Properties

Label 189.4.e.h.109.4
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.4
Root \(0.128480 - 0.222533i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.h.163.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.884622 - 1.53221i) q^{2} +(2.43489 - 4.21735i) q^{4} +(6.52561 + 11.3027i) q^{5} +(-18.4950 - 0.966772i) q^{7} -22.7698 q^{8} +O(q^{10})\) \(q+(-0.884622 - 1.53221i) q^{2} +(2.43489 - 4.21735i) q^{4} +(6.52561 + 11.3027i) q^{5} +(-18.4950 - 0.966772i) q^{7} -22.7698 q^{8} +(11.5454 - 19.9972i) q^{10} +(26.4705 - 45.8483i) q^{11} -71.7001 q^{13} +(14.8798 + 29.1935i) q^{14} +(0.663570 + 1.14934i) q^{16} +(53.2866 - 92.2950i) q^{17} +(-26.9643 - 46.7035i) q^{19} +63.5565 q^{20} -93.6656 q^{22} +(9.32943 + 16.1590i) q^{23} +(-22.6672 + 39.2608i) q^{25} +(63.4275 + 109.860i) q^{26} +(-49.1105 + 75.6459i) q^{28} -261.806 q^{29} +(61.1632 - 105.938i) q^{31} +(-89.9051 + 155.720i) q^{32} -188.554 q^{34} +(-109.764 - 215.352i) q^{35} +(-139.069 - 240.874i) q^{37} +(-47.7064 + 82.6298i) q^{38} +(-148.587 - 257.360i) q^{40} +31.3788 q^{41} -347.239 q^{43} +(-128.905 - 223.271i) q^{44} +(16.5060 - 28.5893i) q^{46} +(271.109 + 469.575i) q^{47} +(341.131 + 35.7609i) q^{49} +80.2078 q^{50} +(-174.582 + 302.384i) q^{52} +(-128.528 + 222.618i) q^{53} +690.945 q^{55} +(421.127 + 22.0132i) q^{56} +(231.599 + 401.142i) q^{58} +(157.810 - 273.335i) q^{59} +(-69.4019 - 120.208i) q^{61} -216.425 q^{62} +328.745 q^{64} +(-467.887 - 810.405i) q^{65} +(-198.950 + 344.592i) q^{67} +(-259.493 - 449.456i) q^{68} +(-232.865 + 358.687i) q^{70} +843.419 q^{71} +(436.140 - 755.417i) q^{73} +(-246.047 + 426.165i) q^{74} -262.620 q^{76} +(-533.897 + 822.373i) q^{77} +(277.456 + 480.568i) q^{79} +(-8.66040 + 15.0002i) q^{80} +(-27.7584 - 48.0789i) q^{82} +297.114 q^{83} +1390.91 q^{85} +(307.176 + 532.044i) q^{86} +(-602.728 + 1043.96i) q^{88} +(51.2419 + 88.7536i) q^{89} +(1326.09 + 69.3177i) q^{91} +90.8644 q^{92} +(479.659 - 830.793i) q^{94} +(351.916 - 609.537i) q^{95} -515.437 q^{97} +(-246.979 - 554.319i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.884622 1.53221i −0.312761 0.541718i 0.666198 0.745775i \(-0.267921\pi\)
−0.978959 + 0.204057i \(0.934587\pi\)
\(3\) 0 0
\(4\) 2.43489 4.21735i 0.304361 0.527168i
\(5\) 6.52561 + 11.3027i 0.583669 + 1.01094i 0.995040 + 0.0994757i \(0.0317166\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(6\) 0 0
\(7\) −18.4950 0.966772i −0.998637 0.0522008i
\(8\) −22.7698 −1.00629
\(9\) 0 0
\(10\) 11.5454 19.9972i 0.365098 0.632368i
\(11\) 26.4705 45.8483i 0.725560 1.25671i −0.233183 0.972433i \(-0.574914\pi\)
0.958743 0.284274i \(-0.0917525\pi\)
\(12\) 0 0
\(13\) −71.7001 −1.52970 −0.764848 0.644211i \(-0.777186\pi\)
−0.764848 + 0.644211i \(0.777186\pi\)
\(14\) 14.8798 + 29.1935i 0.284057 + 0.557306i
\(15\) 0 0
\(16\) 0.663570 + 1.14934i 0.0103683 + 0.0179584i
\(17\) 53.2866 92.2950i 0.760229 1.31676i −0.182504 0.983205i \(-0.558420\pi\)
0.942732 0.333550i \(-0.108247\pi\)
\(18\) 0 0
\(19\) −26.9643 46.7035i −0.325580 0.563921i 0.656049 0.754718i \(-0.272226\pi\)
−0.981630 + 0.190797i \(0.938893\pi\)
\(20\) 63.5565 0.710583
\(21\) 0 0
\(22\) −93.6656 −0.907708
\(23\) 9.32943 + 16.1590i 0.0845792 + 0.146495i 0.905212 0.424961i \(-0.139712\pi\)
−0.820633 + 0.571456i \(0.806379\pi\)
\(24\) 0 0
\(25\) −22.6672 + 39.2608i −0.181338 + 0.314086i
\(26\) 63.4275 + 109.860i 0.478429 + 0.828664i
\(27\) 0 0
\(28\) −49.1105 + 75.6459i −0.331464 + 0.510562i
\(29\) −261.806 −1.67642 −0.838208 0.545350i \(-0.816397\pi\)
−0.838208 + 0.545350i \(0.816397\pi\)
\(30\) 0 0
\(31\) 61.1632 105.938i 0.354362 0.613773i −0.632646 0.774441i \(-0.718031\pi\)
0.987009 + 0.160667i \(0.0513646\pi\)
\(32\) −89.9051 + 155.720i −0.496660 + 0.860241i
\(33\) 0 0
\(34\) −188.554 −0.951081
\(35\) −109.764 215.352i −0.530101 1.04003i
\(36\) 0 0
\(37\) −139.069 240.874i −0.617912 1.07026i −0.989866 0.142004i \(-0.954645\pi\)
0.371954 0.928251i \(-0.378688\pi\)
\(38\) −47.7064 + 82.6298i −0.203658 + 0.352746i
\(39\) 0 0
\(40\) −148.587 257.360i −0.587341 1.01730i
\(41\) 31.3788 0.119525 0.0597627 0.998213i \(-0.480966\pi\)
0.0597627 + 0.998213i \(0.480966\pi\)
\(42\) 0 0
\(43\) −347.239 −1.23148 −0.615739 0.787951i \(-0.711142\pi\)
−0.615739 + 0.787951i \(0.711142\pi\)
\(44\) −128.905 223.271i −0.441664 0.764984i
\(45\) 0 0
\(46\) 16.5060 28.5893i 0.0529062 0.0916362i
\(47\) 271.109 + 469.575i 0.841390 + 1.45733i 0.888720 + 0.458451i \(0.151596\pi\)
−0.0473295 + 0.998879i \(0.515071\pi\)
\(48\) 0 0
\(49\) 341.131 + 35.7609i 0.994550 + 0.104259i
\(50\) 80.2078 0.226862
\(51\) 0 0
\(52\) −174.582 + 302.384i −0.465579 + 0.806407i
\(53\) −128.528 + 222.618i −0.333108 + 0.576960i −0.983120 0.182964i \(-0.941431\pi\)
0.650012 + 0.759924i \(0.274764\pi\)
\(54\) 0 0
\(55\) 690.945 1.69395
\(56\) 421.127 + 22.0132i 1.00492 + 0.0525292i
\(57\) 0 0
\(58\) 231.599 + 401.142i 0.524318 + 0.908146i
\(59\) 157.810 273.335i 0.348223 0.603139i −0.637711 0.770276i \(-0.720119\pi\)
0.985934 + 0.167136i \(0.0534520\pi\)
\(60\) 0 0
\(61\) −69.4019 120.208i −0.145672 0.252312i 0.783951 0.620822i \(-0.213201\pi\)
−0.929624 + 0.368511i \(0.879868\pi\)
\(62\) −216.425 −0.443323
\(63\) 0 0
\(64\) 328.745 0.642081
\(65\) −467.887 810.405i −0.892835 1.54644i
\(66\) 0 0
\(67\) −198.950 + 344.592i −0.362771 + 0.628338i −0.988416 0.151770i \(-0.951503\pi\)
0.625645 + 0.780108i \(0.284836\pi\)
\(68\) −259.493 449.456i −0.462768 0.801537i
\(69\) 0 0
\(70\) −232.865 + 358.687i −0.397610 + 0.612447i
\(71\) 843.419 1.40979 0.704897 0.709309i \(-0.250993\pi\)
0.704897 + 0.709309i \(0.250993\pi\)
\(72\) 0 0
\(73\) 436.140 755.417i 0.699265 1.21116i −0.269456 0.963013i \(-0.586844\pi\)
0.968721 0.248151i \(-0.0798228\pi\)
\(74\) −246.047 + 426.165i −0.386518 + 0.669469i
\(75\) 0 0
\(76\) −262.620 −0.396375
\(77\) −533.897 + 822.373i −0.790172 + 1.21712i
\(78\) 0 0
\(79\) 277.456 + 480.568i 0.395143 + 0.684407i 0.993119 0.117106i \(-0.0373619\pi\)
−0.597977 + 0.801513i \(0.704029\pi\)
\(80\) −8.66040 + 15.0002i −0.0121033 + 0.0209635i
\(81\) 0 0
\(82\) −27.7584 48.0789i −0.0373829 0.0647492i
\(83\) 297.114 0.392921 0.196461 0.980512i \(-0.437055\pi\)
0.196461 + 0.980512i \(0.437055\pi\)
\(84\) 0 0
\(85\) 1390.91 1.77489
\(86\) 307.176 + 532.044i 0.385158 + 0.667114i
\(87\) 0 0
\(88\) −602.728 + 1043.96i −0.730125 + 1.26461i
\(89\) 51.2419 + 88.7536i 0.0610295 + 0.105706i 0.894926 0.446215i \(-0.147228\pi\)
−0.833896 + 0.551921i \(0.813895\pi\)
\(90\) 0 0
\(91\) 1326.09 + 69.3177i 1.52761 + 0.0798513i
\(92\) 90.8644 0.102970
\(93\) 0 0
\(94\) 479.659 830.793i 0.526308 0.911593i
\(95\) 351.916 609.537i 0.380062 0.658286i
\(96\) 0 0
\(97\) −515.437 −0.539533 −0.269766 0.962926i \(-0.586947\pi\)
−0.269766 + 0.962926i \(0.586947\pi\)
\(98\) −246.979 554.319i −0.254578 0.571374i
\(99\) 0 0
\(100\) 110.384 + 191.191i 0.110384 + 0.191191i
\(101\) 550.975 954.317i 0.542813 0.940179i −0.455929 0.890016i \(-0.650693\pi\)
0.998741 0.0501625i \(-0.0159739\pi\)
\(102\) 0 0
\(103\) 176.814 + 306.251i 0.169146 + 0.292969i 0.938120 0.346311i \(-0.112566\pi\)
−0.768974 + 0.639280i \(0.779233\pi\)
\(104\) 1632.60 1.53932
\(105\) 0 0
\(106\) 454.796 0.416733
\(107\) −155.332 269.042i −0.140341 0.243077i 0.787284 0.616590i \(-0.211486\pi\)
−0.927625 + 0.373513i \(0.878153\pi\)
\(108\) 0 0
\(109\) 257.492 445.989i 0.226268 0.391909i −0.730431 0.682987i \(-0.760681\pi\)
0.956699 + 0.291078i \(0.0940140\pi\)
\(110\) −611.226 1058.67i −0.529801 0.917642i
\(111\) 0 0
\(112\) −11.1616 21.8985i −0.00941670 0.0184751i
\(113\) −1106.59 −0.921233 −0.460616 0.887599i \(-0.652372\pi\)
−0.460616 + 0.887599i \(0.652372\pi\)
\(114\) 0 0
\(115\) −121.760 + 210.895i −0.0987324 + 0.171009i
\(116\) −637.467 + 1104.13i −0.510236 + 0.883754i
\(117\) 0 0
\(118\) −558.410 −0.435642
\(119\) −1074.76 + 1655.48i −0.827928 + 1.27528i
\(120\) 0 0
\(121\) −735.876 1274.57i −0.552875 0.957607i
\(122\) −122.789 + 212.677i −0.0911212 + 0.157827i
\(123\) 0 0
\(124\) −297.851 515.893i −0.215708 0.373617i
\(125\) 1039.73 0.743972
\(126\) 0 0
\(127\) 1591.62 1.11207 0.556037 0.831158i \(-0.312321\pi\)
0.556037 + 0.831158i \(0.312321\pi\)
\(128\) 428.425 + 742.054i 0.295842 + 0.512414i
\(129\) 0 0
\(130\) −827.807 + 1433.80i −0.558488 + 0.967330i
\(131\) −408.628 707.764i −0.272534 0.472043i 0.696976 0.717095i \(-0.254528\pi\)
−0.969510 + 0.245052i \(0.921195\pi\)
\(132\) 0 0
\(133\) 453.552 + 889.849i 0.295699 + 0.580148i
\(134\) 703.984 0.453843
\(135\) 0 0
\(136\) −1213.32 + 2101.54i −0.765012 + 1.32504i
\(137\) 514.067 890.390i 0.320582 0.555264i −0.660026 0.751242i \(-0.729455\pi\)
0.980608 + 0.195978i \(0.0627883\pi\)
\(138\) 0 0
\(139\) −607.307 −0.370583 −0.185292 0.982684i \(-0.559323\pi\)
−0.185292 + 0.982684i \(0.559323\pi\)
\(140\) −1175.48 61.4446i −0.709614 0.0370930i
\(141\) 0 0
\(142\) −746.107 1292.30i −0.440929 0.763712i
\(143\) −1897.94 + 3287.33i −1.10989 + 1.92238i
\(144\) 0 0
\(145\) −1708.44 2959.11i −0.978472 1.69476i
\(146\) −1543.28 −0.874813
\(147\) 0 0
\(148\) −1354.47 −0.752273
\(149\) −610.031 1056.60i −0.335407 0.580942i 0.648156 0.761508i \(-0.275541\pi\)
−0.983563 + 0.180566i \(0.942207\pi\)
\(150\) 0 0
\(151\) −976.718 + 1691.73i −0.526386 + 0.911726i 0.473142 + 0.880986i \(0.343120\pi\)
−0.999527 + 0.0307402i \(0.990214\pi\)
\(152\) 613.970 + 1063.43i 0.327629 + 0.567469i
\(153\) 0 0
\(154\) 1732.35 + 90.5533i 0.906471 + 0.0473831i
\(155\) 1596.51 0.827320
\(156\) 0 0
\(157\) 765.394 1325.70i 0.389077 0.673901i −0.603249 0.797553i \(-0.706127\pi\)
0.992326 + 0.123652i \(0.0394606\pi\)
\(158\) 490.888 850.243i 0.247171 0.428112i
\(159\) 0 0
\(160\) −2346.74 −1.15954
\(161\) −156.926 307.881i −0.0768167 0.150711i
\(162\) 0 0
\(163\) −1141.60 1977.31i −0.548570 0.950151i −0.998373 0.0570230i \(-0.981839\pi\)
0.449803 0.893128i \(-0.351494\pi\)
\(164\) 76.4038 132.335i 0.0363789 0.0630100i
\(165\) 0 0
\(166\) −262.833 455.241i −0.122891 0.212853i
\(167\) −1071.13 −0.496325 −0.248162 0.968718i \(-0.579827\pi\)
−0.248162 + 0.968718i \(0.579827\pi\)
\(168\) 0 0
\(169\) 2943.91 1.33997
\(170\) −1230.43 2131.17i −0.555116 0.961489i
\(171\) 0 0
\(172\) −845.488 + 1464.43i −0.374813 + 0.649196i
\(173\) 1829.44 + 3168.68i 0.803985 + 1.39254i 0.916974 + 0.398947i \(0.130624\pi\)
−0.112989 + 0.993596i \(0.536042\pi\)
\(174\) 0 0
\(175\) 457.187 704.215i 0.197486 0.304192i
\(176\) 70.2601 0.0300912
\(177\) 0 0
\(178\) 90.6595 157.027i 0.0381754 0.0661217i
\(179\) 405.117 701.683i 0.169161 0.292996i −0.768964 0.639292i \(-0.779228\pi\)
0.938125 + 0.346296i \(0.112561\pi\)
\(180\) 0 0
\(181\) −1730.05 −0.710462 −0.355231 0.934779i \(-0.615598\pi\)
−0.355231 + 0.934779i \(0.615598\pi\)
\(182\) −1066.88 2093.18i −0.434520 0.852509i
\(183\) 0 0
\(184\) −212.429 367.938i −0.0851113 0.147417i
\(185\) 1815.02 3143.70i 0.721312 1.24935i
\(186\) 0 0
\(187\) −2821.05 4886.19i −1.10318 1.91077i
\(188\) 2640.48 1.02434
\(189\) 0 0
\(190\) −1245.25 −0.475474
\(191\) 537.799 + 931.495i 0.203737 + 0.352883i 0.949730 0.313071i \(-0.101358\pi\)
−0.745993 + 0.665954i \(0.768025\pi\)
\(192\) 0 0
\(193\) −2246.86 + 3891.67i −0.837992 + 1.45144i 0.0535795 + 0.998564i \(0.482937\pi\)
−0.891571 + 0.452881i \(0.850396\pi\)
\(194\) 455.967 + 789.758i 0.168745 + 0.292275i
\(195\) 0 0
\(196\) 981.431 1351.59i 0.357664 0.492563i
\(197\) 101.961 0.0368753 0.0184377 0.999830i \(-0.494131\pi\)
0.0184377 + 0.999830i \(0.494131\pi\)
\(198\) 0 0
\(199\) 267.794 463.832i 0.0953940 0.165227i −0.814379 0.580333i \(-0.802922\pi\)
0.909773 + 0.415106i \(0.136256\pi\)
\(200\) 516.128 893.960i 0.182479 0.316063i
\(201\) 0 0
\(202\) −1949.62 −0.679083
\(203\) 4842.10 + 253.106i 1.67413 + 0.0875103i
\(204\) 0 0
\(205\) 204.766 + 354.665i 0.0697633 + 0.120834i
\(206\) 312.827 541.832i 0.105804 0.183259i
\(207\) 0 0
\(208\) −47.5780 82.4076i −0.0158603 0.0274709i
\(209\) −2855.03 −0.944912
\(210\) 0 0
\(211\) 1247.47 0.407012 0.203506 0.979074i \(-0.434766\pi\)
0.203506 + 0.979074i \(0.434766\pi\)
\(212\) 625.904 + 1084.10i 0.202770 + 0.351208i
\(213\) 0 0
\(214\) −274.820 + 476.001i −0.0877863 + 0.152050i
\(215\) −2265.95 3924.74i −0.718774 1.24495i
\(216\) 0 0
\(217\) −1233.63 + 1900.19i −0.385919 + 0.594439i
\(218\) −911.133 −0.283072
\(219\) 0 0
\(220\) 1682.37 2913.96i 0.515571 0.892995i
\(221\) −3820.65 + 6617.57i −1.16292 + 2.01423i
\(222\) 0 0
\(223\) 2573.28 0.772734 0.386367 0.922345i \(-0.373730\pi\)
0.386367 + 0.922345i \(0.373730\pi\)
\(224\) 1813.34 2793.13i 0.540888 0.833142i
\(225\) 0 0
\(226\) 978.915 + 1695.53i 0.288126 + 0.499049i
\(227\) 744.416 1289.37i 0.217659 0.376997i −0.736433 0.676511i \(-0.763491\pi\)
0.954092 + 0.299514i \(0.0968245\pi\)
\(228\) 0 0
\(229\) 1605.20 + 2780.28i 0.463207 + 0.802297i 0.999119 0.0419764i \(-0.0133654\pi\)
−0.535912 + 0.844274i \(0.680032\pi\)
\(230\) 430.848 0.123519
\(231\) 0 0
\(232\) 5961.26 1.68696
\(233\) 1463.84 + 2535.45i 0.411586 + 0.712888i 0.995063 0.0992415i \(-0.0316416\pi\)
−0.583477 + 0.812129i \(0.698308\pi\)
\(234\) 0 0
\(235\) −3538.31 + 6128.53i −0.982186 + 1.70120i
\(236\) −768.500 1331.08i −0.211971 0.367144i
\(237\) 0 0
\(238\) 3487.31 + 182.289i 0.949784 + 0.0496472i
\(239\) −4263.99 −1.15404 −0.577019 0.816731i \(-0.695784\pi\)
−0.577019 + 0.816731i \(0.695784\pi\)
\(240\) 0 0
\(241\) 2158.04 3737.84i 0.576813 0.999069i −0.419029 0.907973i \(-0.637630\pi\)
0.995842 0.0910964i \(-0.0290371\pi\)
\(242\) −1301.94 + 2255.03i −0.345835 + 0.599005i
\(243\) 0 0
\(244\) −675.943 −0.177348
\(245\) 1821.89 + 4089.06i 0.475087 + 1.06629i
\(246\) 0 0
\(247\) 1933.34 + 3348.64i 0.498038 + 0.862628i
\(248\) −1392.67 + 2412.18i −0.356592 + 0.617635i
\(249\) 0 0
\(250\) −919.771 1593.09i −0.232686 0.403023i
\(251\) −2107.60 −0.530001 −0.265001 0.964248i \(-0.585372\pi\)
−0.265001 + 0.964248i \(0.585372\pi\)
\(252\) 0 0
\(253\) 987.819 0.245469
\(254\) −1407.98 2438.70i −0.347814 0.602431i
\(255\) 0 0
\(256\) 2072.97 3590.49i 0.506096 0.876585i
\(257\) 1410.31 + 2442.73i 0.342307 + 0.592893i 0.984861 0.173348i \(-0.0554584\pi\)
−0.642554 + 0.766241i \(0.722125\pi\)
\(258\) 0 0
\(259\) 2339.21 + 4589.42i 0.561202 + 1.10105i
\(260\) −4557.01 −1.08698
\(261\) 0 0
\(262\) −722.963 + 1252.21i −0.170476 + 0.295274i
\(263\) 2976.21 5154.95i 0.697799 1.20862i −0.271429 0.962459i \(-0.587496\pi\)
0.969228 0.246165i \(-0.0791705\pi\)
\(264\) 0 0
\(265\) −3354.90 −0.777698
\(266\) 962.214 1482.12i 0.221794 0.341634i
\(267\) 0 0
\(268\) 968.843 + 1678.09i 0.220827 + 0.382483i
\(269\) 3321.51 5753.02i 0.752847 1.30397i −0.193590 0.981082i \(-0.562013\pi\)
0.946438 0.322887i \(-0.104653\pi\)
\(270\) 0 0
\(271\) −480.913 832.966i −0.107799 0.186713i 0.807080 0.590443i \(-0.201047\pi\)
−0.914878 + 0.403730i \(0.867713\pi\)
\(272\) 141.437 0.0315291
\(273\) 0 0
\(274\) −1819.02 −0.401062
\(275\) 1200.03 + 2078.51i 0.263143 + 0.455777i
\(276\) 0 0
\(277\) 2800.06 4849.84i 0.607362 1.05198i −0.384312 0.923203i \(-0.625561\pi\)
0.991673 0.128778i \(-0.0411055\pi\)
\(278\) 537.237 + 930.522i 0.115904 + 0.200752i
\(279\) 0 0
\(280\) 2499.31 + 4903.52i 0.533436 + 1.04658i
\(281\) 1044.12 0.221661 0.110831 0.993839i \(-0.464649\pi\)
0.110831 + 0.993839i \(0.464649\pi\)
\(282\) 0 0
\(283\) −1161.99 + 2012.62i −0.244074 + 0.422749i −0.961871 0.273504i \(-0.911817\pi\)
0.717797 + 0.696253i \(0.245151\pi\)
\(284\) 2053.63 3556.99i 0.429086 0.743199i
\(285\) 0 0
\(286\) 6715.84 1.38852
\(287\) −580.351 30.3361i −0.119363 0.00623932i
\(288\) 0 0
\(289\) −3222.42 5581.39i −0.655896 1.13605i
\(290\) −3022.65 + 5235.39i −0.612056 + 1.06011i
\(291\) 0 0
\(292\) −2123.90 3678.71i −0.425658 0.737261i
\(293\) −4140.37 −0.825540 −0.412770 0.910835i \(-0.635439\pi\)
−0.412770 + 0.910835i \(0.635439\pi\)
\(294\) 0 0
\(295\) 4119.23 0.812986
\(296\) 3166.56 + 5484.65i 0.621800 + 1.07699i
\(297\) 0 0
\(298\) −1079.29 + 1869.39i −0.209805 + 0.363392i
\(299\) −668.921 1158.61i −0.129380 0.224093i
\(300\) 0 0
\(301\) 6422.20 + 335.701i 1.22980 + 0.0642841i
\(302\) 3456.11 0.658532
\(303\) 0 0
\(304\) 35.7853 61.9820i 0.00675141 0.0116938i
\(305\) 905.780 1568.86i 0.170049 0.294533i
\(306\) 0 0
\(307\) 3074.68 0.571600 0.285800 0.958289i \(-0.407741\pi\)
0.285800 + 0.958289i \(0.407741\pi\)
\(308\) 2168.25 + 4254.01i 0.401129 + 0.786997i
\(309\) 0 0
\(310\) −1412.31 2446.19i −0.258754 0.448175i
\(311\) −1159.17 + 2007.74i −0.211352 + 0.366073i −0.952138 0.305669i \(-0.901120\pi\)
0.740786 + 0.671741i \(0.234453\pi\)
\(312\) 0 0
\(313\) −947.953 1641.90i −0.171187 0.296504i 0.767648 0.640871i \(-0.221427\pi\)
−0.938835 + 0.344367i \(0.888094\pi\)
\(314\) −2708.34 −0.486753
\(315\) 0 0
\(316\) 2702.30 0.481064
\(317\) −486.154 842.043i −0.0861360 0.149192i 0.819739 0.572738i \(-0.194119\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(318\) 0 0
\(319\) −6930.13 + 12003.3i −1.21634 + 2.10676i
\(320\) 2145.27 + 3715.71i 0.374762 + 0.649108i
\(321\) 0 0
\(322\) −332.919 + 512.802i −0.0576175 + 0.0887495i
\(323\) −5747.33 −0.990062
\(324\) 0 0
\(325\) 1625.24 2815.00i 0.277392 0.480456i
\(326\) −2019.77 + 3498.34i −0.343143 + 0.594341i
\(327\) 0 0
\(328\) −714.488 −0.120277
\(329\) −4560.19 8946.89i −0.764169 1.49926i
\(330\) 0 0
\(331\) 2234.82 + 3870.82i 0.371108 + 0.642779i 0.989736 0.142905i \(-0.0456445\pi\)
−0.618628 + 0.785684i \(0.712311\pi\)
\(332\) 723.438 1253.03i 0.119590 0.207136i
\(333\) 0 0
\(334\) 947.542 + 1641.19i 0.155231 + 0.268868i
\(335\) −5193.09 −0.846952
\(336\) 0 0
\(337\) −8494.45 −1.37306 −0.686532 0.727100i \(-0.740868\pi\)
−0.686532 + 0.727100i \(0.740868\pi\)
\(338\) −2604.25 4510.69i −0.419090 0.725885i
\(339\) 0 0
\(340\) 3386.71 5865.95i 0.540206 0.935664i
\(341\) −3238.04 5608.45i −0.514222 0.890659i
\(342\) 0 0
\(343\) −6274.64 991.194i −0.987752 0.156033i
\(344\) 7906.56 1.23923
\(345\) 0 0
\(346\) 3236.72 5606.16i 0.502911 0.871067i
\(347\) 4230.65 7327.70i 0.654505 1.13364i −0.327513 0.944847i \(-0.606210\pi\)
0.982018 0.188789i \(-0.0604563\pi\)
\(348\) 0 0
\(349\) −5910.68 −0.906566 −0.453283 0.891367i \(-0.649747\pi\)
−0.453283 + 0.891367i \(0.649747\pi\)
\(350\) −1483.44 77.5426i −0.226553 0.0118424i
\(351\) 0 0
\(352\) 4759.67 + 8243.99i 0.720714 + 1.24831i
\(353\) −3023.09 + 5236.14i −0.455815 + 0.789494i −0.998735 0.0502901i \(-0.983985\pi\)
0.542920 + 0.839785i \(0.317319\pi\)
\(354\) 0 0
\(355\) 5503.82 + 9532.90i 0.822853 + 1.42522i
\(356\) 499.073 0.0743000
\(357\) 0 0
\(358\) −1433.50 −0.211628
\(359\) 5448.34 + 9436.81i 0.800982 + 1.38734i 0.918970 + 0.394327i \(0.129022\pi\)
−0.117988 + 0.993015i \(0.537645\pi\)
\(360\) 0 0
\(361\) 1975.36 3421.42i 0.287995 0.498822i
\(362\) 1530.44 + 2650.80i 0.222205 + 0.384870i
\(363\) 0 0
\(364\) 3521.23 5423.82i 0.507040 0.781004i
\(365\) 11384.3 1.63256
\(366\) 0 0
\(367\) −3887.83 + 6733.92i −0.552979 + 0.957787i 0.445079 + 0.895491i \(0.353176\pi\)
−0.998058 + 0.0622958i \(0.980158\pi\)
\(368\) −12.3815 + 21.4453i −0.00175388 + 0.00303781i
\(369\) 0 0
\(370\) −6422.42 −0.902394
\(371\) 2592.35 3993.06i 0.362772 0.558785i
\(372\) 0 0
\(373\) −5964.54 10330.9i −0.827969 1.43408i −0.899629 0.436655i \(-0.856163\pi\)
0.0716601 0.997429i \(-0.477170\pi\)
\(374\) −4991.12 + 8644.87i −0.690066 + 1.19523i
\(375\) 0 0
\(376\) −6173.10 10692.1i −0.846684 1.46650i
\(377\) 18771.5 2.56441
\(378\) 0 0
\(379\) −8130.56 −1.10195 −0.550975 0.834522i \(-0.685744\pi\)
−0.550975 + 0.834522i \(0.685744\pi\)
\(380\) −1713.75 2968.31i −0.231352 0.400713i
\(381\) 0 0
\(382\) 951.498 1648.04i 0.127442 0.220736i
\(383\) −5425.88 9397.90i −0.723889 1.25381i −0.959429 0.281949i \(-0.909019\pi\)
0.235540 0.971865i \(-0.424314\pi\)
\(384\) 0 0
\(385\) −12779.0 667.986i −1.69164 0.0884253i
\(386\) 7950.49 1.04837
\(387\) 0 0
\(388\) −1255.03 + 2173.78i −0.164213 + 0.284425i
\(389\) 5884.87 10192.9i 0.767031 1.32854i −0.172135 0.985073i \(-0.555067\pi\)
0.939166 0.343463i \(-0.111600\pi\)
\(390\) 0 0
\(391\) 1988.53 0.257198
\(392\) −7767.47 814.268i −1.00081 0.104915i
\(393\) 0 0
\(394\) −90.1972 156.226i −0.0115332 0.0199760i
\(395\) −3621.14 + 6272.00i −0.461265 + 0.798934i
\(396\) 0 0
\(397\) −5066.25 8774.99i −0.640472 1.10933i −0.985327 0.170675i \(-0.945405\pi\)
0.344855 0.938656i \(-0.387928\pi\)
\(398\) −947.586 −0.119342
\(399\) 0 0
\(400\) −60.1652 −0.00752064
\(401\) 2402.12 + 4160.60i 0.299143 + 0.518130i 0.975940 0.218039i \(-0.0699660\pi\)
−0.676797 + 0.736169i \(0.736633\pi\)
\(402\) 0 0
\(403\) −4385.41 + 7595.75i −0.542066 + 0.938886i
\(404\) −2683.12 4647.31i −0.330422 0.572307i
\(405\) 0 0
\(406\) −3895.62 7643.02i −0.476197 0.934278i
\(407\) −14724.9 −1.79333
\(408\) 0 0
\(409\) 4418.75 7653.50i 0.534213 0.925284i −0.464988 0.885317i \(-0.653941\pi\)
0.999201 0.0399668i \(-0.0127252\pi\)
\(410\) 362.281 627.489i 0.0436385 0.0755841i
\(411\) 0 0
\(412\) 1722.09 0.205925
\(413\) −3182.95 + 4902.77i −0.379232 + 0.584139i
\(414\) 0 0
\(415\) 1938.85 + 3358.18i 0.229336 + 0.397221i
\(416\) 6446.21 11165.2i 0.759739 1.31591i
\(417\) 0 0
\(418\) 2525.62 + 4374.51i 0.295532 + 0.511876i
\(419\) 5730.73 0.668173 0.334086 0.942542i \(-0.391572\pi\)
0.334086 + 0.942542i \(0.391572\pi\)
\(420\) 0 0
\(421\) 1841.98 0.213236 0.106618 0.994300i \(-0.465998\pi\)
0.106618 + 0.994300i \(0.465998\pi\)
\(422\) −1103.54 1911.39i −0.127298 0.220486i
\(423\) 0 0
\(424\) 2926.56 5068.95i 0.335204 0.580590i
\(425\) 2415.72 + 4184.15i 0.275717 + 0.477555i
\(426\) 0 0
\(427\) 1167.38 + 2290.34i 0.132303 + 0.259572i
\(428\) −1512.86 −0.170857
\(429\) 0 0
\(430\) −4009.02 + 6943.83i −0.449610 + 0.778747i
\(431\) −4573.50 + 7921.54i −0.511132 + 0.885307i 0.488785 + 0.872404i \(0.337440\pi\)
−0.999917 + 0.0129023i \(0.995893\pi\)
\(432\) 0 0
\(433\) −2469.71 −0.274103 −0.137052 0.990564i \(-0.543763\pi\)
−0.137052 + 0.990564i \(0.543763\pi\)
\(434\) 4002.79 + 209.234i 0.442719 + 0.0231418i
\(435\) 0 0
\(436\) −1253.93 2171.87i −0.137734 0.238563i
\(437\) 503.122 871.433i 0.0550746 0.0953920i
\(438\) 0 0
\(439\) 1852.20 + 3208.10i 0.201368 + 0.348779i 0.948969 0.315368i \(-0.102128\pi\)
−0.747602 + 0.664147i \(0.768795\pi\)
\(440\) −15732.7 −1.70460
\(441\) 0 0
\(442\) 13519.3 1.45486
\(443\) 675.693 + 1170.33i 0.0724676 + 0.125517i 0.899982 0.435927i \(-0.143579\pi\)
−0.827515 + 0.561444i \(0.810246\pi\)
\(444\) 0 0
\(445\) −668.769 + 1158.34i −0.0712421 + 0.123395i
\(446\) −2276.38 3942.81i −0.241681 0.418604i
\(447\) 0 0
\(448\) −6080.15 317.822i −0.641205 0.0335171i
\(449\) −15461.0 −1.62505 −0.812526 0.582926i \(-0.801908\pi\)
−0.812526 + 0.582926i \(0.801908\pi\)
\(450\) 0 0
\(451\) 830.613 1438.66i 0.0867229 0.150208i
\(452\) −2694.42 + 4666.88i −0.280387 + 0.485645i
\(453\) 0 0
\(454\) −2634.11 −0.272301
\(455\) 7870.10 + 15440.8i 0.810893 + 1.59093i
\(456\) 0 0
\(457\) −6784.81 11751.6i −0.694486 1.20288i −0.970354 0.241689i \(-0.922299\pi\)
0.275868 0.961196i \(-0.411035\pi\)
\(458\) 2839.98 4919.00i 0.289746 0.501855i
\(459\) 0 0
\(460\) 592.946 + 1027.01i 0.0601005 + 0.104097i
\(461\) −7979.72 −0.806188 −0.403094 0.915159i \(-0.632065\pi\)
−0.403094 + 0.915159i \(0.632065\pi\)
\(462\) 0 0
\(463\) −18086.2 −1.81542 −0.907709 0.419600i \(-0.862170\pi\)
−0.907709 + 0.419600i \(0.862170\pi\)
\(464\) −173.726 300.903i −0.0173816 0.0301057i
\(465\) 0 0
\(466\) 2589.90 4485.83i 0.257456 0.445927i
\(467\) 2902.27 + 5026.88i 0.287583 + 0.498108i 0.973232 0.229824i \(-0.0738150\pi\)
−0.685649 + 0.727932i \(0.740482\pi\)
\(468\) 0 0
\(469\) 4012.73 6180.90i 0.395076 0.608544i
\(470\) 12520.3 1.22876
\(471\) 0 0
\(472\) −3593.30 + 6223.78i −0.350414 + 0.606934i
\(473\) −9191.60 + 15920.3i −0.893510 + 1.54761i
\(474\) 0 0
\(475\) 2444.82 0.236160
\(476\) 4364.81 + 8563.56i 0.420296 + 0.824601i
\(477\) 0 0
\(478\) 3772.02 + 6533.34i 0.360938 + 0.625163i
\(479\) 2172.94 3763.65i 0.207274 0.359009i −0.743581 0.668646i \(-0.766874\pi\)
0.950855 + 0.309637i \(0.100207\pi\)
\(480\) 0 0
\(481\) 9971.24 + 17270.7i 0.945217 + 1.63716i
\(482\) −7636.22 −0.721619
\(483\) 0 0
\(484\) −7167.10 −0.673093
\(485\) −3363.54 5825.83i −0.314908 0.545437i
\(486\) 0 0
\(487\) 9390.55 16264.9i 0.873771 1.51342i 0.0157056 0.999877i \(-0.495001\pi\)
0.858066 0.513540i \(-0.171666\pi\)
\(488\) 1580.27 + 2737.10i 0.146589 + 0.253899i
\(489\) 0 0
\(490\) 4653.61 6408.80i 0.429038 0.590857i
\(491\) 7552.56 0.694180 0.347090 0.937832i \(-0.387170\pi\)
0.347090 + 0.937832i \(0.387170\pi\)
\(492\) 0 0
\(493\) −13950.7 + 24163.4i −1.27446 + 2.20743i
\(494\) 3420.55 5924.57i 0.311534 0.539593i
\(495\) 0 0
\(496\) 162.344 0.0146965
\(497\) −15599.0 815.394i −1.40787 0.0735924i
\(498\) 0 0
\(499\) −4450.95 7709.27i −0.399302 0.691612i 0.594338 0.804216i \(-0.297414\pi\)
−0.993640 + 0.112604i \(0.964081\pi\)
\(500\) 2531.63 4384.91i 0.226436 0.392199i
\(501\) 0 0
\(502\) 1864.43 + 3229.28i 0.165764 + 0.287111i
\(503\) 18241.5 1.61700 0.808498 0.588500i \(-0.200281\pi\)
0.808498 + 0.588500i \(0.200281\pi\)
\(504\) 0 0
\(505\) 14381.8 1.26729
\(506\) −873.847 1513.55i −0.0767732 0.132975i
\(507\) 0 0
\(508\) 3875.41 6712.41i 0.338472 0.586250i
\(509\) −4492.39 7781.04i −0.391201 0.677581i 0.601407 0.798943i \(-0.294607\pi\)
−0.992608 + 0.121362i \(0.961274\pi\)
\(510\) 0 0
\(511\) −8796.74 + 13549.8i −0.761536 + 1.17301i
\(512\) −480.383 −0.0414651
\(513\) 0 0
\(514\) 2495.19 4321.79i 0.214121 0.370868i
\(515\) −2307.64 + 3996.95i −0.197450 + 0.341993i
\(516\) 0 0
\(517\) 28705.6 2.44192
\(518\) 4962.64 7644.06i 0.420938 0.648380i
\(519\) 0 0
\(520\) 10653.7 + 18452.7i 0.898452 + 1.55617i
\(521\) 4444.36 7697.87i 0.373726 0.647312i −0.616410 0.787426i \(-0.711413\pi\)
0.990135 + 0.140114i \(0.0447468\pi\)
\(522\) 0 0
\(523\) 10519.5 + 18220.2i 0.879510 + 1.52336i 0.851879 + 0.523738i \(0.175463\pi\)
0.0276313 + 0.999618i \(0.491204\pi\)
\(524\) −3979.85 −0.331795
\(525\) 0 0
\(526\) −10531.3 −0.872978
\(527\) −6518.35 11290.1i −0.538793 0.933217i
\(528\) 0 0
\(529\) 5909.42 10235.4i 0.485693 0.841244i
\(530\) 2967.82 + 5140.42i 0.243234 + 0.421294i
\(531\) 0 0
\(532\) 4857.15 + 253.893i 0.395835 + 0.0206911i
\(533\) −2249.86 −0.182838
\(534\) 0 0
\(535\) 2027.27 3511.33i 0.163825 0.283753i
\(536\) 4530.06 7846.29i 0.365053 0.632291i
\(537\) 0 0
\(538\) −11753.1 −0.941846
\(539\) 10669.5 14693.6i 0.852629 1.17421i
\(540\) 0 0
\(541\) −4003.07 6933.51i −0.318124 0.551007i 0.661972 0.749528i \(-0.269720\pi\)
−0.980097 + 0.198521i \(0.936386\pi\)
\(542\) −850.854 + 1473.72i −0.0674304 + 0.116793i
\(543\) 0 0
\(544\) 9581.47 + 16595.6i 0.755151 + 1.30796i
\(545\) 6721.17 0.528263
\(546\) 0 0
\(547\) 22259.4 1.73993 0.869965 0.493114i \(-0.164141\pi\)
0.869965 + 0.493114i \(0.164141\pi\)
\(548\) −2503.39 4336.00i −0.195145 0.338001i
\(549\) 0 0
\(550\) 2123.14 3677.39i 0.164602 0.285099i
\(551\) 7059.39 + 12227.2i 0.545808 + 0.945367i
\(552\) 0 0
\(553\) −4666.95 9156.35i −0.358877 0.704101i
\(554\) −9907.98 −0.759837
\(555\) 0 0
\(556\) −1478.72 + 2561.22i −0.112791 + 0.195360i
\(557\) −3741.96 + 6481.27i −0.284653 + 0.493034i −0.972525 0.232798i \(-0.925212\pi\)
0.687872 + 0.725832i \(0.258545\pi\)
\(558\) 0 0
\(559\) 24897.1 1.88378
\(560\) 174.676 269.057i 0.0131811 0.0203031i
\(561\) 0 0
\(562\) −923.649 1599.81i −0.0693270 0.120078i
\(563\) 3146.34 5449.63i 0.235529 0.407947i −0.723898 0.689907i \(-0.757651\pi\)
0.959426 + 0.281960i \(0.0909846\pi\)
\(564\) 0 0
\(565\) −7221.18 12507.5i −0.537695 0.931314i
\(566\) 4111.69 0.305348
\(567\) 0 0
\(568\) −19204.5 −1.41866
\(569\) 5169.22 + 8953.36i 0.380853 + 0.659656i 0.991184 0.132490i \(-0.0422972\pi\)
−0.610332 + 0.792146i \(0.708964\pi\)
\(570\) 0 0
\(571\) 7269.81 12591.7i 0.532806 0.922847i −0.466460 0.884542i \(-0.654471\pi\)
0.999266 0.0383046i \(-0.0121957\pi\)
\(572\) 9242.53 + 16008.5i 0.675611 + 1.17019i
\(573\) 0 0
\(574\) 466.910 + 916.056i 0.0339520 + 0.0666123i
\(575\) −845.889 −0.0613496
\(576\) 0 0
\(577\) 5972.54 10344.7i 0.430919 0.746373i −0.566034 0.824382i \(-0.691523\pi\)
0.996953 + 0.0780089i \(0.0248562\pi\)
\(578\) −5701.25 + 9874.85i −0.410278 + 0.710622i
\(579\) 0 0
\(580\) −16639.4 −1.19123
\(581\) −5495.12 287.241i −0.392385 0.0205108i
\(582\) 0 0
\(583\) 6804.42 + 11785.6i 0.483380 + 0.837238i
\(584\) −9930.82 + 17200.7i −0.703665 + 1.21878i
\(585\) 0 0
\(586\) 3662.67 + 6343.93i 0.258197 + 0.447210i
\(587\) 27431.6 1.92883 0.964414 0.264398i \(-0.0851734\pi\)
0.964414 + 0.264398i \(0.0851734\pi\)
\(588\) 0 0
\(589\) −6596.88 −0.461493
\(590\) −3643.97 6311.53i −0.254271 0.440410i
\(591\) 0 0
\(592\) 184.564 319.673i 0.0128134 0.0221934i
\(593\) 1824.41 + 3159.98i 0.126340 + 0.218827i 0.922256 0.386580i \(-0.126344\pi\)
−0.795916 + 0.605407i \(0.793010\pi\)
\(594\) 0 0
\(595\) −25724.9 1344.69i −1.77247 0.0926505i
\(596\) −5941.42 −0.408339
\(597\) 0 0
\(598\) −1183.49 + 2049.86i −0.0809303 + 0.140175i
\(599\) −5424.85 + 9396.12i −0.370039 + 0.640927i −0.989571 0.144045i \(-0.953989\pi\)
0.619532 + 0.784971i \(0.287322\pi\)
\(600\) 0 0
\(601\) 23865.9 1.61982 0.809908 0.586557i \(-0.199517\pi\)
0.809908 + 0.586557i \(0.199517\pi\)
\(602\) −5166.85 10137.1i −0.349809 0.686310i
\(603\) 0 0
\(604\) 4756.40 + 8238.32i 0.320422 + 0.554988i
\(605\) 9604.08 16634.8i 0.645391 1.11785i
\(606\) 0 0
\(607\) 10759.9 + 18636.8i 0.719493 + 1.24620i 0.961201 + 0.275849i \(0.0889591\pi\)
−0.241708 + 0.970349i \(0.577708\pi\)
\(608\) 9696.89 0.646811
\(609\) 0 0
\(610\) −3205.09 −0.212738
\(611\) −19438.6 33668.6i −1.28707 2.22927i
\(612\) 0 0
\(613\) −3089.48 + 5351.13i −0.203561 + 0.352578i −0.949673 0.313242i \(-0.898585\pi\)
0.746112 + 0.665820i \(0.231918\pi\)
\(614\) −2719.93 4711.06i −0.178774 0.309646i
\(615\) 0 0
\(616\) 12156.7 18725.3i 0.795143 1.22478i
\(617\) −1011.92 −0.0660267 −0.0330134 0.999455i \(-0.510510\pi\)
−0.0330134 + 0.999455i \(0.510510\pi\)
\(618\) 0 0
\(619\) 1984.27 3436.86i 0.128844 0.223165i −0.794385 0.607415i \(-0.792207\pi\)
0.923229 + 0.384250i \(0.125540\pi\)
\(620\) 3887.32 6733.03i 0.251804 0.436137i
\(621\) 0 0
\(622\) 4101.71 0.264411
\(623\) −861.915 1691.04i −0.0554284 0.108748i
\(624\) 0 0
\(625\) 9618.30 + 16659.4i 0.615571 + 1.06620i
\(626\) −1677.16 + 2904.93i −0.107081 + 0.185470i
\(627\) 0 0
\(628\) −3727.30 6455.86i −0.236840 0.410218i
\(629\) −29642.0 −1.87902
\(630\) 0 0
\(631\) 9288.00 0.585974 0.292987 0.956116i \(-0.405351\pi\)
0.292987 + 0.956116i \(0.405351\pi\)
\(632\) −6317.62 10942.4i −0.397629 0.688713i
\(633\) 0 0
\(634\) −860.125 + 1489.78i −0.0538800 + 0.0933229i
\(635\) 10386.3 + 17989.6i 0.649082 + 1.12424i
\(636\) 0 0
\(637\) −24459.1 2564.06i −1.52136 0.159485i
\(638\) 24522.2 1.52170
\(639\) 0 0
\(640\) −5591.47 + 9684.72i −0.345348 + 0.598159i
\(641\) −1629.43 + 2822.26i −0.100404 + 0.173904i −0.911851 0.410521i \(-0.865347\pi\)
0.811447 + 0.584425i \(0.198680\pi\)
\(642\) 0 0
\(643\) −17217.9 −1.05600 −0.528001 0.849244i \(-0.677058\pi\)
−0.528001 + 0.849244i \(0.677058\pi\)
\(644\) −1680.54 87.8451i −0.102830 0.00537513i
\(645\) 0 0
\(646\) 5084.22 + 8806.12i 0.309653 + 0.536335i
\(647\) −5015.34 + 8686.82i −0.304750 + 0.527843i −0.977206 0.212295i \(-0.931906\pi\)
0.672456 + 0.740138i \(0.265240\pi\)
\(648\) 0 0
\(649\) −8354.63 14470.6i −0.505313 0.875227i
\(650\) −5750.91 −0.347030
\(651\) 0 0
\(652\) −11118.6 −0.667852
\(653\) 15601.8 + 27023.1i 0.934986 + 1.61944i 0.774658 + 0.632380i \(0.217922\pi\)
0.160328 + 0.987064i \(0.448745\pi\)
\(654\) 0 0
\(655\) 5333.09 9237.19i 0.318139 0.551033i
\(656\) 20.8220 + 36.0648i 0.00123927 + 0.00214648i
\(657\) 0 0
\(658\) −9674.48 + 14901.8i −0.573177 + 0.882876i
\(659\) 2666.60 0.157627 0.0788133 0.996889i \(-0.474887\pi\)
0.0788133 + 0.996889i \(0.474887\pi\)
\(660\) 0 0
\(661\) 10161.2 17599.6i 0.597917 1.03562i −0.395211 0.918590i \(-0.629329\pi\)
0.993128 0.117032i \(-0.0373381\pi\)
\(662\) 3953.95 6848.44i 0.232137 0.402073i
\(663\) 0 0
\(664\) −6765.21 −0.395393
\(665\) −7097.98 + 10933.2i −0.413907 + 0.637549i
\(666\) 0 0
\(667\) −2442.50 4230.53i −0.141790 0.245587i
\(668\) −2608.07 + 4517.31i −0.151062 + 0.261647i
\(669\) 0 0
\(670\) 4593.93 + 7956.91i 0.264894 + 0.458810i
\(671\) −7348.42 −0.422776
\(672\) 0 0
\(673\) −16480.1 −0.943922 −0.471961 0.881619i \(-0.656454\pi\)
−0.471961 + 0.881619i \(0.656454\pi\)
\(674\) 7514.38 + 13015.3i 0.429441 + 0.743814i
\(675\) 0 0
\(676\) 7168.08 12415.5i 0.407834 0.706388i
\(677\) −9832.02 17029.6i −0.558161 0.966764i −0.997650 0.0685158i \(-0.978174\pi\)
0.439489 0.898248i \(-0.355160\pi\)
\(678\) 0 0
\(679\) 9533.01 + 498.310i 0.538797 + 0.0281640i
\(680\) −31670.7 −1.78605
\(681\) 0 0
\(682\) −5728.89 + 9922.73i −0.321658 + 0.557127i
\(683\) 6034.92 10452.8i 0.338096 0.585600i −0.645978 0.763356i \(-0.723550\pi\)
0.984075 + 0.177756i \(0.0568837\pi\)
\(684\) 0 0
\(685\) 13418.4 0.748454
\(686\) 4031.97 + 10490.9i 0.224404 + 0.583885i
\(687\) 0 0
\(688\) −230.418 399.095i −0.0127683 0.0221153i
\(689\) 9215.50 15961.7i 0.509554 0.882573i
\(690\) 0 0
\(691\) 541.776 + 938.384i 0.0298265 + 0.0516611i 0.880553 0.473947i \(-0.157171\pi\)
−0.850727 + 0.525608i \(0.823838\pi\)
\(692\) 17817.9 0.978806
\(693\) 0 0
\(694\) −14970.1 −0.818815
\(695\) −3963.05 6864.20i −0.216298 0.374639i
\(696\) 0 0
\(697\) 1672.07 2896.11i 0.0908667 0.157386i
\(698\) 5228.72 + 9056.42i 0.283539 + 0.491104i
\(699\) 0 0
\(700\) −1856.72 3642.80i −0.100253 0.196693i
\(701\) 19478.9 1.04951 0.524755 0.851253i \(-0.324157\pi\)
0.524755 + 0.851253i \(0.324157\pi\)
\(702\) 0 0
\(703\) −7499.77 + 12990.0i −0.402360 + 0.696908i
\(704\) 8702.06 15072.4i 0.465868 0.806907i
\(705\) 0 0
\(706\) 10697.2 0.570245
\(707\) −11112.9 + 17117.4i −0.591151 + 0.910562i
\(708\) 0 0
\(709\) −13813.4 23925.5i −0.731695 1.26733i −0.956158 0.292851i \(-0.905396\pi\)
0.224463 0.974483i \(-0.427937\pi\)
\(710\) 9737.61 16866.0i 0.514713 0.891509i
\(711\) 0 0
\(712\) −1166.77 2020.90i −0.0614135 0.106371i
\(713\) 2282.47 0.119887
\(714\) 0 0
\(715\) −49540.9 −2.59122
\(716\) −1972.83 3417.03i −0.102972 0.178353i
\(717\) 0 0
\(718\) 9639.45 16696.0i 0.501032 0.867813i
\(719\) 1067.47 + 1848.91i 0.0553684 + 0.0959009i 0.892381 0.451283i \(-0.149033\pi\)
−0.837013 + 0.547183i \(0.815700\pi\)
\(720\) 0 0
\(721\) −2974.10 5835.05i −0.153622 0.301399i
\(722\) −6989.79 −0.360295
\(723\) 0 0
\(724\) −4212.47 + 7296.22i −0.216237 + 0.374533i
\(725\) 5934.41 10278.7i 0.303998 0.526540i
\(726\) 0 0
\(727\) 12294.4 0.627198 0.313599 0.949556i \(-0.398465\pi\)
0.313599 + 0.949556i \(0.398465\pi\)
\(728\) −30194.9 1578.35i −1.53722 0.0803537i
\(729\) 0 0
\(730\) −10070.8 17443.2i −0.510601 0.884386i
\(731\) −18503.2 + 32048.5i −0.936204 + 1.62155i
\(732\) 0 0
\(733\) 9103.87 + 15768.4i 0.458744 + 0.794567i 0.998895 0.0470008i \(-0.0149663\pi\)
−0.540151 + 0.841568i \(0.681633\pi\)
\(734\) 13757.1 0.691801
\(735\) 0 0
\(736\) −3355.05 −0.168028
\(737\) 10532.6 + 18243.1i 0.526424 + 0.911794i
\(738\) 0 0
\(739\) −1268.68 + 2197.42i −0.0631519 + 0.109382i −0.895873 0.444311i \(-0.853449\pi\)
0.832721 + 0.553693i \(0.186782\pi\)
\(740\) −8838.72 15309.1i −0.439078 0.760506i
\(741\) 0 0
\(742\) −8411.46 439.684i −0.416165 0.0217538i
\(743\) −20574.2 −1.01587 −0.507937 0.861394i \(-0.669592\pi\)
−0.507937 + 0.861394i \(0.669592\pi\)
\(744\) 0 0
\(745\) 7961.65 13790.0i 0.391533 0.678155i
\(746\) −10552.7 + 18277.9i −0.517913 + 0.897052i
\(747\) 0 0
\(748\) −27475.7 −1.34306
\(749\) 2612.76 + 5126.11i 0.127461 + 0.250072i
\(750\) 0 0
\(751\) −12473.3 21604.3i −0.606067 1.04974i −0.991882 0.127163i \(-0.959413\pi\)
0.385815 0.922576i \(-0.373920\pi\)
\(752\) −359.800 + 623.191i −0.0174475 + 0.0302200i
\(753\) 0 0
\(754\) −16605.7 28761.9i −0.802047 1.38919i
\(755\) −25494.7 −1.22894
\(756\) 0 0
\(757\) −24686.4 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(758\) 7192.47 + 12457.7i 0.344647 + 0.596946i
\(759\) 0 0
\(760\) −8013.06 + 13879.0i −0.382453 + 0.662428i
\(761\) −19715.7 34148.5i −0.939148 1.62665i −0.767064 0.641570i \(-0.778283\pi\)
−0.172084 0.985082i \(-0.555050\pi\)
\(762\) 0 0
\(763\) −5193.49 + 7999.64i −0.246418 + 0.379563i
\(764\) 5237.91 0.248038
\(765\) 0 0
\(766\) −9599.72 + 16627.2i −0.452809 + 0.784289i
\(767\) −11315.0 + 19598.2i −0.532675 + 0.922619i
\(768\) 0 0
\(769\) −2762.60 −0.129547 −0.0647736 0.997900i \(-0.520633\pi\)
−0.0647736 + 0.997900i \(0.520633\pi\)
\(770\) 10281.1 + 20171.1i 0.481177 + 0.944047i
\(771\) 0 0
\(772\) 10941.7 + 18951.6i 0.510104 + 0.883525i
\(773\) 371.442 643.357i 0.0172831 0.0299352i −0.857254 0.514893i \(-0.827832\pi\)
0.874538 + 0.484958i \(0.161165\pi\)
\(774\) 0 0
\(775\) 2772.80 + 4802.63i 0.128519 + 0.222601i
\(776\) 11736.4 0.542927
\(777\) 0 0
\(778\) −20823.6 −0.959590
\(779\) −846.106 1465.50i −0.0389151 0.0674030i