Properties

Label 189.4.e.h.109.2
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 54 x^{14} - 12 x^{13} + 2361 x^{12} - 966 x^{11} + 29570 x^{10} - 65952 x^{9} + 300096 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{9}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(1.03883 - 1.79930i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.h.163.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.74618 - 3.02447i) q^{2} +(-2.09829 + 3.63435i) q^{4} +(3.93765 + 6.82022i) q^{5} +(18.4135 - 1.98614i) q^{7} -13.2829 q^{8} +O(q^{10})\) \(q+(-1.74618 - 3.02447i) q^{2} +(-2.09829 + 3.63435i) q^{4} +(3.93765 + 6.82022i) q^{5} +(18.4135 - 1.98614i) q^{7} -13.2829 q^{8} +(13.7517 - 23.8187i) q^{10} +(-27.0018 + 46.7684i) q^{11} -48.9137 q^{13} +(-38.1602 - 52.2228i) q^{14} +(39.9807 + 69.2486i) q^{16} +(-48.4888 + 83.9850i) q^{17} +(71.1636 + 123.259i) q^{19} -33.0494 q^{20} +188.600 q^{22} +(-51.8936 - 89.8823i) q^{23} +(31.4897 - 54.5418i) q^{25} +(85.4121 + 147.938i) q^{26} +(-31.4185 + 71.0884i) q^{28} +24.5329 q^{29} +(-93.6897 + 162.275i) q^{31} +(86.4953 - 149.814i) q^{32} +338.680 q^{34} +(86.0517 + 117.763i) q^{35} +(-73.2774 - 126.920i) q^{37} +(248.529 - 430.465i) q^{38} +(-52.3035 - 90.5923i) q^{40} +314.180 q^{41} +173.165 q^{43} +(-113.315 - 196.268i) q^{44} +(-181.231 + 313.901i) q^{46} +(129.617 + 224.504i) q^{47} +(335.110 - 73.1434i) q^{49} -219.947 q^{50} +(102.635 - 177.769i) q^{52} +(-310.429 + 537.679i) q^{53} -425.295 q^{55} +(-244.584 + 26.3817i) q^{56} +(-42.8389 - 74.1991i) q^{58} +(221.555 - 383.745i) q^{59} +(-56.6478 - 98.1168i) q^{61} +654.396 q^{62} +35.5454 q^{64} +(-192.605 - 333.602i) q^{65} +(-314.488 + 544.708i) q^{67} +(-203.487 - 352.450i) q^{68} +(205.909 - 465.897i) q^{70} +41.3042 q^{71} +(-223.555 + 387.209i) q^{73} +(-255.911 + 443.251i) q^{74} -597.287 q^{76} +(-404.307 + 914.798i) q^{77} +(-217.353 - 376.467i) q^{79} +(-314.860 + 545.354i) q^{80} +(-548.615 - 950.229i) q^{82} -329.158 q^{83} -763.728 q^{85} +(-302.378 - 523.734i) q^{86} +(358.662 - 621.221i) q^{88} +(12.4354 + 21.5388i) q^{89} +(-900.670 + 97.1494i) q^{91} +435.551 q^{92} +(452.670 - 784.048i) q^{94} +(-560.435 + 970.702i) q^{95} -499.239 q^{97} +(-806.384 - 885.811i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 48 q^{4} - 60 q^{7} - 44 q^{10} - 168 q^{13} - 156 q^{16} - 12 q^{19} + 448 q^{22} - 408 q^{25} - 152 q^{28} - 800 q^{31} - 1896 q^{34} - 692 q^{37} - 96 q^{40} + 2912 q^{43} - 1524 q^{46} + 2020 q^{49} - 1972 q^{52} - 2560 q^{55} - 2372 q^{58} - 216 q^{61} + 9928 q^{64} - 684 q^{67} + 4316 q^{70} + 4564 q^{73} - 760 q^{76} - 556 q^{79} - 3340 q^{82} + 2592 q^{85} - 6696 q^{88} - 184 q^{91} + 492 q^{94} + 1168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.74618 3.02447i −0.617368 1.06931i −0.989964 0.141319i \(-0.954866\pi\)
0.372596 0.927994i \(-0.378468\pi\)
\(3\) 0 0
\(4\) −2.09829 + 3.63435i −0.262286 + 0.454293i
\(5\) 3.93765 + 6.82022i 0.352195 + 0.610019i 0.986634 0.162954i \(-0.0521022\pi\)
−0.634439 + 0.772973i \(0.718769\pi\)
\(6\) 0 0
\(7\) 18.4135 1.98614i 0.994233 0.107242i
\(8\) −13.2829 −0.587027
\(9\) 0 0
\(10\) 13.7517 23.8187i 0.434867 0.753212i
\(11\) −27.0018 + 46.7684i −0.740122 + 1.28193i 0.212318 + 0.977201i \(0.431899\pi\)
−0.952439 + 0.304728i \(0.901434\pi\)
\(12\) 0 0
\(13\) −48.9137 −1.04355 −0.521777 0.853082i \(-0.674731\pi\)
−0.521777 + 0.853082i \(0.674731\pi\)
\(14\) −38.1602 52.2228i −0.728482 0.996938i
\(15\) 0 0
\(16\) 39.9807 + 69.2486i 0.624698 + 1.08201i
\(17\) −48.4888 + 83.9850i −0.691780 + 1.19820i 0.279475 + 0.960153i \(0.409840\pi\)
−0.971254 + 0.238044i \(0.923494\pi\)
\(18\) 0 0
\(19\) 71.1636 + 123.259i 0.859266 + 1.48829i 0.872631 + 0.488381i \(0.162412\pi\)
−0.0133650 + 0.999911i \(0.504254\pi\)
\(20\) −33.0494 −0.369503
\(21\) 0 0
\(22\) 188.600 1.82771
\(23\) −51.8936 89.8823i −0.470459 0.814859i 0.528970 0.848640i \(-0.322578\pi\)
−0.999429 + 0.0337813i \(0.989245\pi\)
\(24\) 0 0
\(25\) 31.4897 54.5418i 0.251918 0.436335i
\(26\) 85.4121 + 147.938i 0.644257 + 1.11589i
\(27\) 0 0
\(28\) −31.4185 + 71.0884i −0.212055 + 0.479801i
\(29\) 24.5329 0.157091 0.0785456 0.996911i \(-0.474972\pi\)
0.0785456 + 0.996911i \(0.474972\pi\)
\(30\) 0 0
\(31\) −93.6897 + 162.275i −0.542812 + 0.940177i 0.455930 + 0.890016i \(0.349307\pi\)
−0.998741 + 0.0501613i \(0.984026\pi\)
\(32\) 86.4953 149.814i 0.477824 0.827615i
\(33\) 0 0
\(34\) 338.680 1.70833
\(35\) 86.0517 + 117.763i 0.415583 + 0.568731i
\(36\) 0 0
\(37\) −73.2774 126.920i −0.325587 0.563933i 0.656044 0.754723i \(-0.272229\pi\)
−0.981631 + 0.190789i \(0.938895\pi\)
\(38\) 248.529 430.465i 1.06097 1.83765i
\(39\) 0 0
\(40\) −52.3035 90.5923i −0.206748 0.358098i
\(41\) 314.180 1.19675 0.598374 0.801217i \(-0.295814\pi\)
0.598374 + 0.801217i \(0.295814\pi\)
\(42\) 0 0
\(43\) 173.165 0.614127 0.307064 0.951689i \(-0.400654\pi\)
0.307064 + 0.951689i \(0.400654\pi\)
\(44\) −113.315 196.268i −0.388248 0.672465i
\(45\) 0 0
\(46\) −181.231 + 313.901i −0.580893 + 1.00614i
\(47\) 129.617 + 224.504i 0.402269 + 0.696749i 0.993999 0.109386i \(-0.0348885\pi\)
−0.591731 + 0.806136i \(0.701555\pi\)
\(48\) 0 0
\(49\) 335.110 73.1434i 0.976999 0.213246i
\(50\) −219.947 −0.622104
\(51\) 0 0
\(52\) 102.635 177.769i 0.273710 0.474080i
\(53\) −310.429 + 537.679i −0.804541 + 1.39351i 0.112059 + 0.993702i \(0.464256\pi\)
−0.916600 + 0.399805i \(0.869078\pi\)
\(54\) 0 0
\(55\) −425.295 −1.04267
\(56\) −244.584 + 26.3817i −0.583642 + 0.0629537i
\(57\) 0 0
\(58\) −42.8389 74.1991i −0.0969831 0.167980i
\(59\) 221.555 383.745i 0.488882 0.846768i −0.511036 0.859559i \(-0.670738\pi\)
0.999918 + 0.0127908i \(0.00407155\pi\)
\(60\) 0 0
\(61\) −56.6478 98.1168i −0.118902 0.205944i 0.800431 0.599425i \(-0.204604\pi\)
−0.919333 + 0.393481i \(0.871271\pi\)
\(62\) 654.396 1.34046
\(63\) 0 0
\(64\) 35.5454 0.0694245
\(65\) −192.605 333.602i −0.367534 0.636588i
\(66\) 0 0
\(67\) −314.488 + 544.708i −0.573444 + 0.993235i 0.422764 + 0.906240i \(0.361060\pi\)
−0.996209 + 0.0869950i \(0.972274\pi\)
\(68\) −203.487 352.450i −0.362889 0.628542i
\(69\) 0 0
\(70\) 205.909 465.897i 0.351584 0.795504i
\(71\) 41.3042 0.0690410 0.0345205 0.999404i \(-0.489010\pi\)
0.0345205 + 0.999404i \(0.489010\pi\)
\(72\) 0 0
\(73\) −223.555 + 387.209i −0.358427 + 0.620814i −0.987698 0.156372i \(-0.950020\pi\)
0.629271 + 0.777186i \(0.283353\pi\)
\(74\) −255.911 + 443.251i −0.402014 + 0.696309i
\(75\) 0 0
\(76\) −597.287 −0.901494
\(77\) −404.307 + 914.798i −0.598378 + 1.35391i
\(78\) 0 0
\(79\) −217.353 376.467i −0.309546 0.536149i 0.668717 0.743517i \(-0.266844\pi\)
−0.978263 + 0.207368i \(0.933510\pi\)
\(80\) −314.860 + 545.354i −0.440031 + 0.762155i
\(81\) 0 0
\(82\) −548.615 950.229i −0.738834 1.27970i
\(83\) −329.158 −0.435299 −0.217649 0.976027i \(-0.569839\pi\)
−0.217649 + 0.976027i \(0.569839\pi\)
\(84\) 0 0
\(85\) −763.728 −0.974564
\(86\) −302.378 523.734i −0.379143 0.656694i
\(87\) 0 0
\(88\) 358.662 621.221i 0.434472 0.752527i
\(89\) 12.4354 + 21.5388i 0.0148107 + 0.0256529i 0.873336 0.487119i \(-0.161952\pi\)
−0.858525 + 0.512772i \(0.828619\pi\)
\(90\) 0 0
\(91\) −900.670 + 97.1494i −1.03754 + 0.111912i
\(92\) 435.551 0.493580
\(93\) 0 0
\(94\) 452.670 784.048i 0.496695 0.860302i
\(95\) −560.435 + 970.702i −0.605257 + 1.04834i
\(96\) 0 0
\(97\) −499.239 −0.522578 −0.261289 0.965261i \(-0.584148\pi\)
−0.261289 + 0.965261i \(0.584148\pi\)
\(98\) −806.384 885.811i −0.831194 0.913066i
\(99\) 0 0
\(100\) 132.149 + 228.889i 0.132149 + 0.228889i
\(101\) 129.038 223.501i 0.127127 0.220190i −0.795436 0.606038i \(-0.792758\pi\)
0.922562 + 0.385848i \(0.126091\pi\)
\(102\) 0 0
\(103\) −480.159 831.659i −0.459334 0.795590i 0.539592 0.841927i \(-0.318579\pi\)
−0.998926 + 0.0463365i \(0.985245\pi\)
\(104\) 649.716 0.612595
\(105\) 0 0
\(106\) 2168.26 1.98679
\(107\) −1027.13 1779.04i −0.928004 1.60735i −0.786657 0.617391i \(-0.788190\pi\)
−0.141347 0.989960i \(-0.545143\pi\)
\(108\) 0 0
\(109\) −892.052 + 1545.08i −0.783881 + 1.35772i 0.145784 + 0.989316i \(0.453430\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(110\) 742.641 + 1286.29i 0.643709 + 1.11494i
\(111\) 0 0
\(112\) 873.720 + 1195.70i 0.737132 + 1.00878i
\(113\) 1296.36 1.07921 0.539607 0.841917i \(-0.318573\pi\)
0.539607 + 0.841917i \(0.318573\pi\)
\(114\) 0 0
\(115\) 408.678 707.851i 0.331386 0.573978i
\(116\) −51.4772 + 89.1611i −0.0412029 + 0.0713655i
\(117\) 0 0
\(118\) −1547.50 −1.20728
\(119\) −726.040 + 1642.76i −0.559294 + 1.26547i
\(120\) 0 0
\(121\) −792.691 1372.98i −0.595561 1.03154i
\(122\) −197.834 + 342.659i −0.146812 + 0.254286i
\(123\) 0 0
\(124\) −393.176 681.001i −0.284744 0.493191i
\(125\) 1480.40 1.05929
\(126\) 0 0
\(127\) −312.058 −0.218037 −0.109018 0.994040i \(-0.534771\pi\)
−0.109018 + 0.994040i \(0.534771\pi\)
\(128\) −754.031 1306.02i −0.520684 0.901851i
\(129\) 0 0
\(130\) −672.647 + 1165.06i −0.453808 + 0.786018i
\(131\) 41.6352 + 72.1143i 0.0277686 + 0.0480966i 0.879576 0.475759i \(-0.157827\pi\)
−0.851807 + 0.523855i \(0.824493\pi\)
\(132\) 0 0
\(133\) 1555.18 + 2128.28i 1.01392 + 1.38756i
\(134\) 2196.61 1.41610
\(135\) 0 0
\(136\) 644.072 1115.57i 0.406093 0.703374i
\(137\) 1454.79 2519.77i 0.907233 1.57137i 0.0893421 0.996001i \(-0.471524\pi\)
0.817891 0.575373i \(-0.195143\pi\)
\(138\) 0 0
\(139\) 1414.91 0.863392 0.431696 0.902019i \(-0.357915\pi\)
0.431696 + 0.902019i \(0.357915\pi\)
\(140\) −608.553 + 65.6407i −0.367372 + 0.0396261i
\(141\) 0 0
\(142\) −72.1246 124.923i −0.0426237 0.0738264i
\(143\) 1320.76 2287.62i 0.772358 1.33776i
\(144\) 0 0
\(145\) 96.6021 + 167.320i 0.0553267 + 0.0958286i
\(146\) 1561.47 0.885125
\(147\) 0 0
\(148\) 615.029 0.341588
\(149\) 1093.31 + 1893.67i 0.601125 + 1.04118i 0.992651 + 0.121012i \(0.0386141\pi\)
−0.391526 + 0.920167i \(0.628053\pi\)
\(150\) 0 0
\(151\) −819.629 + 1419.64i −0.441725 + 0.765090i −0.997818 0.0660304i \(-0.978967\pi\)
0.556093 + 0.831120i \(0.312300\pi\)
\(152\) −945.259 1637.24i −0.504412 0.873668i
\(153\) 0 0
\(154\) 3472.77 374.586i 1.81717 0.196006i
\(155\) −1475.67 −0.764701
\(156\) 0 0
\(157\) −629.491 + 1090.31i −0.319993 + 0.554244i −0.980486 0.196588i \(-0.937014\pi\)
0.660493 + 0.750832i \(0.270347\pi\)
\(158\) −759.075 + 1314.76i −0.382207 + 0.662003i
\(159\) 0 0
\(160\) 1362.35 0.673147
\(161\) −1134.06 1551.98i −0.555133 0.759707i
\(162\) 0 0
\(163\) 1579.50 + 2735.78i 0.758995 + 1.31462i 0.943364 + 0.331761i \(0.107643\pi\)
−0.184368 + 0.982857i \(0.559024\pi\)
\(164\) −659.241 + 1141.84i −0.313891 + 0.543675i
\(165\) 0 0
\(166\) 574.769 + 995.530i 0.268739 + 0.465470i
\(167\) 1848.90 0.856718 0.428359 0.903609i \(-0.359092\pi\)
0.428359 + 0.903609i \(0.359092\pi\)
\(168\) 0 0
\(169\) 195.548 0.0890068
\(170\) 1333.61 + 2309.87i 0.601665 + 1.04211i
\(171\) 0 0
\(172\) −363.351 + 629.343i −0.161077 + 0.278994i
\(173\) −311.578 539.669i −0.136930 0.237169i 0.789403 0.613875i \(-0.210390\pi\)
−0.926333 + 0.376706i \(0.877057\pi\)
\(174\) 0 0
\(175\) 471.507 1066.85i 0.203672 0.460834i
\(176\) −4318.20 −1.84941
\(177\) 0 0
\(178\) 43.4290 75.2213i 0.0182873 0.0316746i
\(179\) −1170.33 + 2027.07i −0.488685 + 0.846427i −0.999915 0.0130168i \(-0.995857\pi\)
0.511230 + 0.859444i \(0.329190\pi\)
\(180\) 0 0
\(181\) −461.896 −0.189682 −0.0948411 0.995492i \(-0.530234\pi\)
−0.0948411 + 0.995492i \(0.530234\pi\)
\(182\) 1866.56 + 2554.41i 0.760211 + 1.04036i
\(183\) 0 0
\(184\) 689.298 + 1193.90i 0.276172 + 0.478345i
\(185\) 577.082 999.535i 0.229340 0.397229i
\(186\) 0 0
\(187\) −2618.56 4535.49i −1.02400 1.77362i
\(188\) −1087.90 −0.422038
\(189\) 0 0
\(190\) 3914.48 1.49467
\(191\) −1332.90 2308.65i −0.504948 0.874596i −0.999984 0.00572288i \(-0.998178\pi\)
0.495036 0.868873i \(-0.335155\pi\)
\(192\) 0 0
\(193\) −65.2845 + 113.076i −0.0243486 + 0.0421730i −0.877943 0.478765i \(-0.841085\pi\)
0.853594 + 0.520938i \(0.174418\pi\)
\(194\) 871.761 + 1509.93i 0.322623 + 0.558799i
\(195\) 0 0
\(196\) −437.331 + 1371.38i −0.159377 + 0.499775i
\(197\) −3729.51 −1.34882 −0.674408 0.738359i \(-0.735601\pi\)
−0.674408 + 0.738359i \(0.735601\pi\)
\(198\) 0 0
\(199\) 1886.38 3267.30i 0.671968 1.16388i −0.305377 0.952232i \(-0.598782\pi\)
0.977345 0.211652i \(-0.0678842\pi\)
\(200\) −418.275 + 724.474i −0.147883 + 0.256140i
\(201\) 0 0
\(202\) −901.296 −0.313935
\(203\) 451.736 48.7258i 0.156185 0.0168467i
\(204\) 0 0
\(205\) 1237.13 + 2142.78i 0.421488 + 0.730039i
\(206\) −1676.89 + 2904.45i −0.567157 + 0.982344i
\(207\) 0 0
\(208\) −1955.60 3387.20i −0.651907 1.12914i
\(209\) −7686.17 −2.54384
\(210\) 0 0
\(211\) 2398.28 0.782484 0.391242 0.920288i \(-0.372046\pi\)
0.391242 + 0.920288i \(0.372046\pi\)
\(212\) −1302.74 2256.41i −0.422040 0.730995i
\(213\) 0 0
\(214\) −3587.11 + 6213.06i −1.14584 + 1.98465i
\(215\) 681.866 + 1181.03i 0.216292 + 0.374629i
\(216\) 0 0
\(217\) −1402.85 + 3174.13i −0.438855 + 0.992967i
\(218\) 6230.73 1.93577
\(219\) 0 0
\(220\) 892.392 1545.67i 0.273477 0.473677i
\(221\) 2371.76 4108.02i 0.721910 1.25038i
\(222\) 0 0
\(223\) −3338.23 −1.00244 −0.501220 0.865320i \(-0.667115\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(224\) 1295.12 2930.39i 0.386313 0.874084i
\(225\) 0 0
\(226\) −2263.68 3920.80i −0.666272 1.15402i
\(227\) 634.521 1099.02i 0.185527 0.321342i −0.758227 0.651991i \(-0.773934\pi\)
0.943754 + 0.330649i \(0.107267\pi\)
\(228\) 0 0
\(229\) 1025.74 + 1776.63i 0.295995 + 0.512678i 0.975216 0.221256i \(-0.0710155\pi\)
−0.679221 + 0.733934i \(0.737682\pi\)
\(230\) −2854.50 −0.818349
\(231\) 0 0
\(232\) −325.868 −0.0922169
\(233\) 2475.22 + 4287.20i 0.695953 + 1.20543i 0.969859 + 0.243669i \(0.0783510\pi\)
−0.273906 + 0.961756i \(0.588316\pi\)
\(234\) 0 0
\(235\) −1020.78 + 1768.04i −0.283354 + 0.490783i
\(236\) 929.774 + 1610.42i 0.256454 + 0.444192i
\(237\) 0 0
\(238\) 6236.28 672.667i 1.69848 0.183204i
\(239\) −262.671 −0.0710910 −0.0355455 0.999368i \(-0.511317\pi\)
−0.0355455 + 0.999368i \(0.511317\pi\)
\(240\) 0 0
\(241\) −1451.19 + 2513.53i −0.387880 + 0.671829i −0.992164 0.124941i \(-0.960126\pi\)
0.604284 + 0.796769i \(0.293459\pi\)
\(242\) −2768.36 + 4794.95i −0.735360 + 1.27368i
\(243\) 0 0
\(244\) 475.454 0.124745
\(245\) 1818.40 + 1997.51i 0.474178 + 0.520883i
\(246\) 0 0
\(247\) −3480.87 6029.05i −0.896691 1.55311i
\(248\) 1244.47 2155.49i 0.318645 0.551910i
\(249\) 0 0
\(250\) −2585.04 4477.42i −0.653969 1.13271i
\(251\) 6265.68 1.57564 0.787821 0.615904i \(-0.211209\pi\)
0.787821 + 0.615904i \(0.211209\pi\)
\(252\) 0 0
\(253\) 5604.87 1.39279
\(254\) 544.909 + 943.810i 0.134609 + 0.233149i
\(255\) 0 0
\(256\) −2491.17 + 4314.83i −0.608195 + 1.05342i
\(257\) −1710.48 2962.64i −0.415163 0.719083i 0.580283 0.814415i \(-0.302942\pi\)
−0.995446 + 0.0953322i \(0.969609\pi\)
\(258\) 0 0
\(259\) −1601.37 2191.50i −0.384187 0.525765i
\(260\) 1616.57 0.385597
\(261\) 0 0
\(262\) 145.405 251.849i 0.0342869 0.0593866i
\(263\) 4111.26 7120.91i 0.963921 1.66956i 0.251435 0.967874i \(-0.419098\pi\)
0.712486 0.701686i \(-0.247569\pi\)
\(264\) 0 0
\(265\) −4889.45 −1.13342
\(266\) 3721.31 8419.95i 0.857775 1.94083i
\(267\) 0 0
\(268\) −1319.77 2285.91i −0.300813 0.521024i
\(269\) −2746.67 + 4757.37i −0.622555 + 1.07830i 0.366453 + 0.930436i \(0.380572\pi\)
−0.989008 + 0.147860i \(0.952761\pi\)
\(270\) 0 0
\(271\) 548.242 + 949.584i 0.122891 + 0.212853i 0.920906 0.389784i \(-0.127450\pi\)
−0.798016 + 0.602637i \(0.794117\pi\)
\(272\) −7754.45 −1.72861
\(273\) 0 0
\(274\) −10161.3 −2.24039
\(275\) 1700.56 + 2945.45i 0.372900 + 0.645882i
\(276\) 0 0
\(277\) 777.736 1347.08i 0.168699 0.292195i −0.769264 0.638931i \(-0.779377\pi\)
0.937963 + 0.346736i \(0.112710\pi\)
\(278\) −2470.70 4279.37i −0.533030 0.923236i
\(279\) 0 0
\(280\) −1143.02 1564.24i −0.243958 0.333861i
\(281\) −995.950 −0.211435 −0.105718 0.994396i \(-0.533714\pi\)
−0.105718 + 0.994396i \(0.533714\pi\)
\(282\) 0 0
\(283\) 4317.74 7478.54i 0.906936 1.57086i 0.0886383 0.996064i \(-0.471748\pi\)
0.818297 0.574795i \(-0.194918\pi\)
\(284\) −86.6683 + 150.114i −0.0181085 + 0.0313648i
\(285\) 0 0
\(286\) −9225.11 −1.90732
\(287\) 5785.14 624.006i 1.18985 0.128341i
\(288\) 0 0
\(289\) −2245.82 3889.87i −0.457118 0.791751i
\(290\) 337.369 584.341i 0.0683139 0.118323i
\(291\) 0 0
\(292\) −938.168 1624.95i −0.188021 0.325662i
\(293\) −2180.01 −0.434667 −0.217333 0.976097i \(-0.569736\pi\)
−0.217333 + 0.976097i \(0.569736\pi\)
\(294\) 0 0
\(295\) 3489.63 0.688726
\(296\) 973.336 + 1685.87i 0.191128 + 0.331044i
\(297\) 0 0
\(298\) 3818.24 6613.39i 0.742231 1.28558i
\(299\) 2538.31 + 4396.48i 0.490950 + 0.850350i
\(300\) 0 0
\(301\) 3188.57 343.931i 0.610586 0.0658600i
\(302\) 5724.88 1.09083
\(303\) 0 0
\(304\) −5690.34 + 9855.95i −1.07356 + 1.85947i
\(305\) 446.119 772.700i 0.0837531 0.145065i
\(306\) 0 0
\(307\) 5281.18 0.981800 0.490900 0.871216i \(-0.336668\pi\)
0.490900 + 0.871216i \(0.336668\pi\)
\(308\) −2476.34 3388.90i −0.458125 0.626950i
\(309\) 0 0
\(310\) 2576.79 + 4463.12i 0.472102 + 0.817705i
\(311\) −2148.74 + 3721.72i −0.391780 + 0.678584i −0.992684 0.120738i \(-0.961474\pi\)
0.600904 + 0.799321i \(0.294807\pi\)
\(312\) 0 0
\(313\) 1180.48 + 2044.65i 0.213178 + 0.369235i 0.952707 0.303889i \(-0.0982852\pi\)
−0.739529 + 0.673124i \(0.764952\pi\)
\(314\) 4396.82 0.790213
\(315\) 0 0
\(316\) 1824.28 0.324759
\(317\) 4546.33 + 7874.47i 0.805512 + 1.39519i 0.915945 + 0.401304i \(0.131443\pi\)
−0.110433 + 0.993884i \(0.535224\pi\)
\(318\) 0 0
\(319\) −662.432 + 1147.37i −0.116267 + 0.201380i
\(320\) 139.965 + 242.427i 0.0244509 + 0.0423503i
\(321\) 0 0
\(322\) −2713.64 + 6139.96i −0.469643 + 1.06263i
\(323\) −13802.5 −2.37769
\(324\) 0 0
\(325\) −1540.28 + 2667.84i −0.262890 + 0.455339i
\(326\) 5516.19 9554.33i 0.937158 1.62321i
\(327\) 0 0
\(328\) −4173.23 −0.702524
\(329\) 2832.60 + 3876.45i 0.474669 + 0.649591i
\(330\) 0 0
\(331\) −2189.51 3792.34i −0.363584 0.629745i 0.624964 0.780653i \(-0.285114\pi\)
−0.988548 + 0.150908i \(0.951780\pi\)
\(332\) 690.669 1196.27i 0.114173 0.197753i
\(333\) 0 0
\(334\) −3228.51 5591.94i −0.528910 0.916100i
\(335\) −4953.37 −0.807856
\(336\) 0 0
\(337\) 3314.59 0.535778 0.267889 0.963450i \(-0.413674\pi\)
0.267889 + 0.963450i \(0.413674\pi\)
\(338\) −341.462 591.429i −0.0549499 0.0951760i
\(339\) 0 0
\(340\) 1602.52 2775.65i 0.255615 0.442738i
\(341\) −5059.57 8763.44i −0.803493 1.39169i
\(342\) 0 0
\(343\) 6025.27 2012.40i 0.948495 0.316791i
\(344\) −2300.14 −0.360510
\(345\) 0 0
\(346\) −1088.14 + 1884.72i −0.169072 + 0.292842i
\(347\) −4276.94 + 7407.87i −0.661666 + 1.14604i 0.318512 + 0.947919i \(0.396817\pi\)
−0.980178 + 0.198120i \(0.936517\pi\)
\(348\) 0 0
\(349\) 9832.96 1.50816 0.754078 0.656785i \(-0.228084\pi\)
0.754078 + 0.656785i \(0.228084\pi\)
\(350\) −4049.99 + 436.846i −0.618517 + 0.0667154i
\(351\) 0 0
\(352\) 4671.05 + 8090.50i 0.707295 + 1.22507i
\(353\) 3085.71 5344.60i 0.465257 0.805848i −0.533957 0.845512i \(-0.679295\pi\)
0.999213 + 0.0396640i \(0.0126287\pi\)
\(354\) 0 0
\(355\) 162.642 + 281.704i 0.0243159 + 0.0421163i
\(356\) −104.373 −0.0155386
\(357\) 0 0
\(358\) 8174.43 1.20679
\(359\) 4773.51 + 8267.96i 0.701772 + 1.21551i 0.967844 + 0.251552i \(0.0809409\pi\)
−0.266072 + 0.963953i \(0.585726\pi\)
\(360\) 0 0
\(361\) −6699.01 + 11603.0i −0.976675 + 1.69165i
\(362\) 806.554 + 1396.99i 0.117104 + 0.202830i
\(363\) 0 0
\(364\) 1536.79 3477.19i 0.221291 0.500699i
\(365\) −3521.14 −0.504944
\(366\) 0 0
\(367\) 2014.34 3488.94i 0.286506 0.496243i −0.686467 0.727161i \(-0.740839\pi\)
0.972973 + 0.230918i \(0.0741728\pi\)
\(368\) 4149.48 7187.11i 0.587790 1.01808i
\(369\) 0 0
\(370\) −4030.76 −0.566349
\(371\) −4648.16 + 10517.1i −0.650460 + 1.47175i
\(372\) 0 0
\(373\) −10.0254 17.3646i −0.00139168 0.00241046i 0.865329 0.501205i \(-0.167110\pi\)
−0.866720 + 0.498794i \(0.833776\pi\)
\(374\) −9144.97 + 15839.6i −1.26437 + 2.18996i
\(375\) 0 0
\(376\) −1721.69 2982.06i −0.236143 0.409011i
\(377\) −1199.99 −0.163933
\(378\) 0 0
\(379\) −3787.79 −0.513366 −0.256683 0.966496i \(-0.582630\pi\)
−0.256683 + 0.966496i \(0.582630\pi\)
\(380\) −2351.91 4073.63i −0.317501 0.549929i
\(381\) 0 0
\(382\) −4654.96 + 8062.62i −0.623477 + 1.07989i
\(383\) −4000.86 6929.69i −0.533771 0.924519i −0.999222 0.0394450i \(-0.987441\pi\)
0.465451 0.885074i \(-0.345892\pi\)
\(384\) 0 0
\(385\) −7831.14 + 844.695i −1.03665 + 0.111817i
\(386\) 455.994 0.0601282
\(387\) 0 0
\(388\) 1047.55 1814.41i 0.137065 0.237404i
\(389\) −1742.32 + 3017.79i −0.227093 + 0.393336i −0.956945 0.290268i \(-0.906255\pi\)
0.729852 + 0.683605i \(0.239589\pi\)
\(390\) 0 0
\(391\) 10065.0 1.30182
\(392\) −4451.24 + 971.557i −0.573525 + 0.125181i
\(393\) 0 0
\(394\) 6512.40 + 11279.8i 0.832716 + 1.44231i
\(395\) 1711.72 2964.79i 0.218041 0.377658i
\(396\) 0 0
\(397\) 3518.88 + 6094.88i 0.444855 + 0.770512i 0.998042 0.0625455i \(-0.0199218\pi\)
−0.553187 + 0.833057i \(0.686589\pi\)
\(398\) −13175.8 −1.65941
\(399\) 0 0
\(400\) 5035.93 0.629491
\(401\) 4194.86 + 7265.72i 0.522398 + 0.904820i 0.999660 + 0.0260589i \(0.00829573\pi\)
−0.477263 + 0.878761i \(0.658371\pi\)
\(402\) 0 0
\(403\) 4582.71 7937.48i 0.566454 0.981126i
\(404\) 541.519 + 937.939i 0.0666871 + 0.115505i
\(405\) 0 0
\(406\) −936.182 1281.18i −0.114438 0.156610i
\(407\) 7914.47 0.963896
\(408\) 0 0
\(409\) 6772.75 11730.7i 0.818804 1.41821i −0.0877604 0.996142i \(-0.527971\pi\)
0.906564 0.422068i \(-0.138696\pi\)
\(410\) 4320.51 7483.35i 0.520427 0.901406i
\(411\) 0 0
\(412\) 4030.05 0.481908
\(413\) 3317.43 7506.11i 0.395254 0.894313i
\(414\) 0 0
\(415\) −1296.11 2244.93i −0.153310 0.265540i
\(416\) −4230.80 + 7327.97i −0.498635 + 0.863661i
\(417\) 0 0
\(418\) 13421.4 + 23246.6i 1.57049 + 2.72017i
\(419\) 1450.22 0.169089 0.0845443 0.996420i \(-0.473057\pi\)
0.0845443 + 0.996420i \(0.473057\pi\)
\(420\) 0 0
\(421\) −923.118 −0.106865 −0.0534324 0.998571i \(-0.517016\pi\)
−0.0534324 + 0.998571i \(0.517016\pi\)
\(422\) −4187.82 7253.52i −0.483080 0.836720i
\(423\) 0 0
\(424\) 4123.40 7141.94i 0.472288 0.818026i
\(425\) 3053.80 + 5289.33i 0.348543 + 0.603695i
\(426\) 0 0
\(427\) −1237.95 1694.16i −0.140302 0.192005i
\(428\) 8620.87 0.973611
\(429\) 0 0
\(430\) 2381.32 4124.57i 0.267064 0.462568i
\(431\) 619.105 1072.32i 0.0691908 0.119842i −0.829355 0.558723i \(-0.811292\pi\)
0.898545 + 0.438881i \(0.144625\pi\)
\(432\) 0 0
\(433\) 10786.5 1.19715 0.598575 0.801067i \(-0.295734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(434\) 12049.7 1299.72i 1.33273 0.143753i
\(435\) 0 0
\(436\) −3743.57 6484.05i −0.411203 0.712224i
\(437\) 7385.87 12792.7i 0.808499 1.40036i
\(438\) 0 0
\(439\) −1676.75 2904.21i −0.182293 0.315741i 0.760368 0.649493i \(-0.225019\pi\)
−0.942661 + 0.333752i \(0.891685\pi\)
\(440\) 5649.15 0.612074
\(441\) 0 0
\(442\) −16566.1 −1.78274
\(443\) −4045.18 7006.46i −0.433843 0.751438i 0.563358 0.826213i \(-0.309509\pi\)
−0.997200 + 0.0747756i \(0.976176\pi\)
\(444\) 0 0
\(445\) −97.9329 + 169.625i −0.0104325 + 0.0180696i
\(446\) 5829.14 + 10096.4i 0.618874 + 1.07192i
\(447\) 0 0
\(448\) 654.513 70.5981i 0.0690241 0.00744519i
\(449\) 4211.19 0.442625 0.221312 0.975203i \(-0.428966\pi\)
0.221312 + 0.975203i \(0.428966\pi\)
\(450\) 0 0
\(451\) −8483.42 + 14693.7i −0.885740 + 1.53415i
\(452\) −2720.14 + 4711.42i −0.283063 + 0.490280i
\(453\) 0 0
\(454\) −4431.95 −0.458154
\(455\) −4209.11 5760.22i −0.433683 0.593502i
\(456\) 0 0
\(457\) 4888.81 + 8467.67i 0.500413 + 0.866741i 1.00000 0.000477301i \(0.000151930\pi\)
−0.499587 + 0.866264i \(0.666515\pi\)
\(458\) 3582.26 6204.65i 0.365476 0.633022i
\(459\) 0 0
\(460\) 1715.05 + 2970.55i 0.173836 + 0.301093i
\(461\) 12360.4 1.24876 0.624381 0.781120i \(-0.285351\pi\)
0.624381 + 0.781120i \(0.285351\pi\)
\(462\) 0 0
\(463\) −16107.0 −1.61675 −0.808377 0.588666i \(-0.799653\pi\)
−0.808377 + 0.588666i \(0.799653\pi\)
\(464\) 980.842 + 1698.87i 0.0981346 + 0.169974i
\(465\) 0 0
\(466\) 8644.35 14972.5i 0.859318 1.48838i
\(467\) −6742.68 11678.7i −0.668125 1.15723i −0.978428 0.206588i \(-0.933764\pi\)
0.310303 0.950638i \(-0.399569\pi\)
\(468\) 0 0
\(469\) −4708.93 + 10654.6i −0.463621 + 1.04900i
\(470\) 7129.84 0.699734
\(471\) 0 0
\(472\) −2942.90 + 5097.25i −0.286987 + 0.497076i
\(473\) −4675.77 + 8098.68i −0.454529 + 0.787268i
\(474\) 0 0
\(475\) 8963.69 0.865858
\(476\) −4446.91 6085.67i −0.428202 0.586000i
\(477\) 0 0
\(478\) 458.670 + 794.440i 0.0438893 + 0.0760185i
\(479\) −195.482 + 338.585i −0.0186468 + 0.0322972i −0.875198 0.483764i \(-0.839269\pi\)
0.856551 + 0.516062i \(0.172602\pi\)
\(480\) 0 0
\(481\) 3584.26 + 6208.13i 0.339768 + 0.588495i
\(482\) 10136.1 0.957860
\(483\) 0 0
\(484\) 6653.18 0.624830
\(485\) −1965.83 3404.92i −0.184049 0.318782i
\(486\) 0 0
\(487\) 7895.75 13675.8i 0.734683 1.27251i −0.220179 0.975460i \(-0.570664\pi\)
0.954862 0.297049i \(-0.0960026\pi\)
\(488\) 752.447 + 1303.28i 0.0697985 + 0.120895i
\(489\) 0 0
\(490\) 2866.16 8987.73i 0.264245 0.828621i
\(491\) −191.606 −0.0176111 −0.00880557 0.999961i \(-0.502803\pi\)
−0.00880557 + 0.999961i \(0.502803\pi\)
\(492\) 0 0
\(493\) −1189.57 + 2060.40i −0.108673 + 0.188226i
\(494\) −12156.5 + 21055.6i −1.10718 + 1.91769i
\(495\) 0 0
\(496\) −14983.1 −1.35637
\(497\) 760.553 82.0360i 0.0686428 0.00740406i
\(498\) 0 0
\(499\) −2810.50 4867.93i −0.252135 0.436710i 0.711979 0.702201i \(-0.247799\pi\)
−0.964113 + 0.265491i \(0.914466\pi\)
\(500\) −3106.30 + 5380.27i −0.277836 + 0.481226i
\(501\) 0 0
\(502\) −10941.0 18950.4i −0.972751 1.68485i
\(503\) 16936.3 1.50129 0.750647 0.660704i \(-0.229742\pi\)
0.750647 + 0.660704i \(0.229742\pi\)
\(504\) 0 0
\(505\) 2032.43 0.179093
\(506\) −9787.12 16951.8i −0.859863 1.48933i
\(507\) 0 0
\(508\) 654.788 1134.13i 0.0571880 0.0990526i
\(509\) −2112.88 3659.62i −0.183992 0.318684i 0.759244 0.650806i \(-0.225569\pi\)
−0.943236 + 0.332122i \(0.892235\pi\)
\(510\) 0 0
\(511\) −3347.37 + 7573.87i −0.289783 + 0.655672i
\(512\) 5335.61 0.460552
\(513\) 0 0
\(514\) −5973.61 + 10346.6i −0.512616 + 0.887877i
\(515\) 3781.40 6549.57i 0.323550 0.560405i
\(516\) 0 0
\(517\) −13999.6 −1.19091
\(518\) −3831.85 + 8670.05i −0.325022 + 0.735406i
\(519\) 0 0
\(520\) 2558.36 + 4431.20i 0.215753 + 0.373695i
\(521\) 2042.06 3536.95i 0.171716 0.297421i −0.767304 0.641284i \(-0.778402\pi\)
0.939020 + 0.343863i \(0.111735\pi\)
\(522\) 0 0
\(523\) −8485.69 14697.7i −0.709471 1.22884i −0.965054 0.262053i \(-0.915601\pi\)
0.255582 0.966787i \(-0.417733\pi\)
\(524\) −349.451 −0.0291333
\(525\) 0 0
\(526\) −28716.0 −2.38038
\(527\) −9085.79 15737.1i −0.751012 1.30079i
\(528\) 0 0
\(529\) 697.611 1208.30i 0.0573363 0.0993095i
\(530\) 8537.86 + 14788.0i 0.699737 + 1.21198i
\(531\) 0 0
\(532\) −10998.1 + 1186.30i −0.896295 + 0.0966776i
\(533\) −15367.7 −1.24887
\(534\) 0 0
\(535\) 8088.97 14010.5i 0.653676 1.13220i
\(536\) 4177.31 7235.31i 0.336627 0.583056i
\(537\) 0 0
\(538\) 19184.7 1.53738
\(539\) −5627.77 + 17647.6i −0.449732 + 1.41027i
\(540\) 0 0
\(541\) −315.493 546.451i −0.0250723 0.0434265i 0.853217 0.521556i \(-0.174648\pi\)
−0.878289 + 0.478130i \(0.841315\pi\)
\(542\) 1914.66 3316.29i 0.151737 0.262817i
\(543\) 0 0
\(544\) 8388.10 + 14528.6i 0.661097 + 1.14505i
\(545\) −14050.4 −1.10431
\(546\) 0 0
\(547\) 14377.3 1.12382 0.561910 0.827198i \(-0.310067\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(548\) 6105.14 + 10574.4i 0.475910 + 0.824300i
\(549\) 0 0
\(550\) 5938.96 10286.6i 0.460433 0.797493i
\(551\) 1745.85 + 3023.90i 0.134983 + 0.233798i
\(552\) 0 0
\(553\) −4749.94 6500.35i −0.365258 0.499861i
\(554\) −5432.27 −0.416598
\(555\) 0 0
\(556\) −2968.90 + 5142.29i −0.226456 + 0.392233i
\(557\) −6374.78 + 11041.4i −0.484934 + 0.839930i −0.999850 0.0173106i \(-0.994490\pi\)
0.514917 + 0.857240i \(0.327823\pi\)
\(558\) 0 0
\(559\) −8470.16 −0.640876
\(560\) −4714.51 + 10667.2i −0.355758 + 0.804949i
\(561\) 0 0
\(562\) 1739.11 + 3012.22i 0.130533 + 0.226091i
\(563\) 7040.02 12193.7i 0.527001 0.912792i −0.472504 0.881328i \(-0.656650\pi\)
0.999505 0.0314637i \(-0.0100169\pi\)
\(564\) 0 0
\(565\) 5104.61 + 8841.45i 0.380093 + 0.658341i
\(566\) −30158.2 −2.23965
\(567\) 0 0
\(568\) −548.640 −0.0405289
\(569\) −488.954 846.893i −0.0360246 0.0623965i 0.847451 0.530874i \(-0.178136\pi\)
−0.883476 + 0.468477i \(0.844803\pi\)
\(570\) 0 0
\(571\) 2438.76 4224.06i 0.178737 0.309582i −0.762711 0.646740i \(-0.776132\pi\)
0.941448 + 0.337157i \(0.109465\pi\)
\(572\) 5542.66 + 9600.17i 0.405158 + 0.701754i
\(573\) 0 0
\(574\) −11989.2 16407.4i −0.871810 1.19308i
\(575\) −6536.46 −0.474068
\(576\) 0 0
\(577\) −4436.83 + 7684.82i −0.320117 + 0.554460i −0.980512 0.196459i \(-0.937056\pi\)
0.660395 + 0.750919i \(0.270389\pi\)
\(578\) −7843.21 + 13584.8i −0.564420 + 0.977604i
\(579\) 0 0
\(580\) −810.797 −0.0580457
\(581\) −6060.94 + 653.754i −0.432788 + 0.0466821i
\(582\) 0 0
\(583\) −16764.3 29036.6i −1.19092 2.06273i
\(584\) 2969.47 5143.27i 0.210406 0.364435i
\(585\) 0 0
\(586\) 3806.69 + 6593.37i 0.268349 + 0.464795i
\(587\) 17470.2 1.22840 0.614201 0.789150i \(-0.289479\pi\)
0.614201 + 0.789150i \(0.289479\pi\)
\(588\) 0 0
\(589\) −26669.2 −1.86568
\(590\) −6093.53 10554.3i −0.425198 0.736464i
\(591\) 0 0
\(592\) 5859.36 10148.7i 0.406787 0.704576i
\(593\) 8785.24 + 15216.5i 0.608376 + 1.05374i 0.991508 + 0.130044i \(0.0415119\pi\)
−0.383133 + 0.923693i \(0.625155\pi\)
\(594\) 0 0
\(595\) −14062.9 + 1516.87i −0.968944 + 0.104514i
\(596\) −9176.35 −0.630668
\(597\) 0 0
\(598\) 8864.68 15354.1i 0.606194 1.04996i
\(599\) −1235.30 + 2139.61i −0.0842623 + 0.145947i −0.905077 0.425249i \(-0.860187\pi\)
0.820814 + 0.571195i \(0.193520\pi\)
\(600\) 0 0
\(601\) −7760.05 −0.526688 −0.263344 0.964702i \(-0.584825\pi\)
−0.263344 + 0.964702i \(0.584825\pi\)
\(602\) −6608.03 9043.19i −0.447381 0.612247i
\(603\) 0 0
\(604\) −3439.64 5957.63i −0.231717 0.401345i
\(605\) 6242.69 10812.7i 0.419506 0.726606i
\(606\) 0 0
\(607\) 11692.1 + 20251.3i 0.781823 + 1.35416i 0.930879 + 0.365328i \(0.119043\pi\)
−0.149056 + 0.988829i \(0.547623\pi\)
\(608\) 24621.3 1.64231
\(609\) 0 0
\(610\) −3116.01 −0.206826
\(611\) −6340.06 10981.3i −0.419789 0.727096i
\(612\) 0 0
\(613\) −9741.70 + 16873.1i −0.641865 + 1.11174i 0.343150 + 0.939280i \(0.388506\pi\)
−0.985016 + 0.172463i \(0.944827\pi\)
\(614\) −9221.89 15972.8i −0.606132 1.04985i
\(615\) 0 0
\(616\) 5370.37 12151.2i 0.351264 0.794781i
\(617\) −11177.6 −0.729327 −0.364664 0.931139i \(-0.618816\pi\)
−0.364664 + 0.931139i \(0.618816\pi\)
\(618\) 0 0
\(619\) −3126.64 + 5415.50i −0.203021 + 0.351643i −0.949500 0.313766i \(-0.898409\pi\)
0.746479 + 0.665409i \(0.231743\pi\)
\(620\) 3096.38 5363.10i 0.200571 0.347399i
\(621\) 0 0
\(622\) 15008.3 0.967491
\(623\) 271.758 + 371.905i 0.0174764 + 0.0239166i
\(624\) 0 0
\(625\) 1893.07 + 3278.90i 0.121157 + 0.209850i
\(626\) 4122.67 7140.67i 0.263219 0.455908i
\(627\) 0 0
\(628\) −2641.71 4575.58i −0.167859 0.290741i
\(629\) 14212.5 0.900938
\(630\) 0 0
\(631\) −19733.2 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(632\) 2887.08 + 5000.57i 0.181712 + 0.314734i
\(633\) 0 0
\(634\) 15877.4 27500.5i 0.994594 1.72269i
\(635\) −1228.78 2128.30i −0.0767913 0.133006i
\(636\) 0 0
\(637\) −16391.5 + 3577.71i −1.01955 + 0.222534i
\(638\) 4626.90 0.287117
\(639\) 0 0
\(640\) 5938.23 10285.3i 0.366764 0.635254i
\(641\) 71.8842 124.507i 0.00442941 0.00767197i −0.863802 0.503831i \(-0.831923\pi\)
0.868232 + 0.496159i \(0.165257\pi\)
\(642\) 0 0
\(643\) 29565.4 1.81329 0.906645 0.421894i \(-0.138634\pi\)
0.906645 + 0.421894i \(0.138634\pi\)
\(644\) 8020.00 865.066i 0.490734 0.0529323i
\(645\) 0 0
\(646\) 24101.7 + 41745.4i 1.46791 + 2.54249i
\(647\) −11890.4 + 20594.7i −0.722501 + 1.25141i 0.237493 + 0.971389i \(0.423674\pi\)
−0.959994 + 0.280020i \(0.909659\pi\)
\(648\) 0 0
\(649\) 11964.8 + 20723.6i 0.723664 + 1.25342i
\(650\) 10758.4 0.649200
\(651\) 0 0
\(652\) −13257.0 −0.796296
\(653\) −870.797 1508.26i −0.0521851 0.0903873i 0.838753 0.544512i \(-0.183285\pi\)
−0.890938 + 0.454125i \(0.849952\pi\)
\(654\) 0 0
\(655\) −327.890 + 567.923i −0.0195599 + 0.0338787i
\(656\) 12561.1 + 21756.5i 0.747607 + 1.29489i
\(657\) 0 0
\(658\) 6777.99 15336.1i 0.401571 0.908607i
\(659\) −8493.45 −0.502061 −0.251030 0.967979i \(-0.580769\pi\)
−0.251030 + 0.967979i \(0.580769\pi\)
\(660\) 0 0
\(661\) −12507.4 + 21663.4i −0.735976 + 1.27475i 0.218318 + 0.975878i \(0.429943\pi\)
−0.954294 + 0.298869i \(0.903390\pi\)
\(662\) −7646.55 + 13244.2i −0.448930 + 0.777569i
\(663\) 0 0
\(664\) 4372.18 0.255532
\(665\) −8391.60 + 18987.1i −0.489342 + 1.10720i
\(666\) 0 0
\(667\) −1273.10 2205.08i −0.0739050 0.128007i
\(668\) −3879.52 + 6719.53i −0.224706 + 0.389201i
\(669\) 0 0
\(670\) 8649.48 + 14981.3i 0.498744 + 0.863850i
\(671\) 6118.36 0.352007
\(672\) 0 0
\(673\) 29696.5 1.70091 0.850456 0.526046i \(-0.176326\pi\)
0.850456 + 0.526046i \(0.176326\pi\)
\(674\) −5787.87 10024.9i −0.330772 0.572914i
\(675\) 0 0
\(676\) −410.316 + 710.688i −0.0233453 + 0.0404352i
\(677\) 1856.63 + 3215.78i 0.105401 + 0.182559i 0.913902 0.405935i \(-0.133054\pi\)
−0.808501 + 0.588495i \(0.799721\pi\)
\(678\) 0 0
\(679\) −9192.71 + 991.559i −0.519564 + 0.0560420i
\(680\) 10144.5 0.572096
\(681\) 0 0
\(682\) −17669.9 + 30605.1i −0.992102 + 1.71837i
\(683\) 12127.3 21005.2i 0.679414 1.17678i −0.295743 0.955268i \(-0.595567\pi\)
0.975157 0.221513i \(-0.0710994\pi\)
\(684\) 0 0
\(685\) 22913.8 1.27809
\(686\) −16607.7 14709.2i −0.924319 0.818661i
\(687\) 0 0
\(688\) 6923.27 + 11991.5i 0.383644 + 0.664491i
\(689\) 15184.2 26299.8i 0.839583 1.45420i
\(690\) 0 0
\(691\) −7149.36 12383.1i −0.393595 0.681727i 0.599325 0.800506i \(-0.295436\pi\)
−0.992921 + 0.118778i \(0.962102\pi\)
\(692\) 2615.13 0.143659
\(693\) 0 0
\(694\) 29873.2 1.63396
\(695\) 5571.45 + 9650.03i 0.304082 + 0.526685i
\(696\) 0 0
\(697\) −15234.2 + 26386.4i −0.827886 + 1.43394i
\(698\) −17170.1 29739.5i −0.931087 1.61269i
\(699\) 0 0
\(700\) 2887.93 + 3952.17i 0.155934 + 0.213397i
\(701\) 28913.3 1.55783 0.778916 0.627128i \(-0.215770\pi\)
0.778916 + 0.627128i \(0.215770\pi\)
\(702\) 0 0
\(703\) 10429.4 18064.2i 0.559532 0.969137i
\(704\) −959.787 + 1662.40i −0.0513826 + 0.0889973i
\(705\) 0 0
\(706\) −21552.8 −1.14894
\(707\) 1932.14 4371.71i 0.102780 0.232553i
\(708\) 0 0
\(709\) −5287.60 9158.39i −0.280085 0.485121i 0.691321 0.722548i \(-0.257029\pi\)
−0.971405 + 0.237427i \(0.923696\pi\)
\(710\) 568.004 983.811i 0.0300237 0.0520025i
\(711\) 0 0
\(712\) −165.179 286.098i −0.00869429 0.0150590i
\(713\) 19447.6 1.02148
\(714\) 0 0
\(715\) 20802.7 1.08808
\(716\) −4911.38 8506.77i −0.256351 0.444012i
\(717\) 0 0
\(718\) 16670.8 28874.7i 0.866503 1.50083i
\(719\) −2673.63 4630.87i −0.138678 0.240198i 0.788318 0.615268i \(-0.210952\pi\)
−0.926997 + 0.375070i \(0.877619\pi\)
\(720\) 0 0
\(721\) −10493.2 14360.1i −0.542006 0.741743i
\(722\) 46790.7 2.41187
\(723\) 0 0
\(724\) 969.193 1678.69i 0.0497511 0.0861714i
\(725\) 772.535 1338.07i 0.0395741 0.0685444i
\(726\) 0 0
\(727\) −19629.1 −1.00138 −0.500689 0.865627i \(-0.666920\pi\)
−0.500689 + 0.865627i \(0.666920\pi\)
\(728\) 11963.5 1290.43i 0.609062 0.0656956i
\(729\) 0 0
\(730\) 6148.54 + 10649.6i 0.311736 + 0.539943i
\(731\) −8396.58 + 14543.3i −0.424841 + 0.735846i
\(732\) 0 0
\(733\) −1202.43 2082.68i −0.0605906 0.104946i 0.834139 0.551554i \(-0.185965\pi\)
−0.894730 + 0.446608i \(0.852632\pi\)
\(734\) −14069.6 −0.707519
\(735\) 0 0
\(736\) −17954.2 −0.899186
\(737\) −16983.4 29416.2i −0.848837 1.47023i
\(738\) 0 0
\(739\) 9654.49 16722.1i 0.480577 0.832383i −0.519175 0.854668i \(-0.673761\pi\)
0.999752 + 0.0222847i \(0.00709403\pi\)
\(740\) 2421.77 + 4194.63i 0.120305 + 0.208375i
\(741\) 0 0
\(742\) 39925.1 4306.47i 1.97533 0.213067i
\(743\) 801.314 0.0395658 0.0197829 0.999804i \(-0.493703\pi\)
0.0197829 + 0.999804i \(0.493703\pi\)
\(744\) 0 0
\(745\) −8610.18 + 14913.3i −0.423426 + 0.733396i
\(746\) −35.0124 + 60.6433i −0.00171836 + 0.00297629i
\(747\) 0 0
\(748\) 21978.0 1.07433
\(749\) −22446.4 30718.3i −1.09503 1.49856i
\(750\) 0 0
\(751\) −7436.36 12880.2i −0.361327 0.625837i 0.626853 0.779138i \(-0.284343\pi\)
−0.988180 + 0.153301i \(0.951010\pi\)
\(752\) −10364.4 + 17951.6i −0.502593 + 0.870516i
\(753\) 0 0
\(754\) 2095.41 + 3629.35i 0.101207 + 0.175296i
\(755\) −12909.7 −0.622292
\(756\) 0 0
\(757\) 9127.52 0.438237 0.219118 0.975698i \(-0.429682\pi\)
0.219118 + 0.975698i \(0.429682\pi\)
\(758\) 6614.16 + 11456.1i 0.316935 + 0.548948i
\(759\) 0 0
\(760\) 7444.21 12893.8i 0.355303 0.615402i
\(761\) 15497.2 + 26841.9i 0.738203 + 1.27861i 0.953304 + 0.302014i \(0.0976588\pi\)
−0.215100 + 0.976592i \(0.569008\pi\)
\(762\) 0 0
\(763\) −13357.0 + 30222.0i −0.633756 + 1.43396i
\(764\) 11187.2 0.529764
\(765\) 0 0
\(766\) −13972.4 + 24201.0i −0.659066 + 1.14154i
\(767\) −10837.1 + 18770.4i −0.510175 + 0.883649i
\(768\) 0 0
\(769\) 12979.5 0.608653 0.304326 0.952568i \(-0.401569\pi\)
0.304326 + 0.952568i \(0.401569\pi\)
\(770\) 16229.3 + 22210.1i 0.759565 + 1.03948i
\(771\) 0 0
\(772\) −273.972 474.533i −0.0127726 0.0221228i
\(773\) −14404.1 + 24948.6i −0.670217 + 1.16085i 0.307625 + 0.951508i \(0.400466\pi\)
−0.977842 + 0.209343i \(0.932868\pi\)
\(774\) 0 0
\(775\) 5900.53 + 10220.0i 0.273488 + 0.473695i
\(776\) 6631.35 0.306767
\(777\) 0 0
\(778\) 12169.6 0.560799
\(779\) 22358.2 + 38725.5i 1.02832 + 1.78111i
\(780\) 0