403i \(-0.0888113\pi\)
−0.719170 + 0.694834i \(0.755478\pi\)
\(402\) 0 0
\(403\) −1224.60 + 2121.06i −0.151368 + 0.262178i
\(404\) −2192.32 3797.21i −0.269980 0.467619i
\(405\) 0 0
\(406\) −4945.53 + 2480.11i −0.604538 + 0.303167i
\(407\) 2847.76 0.346826
\(408\) 0 0
\(409\) 4186.88 7251.88i 0.506180 0.876730i −0.493794 0.869579i \(-0.664390\pi\)
0.999974 0.00715125i \(-0.00227633\pi\)
\(410\) 12199.4 21130.0i 1.46948 2.54521i
\(411\) 0 0
\(412\) 3247.49 0.388331
\(413\) −6969.97 4590.07i −0.830435 0.546883i
\(414\) 0 0
\(415\) −4846.97 8395.19i −0.573321 0.993021i
\(416\) −2834.14 + 4908.87i −0.334027 + 0.578551i
\(417\) 0 0
\(418\) 5060.62 + 8765.25i 0.592160 + 1.02565i
\(419\) 11115.8 1.29604 0.648022 0.761621i \(-0.275596\pi\)
0.648022 + 0.761621i \(0.275596\pi\)
\(420\) 0 0
\(421\) 9201.47 1.06521 0.532604 0.846365i \(-0.321214\pi\)
0.532604 + 0.846365i \(0.321214\pi\)
\(422\) 1708.04 + 2958.41i 0.197028 + 0.341263i
\(423\) 0 0
\(424\) 3306.60 5727.21i 0.378733 0.655985i
\(425\) 349.661 + 605.631i 0.0399084 + 0.0691233i
\(426\) 0 0
\(427\) −3739.86 + 1875.48i −0.423851 + 0.212555i
\(428\) 2280.96 0.257603
\(429\) 0 0
\(430\) −18223.9 + 31564.8i −2.04380 + 3.53997i
\(431\) 1498.56 2595.58i 0.167478 0.290081i −0.770054 0.637978i \(-0.779771\pi\)
0.937533 + 0.347898i \(0.113104\pi\)
\(432\) 0 0
\(433\) −4285.85 −0.475669 −0.237835 0.971306i \(-0.576438\pi\)
−0.237835 + 0.971306i \(0.576438\pi\)
\(434\) −190.553 + 3238.98i −0.0210757 + 0.358239i
\(435\) 0 0
\(436\) −2130.10 3689.44i −0.233975 0.405257i
\(437\) −885.126 + 1533.08i −0.0968909 + 0.167820i
\(438\) 0 0
\(439\) −1525.58 2642.37i −0.165858 0.287275i 0.771102 0.636712i \(-0.219706\pi\)
−0.936960 + 0.349437i \(0.886373\pi\)
\(440\) −15477.3 −1.67694
\(441\) 0 0
\(442\) 305.821 0.0329104
\(443\) −5785.50 10020.8i −0.620491 1.07472i −0.989394 0.145254i \(-0.953600\pi\)
0.368904 0.929468i \(-0.379733\pi\)
\(444\) 0 0
\(445\) −5318.35 + 9211.65i −0.566548 + 0.981290i
\(446\) 8926.07 + 15460.4i 0.947672 + 1.64142i
\(447\) 0 0
\(448\) 243.449 4138.09i 0.0256739 0.436398i
\(449\) 3588.18 0.377142 0.188571 0.982060i \(-0.439614\pi\)
0.188571 + 0.982060i \(0.439614\pi\)
\(450\) 0 0
\(451\) 7159.29 12400.3i 0.747490 1.29469i
\(452\) −926.441 + 1604.64i −0.0964073 + 0.166982i
\(453\) 0 0
\(454\) −6027.68 −0.623113
\(455\) 16549.8 8299.46i 1.70520 0.855131i
\(456\) 0 0
\(457\) 4683.70 + 8112.41i 0.479419 + 0.830377i 0.999721 0.0236044i \(-0.00751421\pi\)
−0.520303 + 0.853982i \(0.674181\pi\)
\(458\) 113.249 196.152i 0.0115541 0.0200122i
\(459\) 0 0
\(460\) 745.820 + 1291.80i 0.0755957 + 0.130936i
\(461\) −1091.46 −0.110269 −0.0551346 0.998479i \(-0.517559\pi\)
−0.0551346 + 0.998479i \(0.517559\pi\)
\(462\) 0 0
\(463\) 13226.1 1.32758 0.663790 0.747919i \(-0.268947\pi\)
0.663790 + 0.747919i \(0.268947\pi\)
\(464\) −3568.14 6180.20i −0.356997 0.618338i
\(465\) 0 0
\(466\) 8020.99 13892.8i 0.797350 1.38105i
\(467\) −5670.70 9821.95i −0.561903 0.973245i −0.997330 0.0730211i \(-0.976736\pi\)
0.435427 0.900224i \(-0.356597\pi\)
\(468\) 0 0
\(469\) −11941.1 7863.80i −1.17567 0.774236i
\(470\) −2750.87 −0.269975
\(471\) 0 0
\(472\) 3826.58 6627.83i 0.373162 0.646336i
\(473\) −10694.8 + 18523.9i −1.03964 + 1.80070i
\(474\) 0 0
\(475\) 25388.4 2.45242
\(476\) 94.9326 47.6073i 0.00914124 0.00458420i
\(477\) 0 0
\(478\) 6234.57 + 10798.6i 0.596574 + 1.03330i
\(479\) −8512.21 + 14743.6i −0.811968 + 1.40637i 0.0995168 + 0.995036i \(0.468270\pi\)
−0.911485 + 0.411334i \(0.865063\pi\)
\(480\) 0 0
\(481\) −1561.94 2705.36i −0.148063 0.256453i
\(482\) −5948.66 −0.562145
\(483\) 0 0
\(484\) 1222.04 0.114767
\(485\) 5005.19 + 8669.24i 0.468606 + 0.811650i
\(486\) 0 0
\(487\) −4862.35 + 8421.84i −0.452431 + 0.783634i −0.998536 0.0540825i \(-0.982777\pi\)
0.546105 + 0.837717i \(0.316110\pi\)
\(488\) −1918.32 3322.63i −0.177947 0.308214i
\(489\) 0 0
\(490\) 14669.4 19656.3i 1.35244 1.81221i
\(491\) −16363.4 −1.50402 −0.752008 0.659154i \(-0.770915\pi\)
−0.752008 + 0.659154i \(0.770915\pi\)
\(492\) 0 0
\(493\) −91.5238 + 158.524i −0.00836111 + 0.0144819i
\(494\) 5551.30 9615.14i 0.505597 0.875720i
\(495\) 0 0
\(496\) −4185.08 −0.378862
\(497\) 1047.07 17797.8i 0.0945020 1.60632i
\(498\) 0 0
\(499\) 2726.23 + 4721.96i 0.244575 + 0.423616i 0.962012 0.273007i \(-0.0880184\pi\)
−0.717437 + 0.696623i \(0.754685\pi\)
\(500\) 6838.79 11845.1i 0.611680 1.05946i
\(501\) 0 0
\(502\) −387.910 671.880i −0.0344886 0.0597360i
\(503\) −3703.99 −0.328336 −0.164168 0.986432i \(-0.552494\pi\)
−0.164168 + 0.986432i \(0.552494\pi\)
\(504\) 0 0
\(505\) −33503.0 −2.95220
\(506\) 1669.70 + 2892.01i 0.146694 + 0.254082i
\(507\) 0 0
\(508\) 901.388 1561.25i 0.0787256 0.136357i
\(509\) −826.843 1432.13i −0.0720023 0.124712i 0.827776 0.561058i \(-0.189606\pi\)
−0.899779 + 0.436346i \(0.856272\pi\)
\(510\) 0 0
\(511\) −16299.5 10734.1i −1.41105 0.929250i
\(512\) 1001.60 0.0864546
\(513\) 0 0
\(514\) −3431.61 + 5943.72i −0.294478 + 0.510051i
\(515\) 12407.0 21489.6i 1.06159 1.83873i
\(516\) 0 0
\(517\) −1614.36 −0.137330
\(518\) −3456.23 2276.10i −0.293162 0.193062i
\(519\) 0 0
\(520\) 8489.01 + 14703.4i 0.715900 + 1.23997i
\(521\) 1550.15 2684.94i 0.130352 0.225776i −0.793460 0.608622i \(-0.791723\pi\)
0.923812 + 0.382846i \(0.125056\pi\)
\(522\) 0 0
\(523\) 1562.72 + 2706.70i 0.130655 + 0.226302i 0.923929 0.382563i \(-0.124958\pi\)
−0.793274 + 0.608865i \(0.791625\pi\)
\(524\) 6508.85 0.542635
\(525\) 0 0
\(526\) −19376.8 −1.60622
\(527\) 53.6743 + 92.9666i 0.00443660 + 0.00768442i
\(528\) 0 0
\(529\) 5791.46 10031.1i 0.475997 0.824452i
\(530\) 13921.9 + 24113.5i 1.14100 + 1.97627i
\(531\) 0 0
\(532\) 226.436 3848.90i 0.0184534 0.313667i
\(533\) −15706.9 −1.27644
\(534\) 0 0
\(535\) 8714.39 15093.8i 0.704217 1.21974i
\(536\) 6555.77 11354.9i 0.528295 0.915034i
\(537\) 0 0
\(538\) 23301.4 1.86728
\(539\) 8608.82 11535.4i 0.687956 0.921828i
\(540\) 0 0
\(541\) −10757.2 18632.0i −0.854874 1.48069i −0.876762 0.480925i \(-0.840301\pi\)
0.0218880 0.999760i \(-0.493032\pi\)
\(542\) 4640.55 8037.67i 0.367765 0.636988i
\(543\) 0 0
\(544\) 124.221 + 215.157i 0.00979031 + 0.0169573i
\(545\) −32552.2 −2.55850
\(546\) 0 0
\(547\) −13104.4 −1.02432 −0.512161 0.858889i \(-0.671155\pi\)
−0.512161 + 0.858889i \(0.671155\pi\)
\(548\) 1037.86 + 1797.63i 0.0809039 + 0.140130i
\(549\) 0 0
\(550\) 23946.3 41476.3i 1.85650 3.21555i
\(551\) 3322.71 + 5755.10i 0.256900 + 0.444965i
\(552\) 0 0
\(553\) −556.100 + 278.876i −0.0427627 + 0.0214449i
\(554\) −14385.5 −1.10322
\(555\) 0 0
\(556\) 1698.71 2942.25i 0.129571 0.224423i
\(557\) −9397.45 + 16276.9i −0.714870 + 1.23819i 0.248139 + 0.968724i \(0.420181\pi\)
−0.963009 + 0.269467i \(0.913152\pi\)
\(558\) 0 0
\(559\) 23463.6 1.77532
\(560\) 26421.6 + 17399.9i 1.99378 + 1.31300i
\(561\) 0 0
\(562\) −857.687 1485.56i −0.0643761 0.111503i
\(563\) −8724.85 + 15111.9i −0.653124 + 1.13124i 0.329237 + 0.944247i \(0.393208\pi\)
−0.982361 + 0.186996i \(0.940125\pi\)
\(564\) 0 0
\(565\) 7078.93 + 12261.1i 0.527102 + 0.912968i
\(566\) 9327.38 0.692684
\(567\) 0 0
\(568\) 16349.3 1.20775
\(569\) 11420.4 + 19780.8i 0.841423 + 1.45739i 0.888691 + 0.458506i \(0.151615\pi\)
−0.0472680 + 0.998882i \(0.515051\pi\)
\(570\) 0 0
\(571\) −448.021 + 775.995i −0.0328355 + 0.0568728i −0.881976 0.471294i \(-0.843787\pi\)
0.849141 + 0.528167i \(0.177120\pi\)
\(572\) −2745.08 4754.62i −0.200660 0.347553i
\(573\) 0 0
\(574\) −18600.0 + 9327.64i −1.35253 + 0.678272i
\(575\) 8376.65 0.607531
\(576\) 0 0
\(577\) 1483.10 2568.80i 0.107005 0.185339i −0.807550 0.589799i \(-0.799207\pi\)
0.914556 + 0.404460i \(0.132540\pi\)
\(578\) −8081.90 + 13998.3i −0.581596 + 1.00735i
\(579\) 0 0
\(580\) 5599.52 0.400875
\(581\) −485.530 + 8252.92i −0.0346698 + 0.589309i
\(582\) 0 0
\(583\) 8170.15 + 14151.1i 0.580399 + 1.00528i
\(584\) 8948.60 15499.4i 0.634068 1.09824i
\(585\) 0 0
\(586\) −5913.71 10242.8i −0.416882 0.722062i
\(587\) −1872.80 −0.131684 −0.0658420 0.997830i \(-0.520973\pi\)
−0.0658420 + 0.997830i \(0.520973\pi\)
\(588\) 0 0
\(589\) 3897.21 0.272635
\(590\) 16111.2 + 27905.4i 1.12421 + 1.94720i
\(591\) 0 0
\(592\) 2668.98 4622.81i 0.185295 0.320940i
\(593\) 8549.50 + 14808.2i 0.592051 + 1.02546i 0.993956 + 0.109781i \(0.0350148\pi\)
−0.401905 + 0.915681i \(0.631652\pi\)
\(594\) 0 0
\(595\) 47.6581 810.080i 0.00328368 0.0558152i
\(596\) −3607.71 −0.247949
\(597\) 0 0
\(598\) 1831.60 3172.42i 0.125250 0.216940i
\(599\) −5709.09 + 9888.44i −0.389428 + 0.674509i −0.992373 0.123274i \(-0.960661\pi\)
0.602945 + 0.797783i \(0.293994\pi\)
\(600\) 0 0
\(601\) −10231.6 −0.694432 −0.347216 0.937785i \(-0.612873\pi\)
−0.347216 + 0.937785i \(0.612873\pi\)
\(602\) 27785.4 13934.0i 1.88114 0.943365i
\(603\) 0 0
\(604\) −623.800 1080.45i −0.0420233 0.0727865i
\(605\) 4668.82 8086.63i 0.313743 0.543418i
\(606\) 0 0
\(607\) 6095.70 + 10558.1i 0.407606 + 0.705995i 0.994621 0.103582i \(-0.0330303\pi\)
−0.587015 + 0.809576i \(0.699697\pi\)
\(608\) 9019.51 0.601627
\(609\) 0 0
\(610\) 16153.5 1.07219
\(611\) 885.447 + 1533.64i 0.0586274 + 0.101546i
\(612\) 0 0
\(613\) 3824.87 6624.88i 0.252015 0.436503i −0.712065 0.702113i \(-0.752240\pi\)
0.964080 + 0.265610i \(0.0855734\pi\)
\(614\) 3569.55 + 6182.65i 0.234618 + 0.406370i
\(615\) 0 0
\(616\) 11023.7 + 7259.64i 0.721033 + 0.474836i
\(617\) −19107.4 −1.24673 −0.623367 0.781929i \(-0.714236\pi\)
−0.623367 + 0.781929i \(0.714236\pi\)
\(618\) 0 0
\(619\) −8831.65 + 15296.9i −0.573464 + 0.993269i 0.422743 + 0.906250i \(0.361067\pi\)
−0.996207 + 0.0870189i \(0.972266\pi\)
\(620\) 1641.92 2843.90i 0.106357 0.184216i
\(621\) 0 0
\(622\) −23767.0 −1.53211
\(623\) 8108.70 4066.39i 0.521458 0.261503i
\(624\) 0 0
\(625\) −30592.3 52987.4i −1.95791 3.39120i
\(626\) 5012.42 8681.77i 0.320027 0.554303i
\(627\) 0 0
\(628\) 2538.39 + 4396.61i 0.161294 + 0.279369i
\(629\) −136.920 −0.00867944
\(630\) 0 0
\(631\) 5523.07 0.348447 0.174223 0.984706i \(-0.444259\pi\)
0.174223 + 0.984706i \(0.444259\pi\)
\(632\) −285.245 494.059i −0.0179532 0.0310959i
\(633\) 0 0
\(634\) −10060.6 + 17425.4i −0.630215 + 1.09157i
\(635\) −6887.50 11929.5i −0.430428 0.745524i
\(636\) 0 0
\(637\) −15680.4 1851.40i −0.975320 0.115157i
\(638\) 12535.9 0.777902
\(639\) 0 0
\(640\) −18698.6 + 32387.0i −1.15489 + 2.00033i
\(641\) 8727.00 15115.6i 0.537747 0.931405i −0.461278 0.887256i \(-0.652609\pi\)
0.999025 0.0441491i \(-0.0140577\pi\)
\(642\) 0 0
\(643\) −8175.22 −0.501398 −0.250699 0.968065i \(-0.580660\pi\)
−0.250699 + 0.968065i \(0.580660\pi\)
\(644\) 74.7102 1269.91i 0.00457142 0.0777039i
\(645\) 0 0
\(646\) −243.315 421.434i −0.0148190 0.0256673i
\(647\) −12500.3 + 21651.2i −0.759564 + 1.31560i 0.183509 + 0.983018i \(0.441254\pi\)
−0.943073 + 0.332586i \(0.892079\pi\)
\(648\) 0 0
\(649\) 9454.93 + 16376.4i 0.571862 + 0.990494i
\(650\) −52536.4 −3.17023
\(651\) 0 0
\(652\) −2407.92 −0.144634
\(653\) −384.545 666.052i −0.0230451 0.0399152i 0.854273 0.519825i \(-0.174003\pi\)
−0.877318 + 0.479910i \(0.840669\pi\)
\(654\) 0 0
\(655\) 24867.1 43071.0i 1.48341 2.56935i
\(656\) −13419.7 23243.6i −0.798707 1.38340i
\(657\) 0 0
\(658\) 1959.30 + 1290.30i 0.116081 + 0.0764453i
\(659\) −7037.98 −0.416025 −0.208013 0.978126i \(-0.566700\pi\)
−0.208013 + 0.978126i \(0.566700\pi\)
\(660\) 0 0
\(661\) −2044.87 + 3541.82i −0.120327 + 0.208413i −0.919897 0.392161i \(-0.871728\pi\)
0.799569 + 0.600574i \(0.205061\pi\)
\(662\) 2465.30 4270.03i 0.144738 0.250694i
\(663\) 0 0
\(664\) −7581.24 −0.443086
\(665\) −24604.2 16203.1i −1.43475 0.944855i
\(666\) 0 0
\(667\) 1096.29 + 1898.84i 0.0636412 + 0.110230i
\(668\) 2067.14 3580.39i 0.119731 0.207379i
\(669\) 0 0
\(670\) 27602.0 + 47808.0i 1.59158 + 2.75669i
\(671\) 9479.79 0.545400
\(672\) 0 0
\(673\) 2151.39 0.123224 0.0616121 0.998100i \(-0.480376\pi\)
0.0616121 + 0.998100i \(0.480376\pi\)
\(674\) −13430.4 23262.2i −0.767538 1.32941i
\(675\) 0 0
\(676\) 110.802 191.915i 0.00630418 0.0109192i
\(677\) −3837.80 6647.27i −0.217871 0.377364i 0.736286 0.676671i \(-0.236578\pi\)
−0.954157 + 0.299307i \(0.903245\pi\)
\(678\) 0 0
\(679\) 501.379 8522.32i 0.0283375 0.481674i
\(680\) 744.151 0.0419660
\(681\) 0 0
\(682\) 3675.85 6366.76i 0.206387 0.357472i
\(683\) 8049.29 13941.8i 0.450948 0.781065i −0.547497 0.836807i \(-0.684419\pi\)
0.998445 + 0.0557429i \(0.0177527\pi\)
\(684\) 0 0
\(685\) 15860.6 0.884676
\(686\) −19668.0 + 7119.45i −1.09465 + 0.396242i
\(687\) 0 0
\(688\) 20046.8 + 34722.1i 1.11087 + 1.92408i
\(689\) 8962.33 15523.2i 0.495555 0.858327i
\(690\) 0 0
\(691\) −9541.91 16527.1i −0.525313 0.909869i −0.999565 0.0294802i \(-0.990615\pi\)
0.474252 0.880389i \(-0.342719\pi\)
\(692\) −2414.40 −0.132632
\(693\) 0 0
\(694\) −30072.9 −1.64489
\(695\) −12979.8 22481.7i −0.708421 1.22702i
\(696\) 0 0
\(697\) −344.219 + 596.205i −0.0187062 + 0.0324001i
\(698\) −15687.4 27171.3i −0.850682 1.47342i
\(699\) 0 0
\(700\) −16308.3 + 8178.37i −0.880565 + 0.441591i
\(701\) 29898.7 1.61093 0.805463 0.592646i \(-0.201917\pi\)
0.805463 + 0.592646i \(0.201917\pi\)
\(702\) 0 0
\(703\) −2485.40 + 4304.83i −0.133341 + 0.230953i
\(704\) −4696.24 + 8134.12i −0.251415 + 0.435463i
\(705\) 0 0
\(706\) −11054.8 −0.589312
\(707\) 23862.4 + 15714.6i 1.26936 + 0.835937i
\(708\) 0 0
\(709\) −9939.56 17215.8i −0.526500 0.911924i −0.999523 0.0308743i \(-0.990171\pi\)
0.473024 0.881050i \(-0.343162\pi\)
\(710\) −34418.1 + 59613.9i −1.81928 + 3.15108i
\(711\) 0 0
\(712\) 4159.27 + 7204.06i 0.218926 + 0.379190i
\(713\) 1285.85 0.0675390
\(714\) 0 0
\(715\) −41950.3 −2.19420
\(716\) 1875.81 + 3249.00i 0.0979085 + 0.169582i
\(717\) 0 0
\(718\) −153.069 + 265.122i −0.00795608 + 0.0137803i
\(719\) −6820.25 11813.0i −0.353758 0.612728i 0.633146 0.774032i \(-0.281763\pi\)
−0.986905 + 0.161305i \(0.948430\pi\)
\(720\) 0 0
\(721\) −18916.5 + 9486.37i −0.977099 + 0.490001i
\(722\) 4918.12 0.253509
\(723\) 0 0
\(724\) 5692.34 9859.42i 0.292202 0.506108i
\(725\) 15722.7 27232.5i 0.805416 1.39502i
\(726\) 0 0
\(727\) −10021.8 −0.511262 −0.255631 0.966774i \(-0.582283\pi\)
−0.255631 + 0.966774i \(0.582283\pi\)
\(728\) 850.361 14454.2i 0.0432918 0.735864i
\(729\) 0 0
\(730\) 37676.6 + 65257.8i 1.91024 + 3.30863i
\(731\) 514.207 890.632i 0.0260173 0.0450632i
\(732\) 0 0
\(733\) 12044.0 + 20860.8i 0.606898 + 1.05118i 0.991749 + 0.128199i \(0.0409195\pi\)
−0.384851 + 0.922979i \(0.625747\pi\)
\(734\) 22344.2 1.12362
\(735\) 0 0
\(736\) 2975.90 0.149039
\(737\) 16198.4 + 28056.4i 0.809599 + 1.40227i
\(738\) 0 0
\(739\) −12328.9 + 21354.4i −0.613705 + 1.06297i 0.376906 + 0.926252i \(0.376988\pi\)
−0.990610 + 0.136716i \(0.956345\pi\)
\(740\) 2094.23 + 3627.32i 0.104034 + 0.180193i
\(741\) 0 0
\(742\) 1394.58 23704.8i 0.0689984 1.17282i
\(743\) 13467.0 0.664948 0.332474 0.943112i \(-0.392117\pi\)
0.332474 + 0.943112i \(0.392117\pi\)
\(744\) 0 0
\(745\) −13783.3 + 23873.3i −0.677825 + 1.17403i
\(746\) −12267.2 + 21247.4i −0.602055 + 1.04279i
\(747\) 0 0
\(748\) −240.635 −0.0117627
\(749\) −13286.5 + 6663.00i −0.648170 + 0.325048i
\(750\) 0 0
\(751\) 3440.08 + 5958.39i 0.167151 + 0.289513i 0.937417 0.348209i \(-0.113210\pi\)
−0.770266 + 0.637722i \(0.779877\pi\)
\(752\) −1513.02 + 2620.63i −0.0733698 + 0.127080i
\(753\) 0 0
\(754\) −6875.71 11909.1i −0.332093 0.575203i
\(755\) −9532.91 −0.459521
\(756\) 0 0
\(757\) 33528.2 1.60978 0.804889 0.593425i \(-0.202225\pi\)
0.804889 + 0.593425i \(0.202225\pi\)
\(758\) 6609.62 + 11448.2i 0.316718 + 0.548572i
\(759\) 0 0
\(760\) 13507.9 23396.4i 0.644716 1.11668i
\(761\) 545.457 + 944.759i 0.0259826 + 0.0450033i 0.878724 0.477330i \(-0.158395\pi\)
−0.852742 + 0.522333i \(0.825062\pi\)
\(762\) 0 0
\(763\) 23185.2 + 15268.6i 1.10008 + 0.724456i
\(764\) 4864.29 0.230345
\(765\) 0 0
\(766\) 10643.6 18435.2i 0.502046 0.869569i
\(767\) 10371.7 17964.3i 0.488266 0.845702i
\(768\) 0 0
\(769\) 30520.8 1.43122 0.715609 0.698501i \(-0.246149\pi\)
0.715609 + 0.698501i \(0.246149\pi\)
\(770\) −49677.2 + 24912.4i −2.32499 + 1.16595i
\(771\) 0 0
\(772\) −6229.81 10790.3i −0.290435 0.503048i
\(773\) 3924.15 6796.82i 0.182590 0.316255i −0.760172 0.649722i \(-0.774885\pi\)
0.942762 + 0.333467i \(0.108219\pi\)
\(774\) 0 0
\(775\) −9220.61 15970.6i −0.427373 0.740231i
\(776\) 7828.72 0.362158
\(777\) 0 0
\(778\) −22865.0 −1.05366
\(779\) 12496.6 + 21644.8i 0.574760 + 0.995514i
\(780\) 0