Properties

Label 189.4.e.e.163.4
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 40x^{10} + 1147x^{8} + 15564x^{6} + 154089x^{4} + 578934x^{2} + 1633284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.4
Root \(-1.02968 - 1.78345i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.e.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02968 - 1.78345i) q^{2} +(1.87953 + 3.25543i) q^{4} +(7.25204 - 12.5609i) q^{5} +(-7.76857 - 16.8122i) q^{7} +24.2161 q^{8} +O(q^{10})\) \(q+(1.02968 - 1.78345i) q^{2} +(1.87953 + 3.25543i) q^{4} +(7.25204 - 12.5609i) q^{5} +(-7.76857 - 16.8122i) q^{7} +24.2161 q^{8} +(-14.9345 - 25.8674i) q^{10} +(14.9047 + 25.8157i) q^{11} -13.3320 q^{13} +(-37.9829 - 3.45625i) q^{14} +(9.89856 - 17.1448i) q^{16} +(-32.1415 - 55.6707i) q^{17} +(55.1748 - 95.5655i) q^{19} +54.5216 q^{20} +61.3881 q^{22} +(9.67280 - 16.7538i) q^{23} +(-42.6843 - 73.9314i) q^{25} +(-13.7276 + 23.7769i) q^{26} +(40.1297 - 56.8890i) q^{28} +111.113 q^{29} +(-96.4689 - 167.089i) q^{31} +(76.4797 + 132.467i) q^{32} -132.382 q^{34} +(-267.514 - 24.3424i) q^{35} +(35.7607 - 61.9393i) q^{37} +(-113.625 - 196.803i) q^{38} +(175.616 - 304.176i) q^{40} +277.562 q^{41} -178.522 q^{43} +(-56.0275 + 97.0424i) q^{44} +(-19.9197 - 34.5020i) q^{46} +(-265.937 + 460.617i) q^{47} +(-222.299 + 261.213i) q^{49} -175.804 q^{50} +(-25.0578 - 43.4013i) q^{52} +(-155.416 - 269.188i) q^{53} +432.357 q^{55} +(-188.124 - 407.125i) q^{56} +(114.410 - 198.165i) q^{58} +(361.012 + 625.290i) q^{59} +(-331.535 + 574.235i) q^{61} -397.328 q^{62} +473.375 q^{64} +(-96.6839 + 167.461i) q^{65} +(304.279 + 527.027i) q^{67} +(120.822 - 209.269i) q^{68} +(-318.867 + 452.035i) q^{70} +976.305 q^{71} +(-130.574 - 226.161i) q^{73} +(-73.6440 - 127.555i) q^{74} +414.810 q^{76} +(318.229 - 451.131i) q^{77} +(-618.075 + 1070.54i) q^{79} +(-143.570 - 248.670i) q^{80} +(285.800 - 495.020i) q^{82} +1225.79 q^{83} -932.367 q^{85} +(-183.820 + 318.386i) q^{86} +(360.933 + 625.154i) q^{88} +(395.991 - 685.876i) q^{89} +(103.570 + 224.139i) q^{91} +72.7211 q^{92} +(547.659 + 948.573i) q^{94} +(-800.260 - 1386.09i) q^{95} -935.253 q^{97} +(236.966 + 665.425i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 32 q^{4} - 26 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 32 q^{4} - 26 q^{7} + 20 q^{10} + 104 q^{13} + 148 q^{16} + 62 q^{19} - 712 q^{22} + 46 q^{25} - 348 q^{28} + 82 q^{31} + 840 q^{34} + 1132 q^{37} + 444 q^{40} - 3132 q^{43} + 888 q^{46} + 366 q^{49} + 72 q^{52} + 448 q^{55} - 4 q^{58} - 886 q^{61} - 1848 q^{64} + 2084 q^{67} - 4460 q^{70} + 2398 q^{73} + 6408 q^{76} - 984 q^{79} + 3892 q^{82} - 7200 q^{85} + 5796 q^{88} - 6492 q^{91} - 2772 q^{94} - 1364 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02968 1.78345i 0.364046 0.630546i −0.624576 0.780964i \(-0.714728\pi\)
0.988623 + 0.150417i \(0.0480617\pi\)
\(3\) 0 0
\(4\) 1.87953 + 3.25543i 0.234941 + 0.406929i
\(5\) 7.25204 12.5609i 0.648643 1.12348i −0.334805 0.942288i \(-0.608670\pi\)
0.983447 0.181194i \(-0.0579963\pi\)
\(6\) 0 0
\(7\) −7.76857 16.8122i −0.419463 0.907772i
\(8\) 24.2161 1.07021
\(9\) 0 0
\(10\) −14.9345 25.8674i −0.472272 0.817999i
\(11\) 14.9047 + 25.8157i 0.408539 + 0.707610i 0.994726 0.102565i \(-0.0327051\pi\)
−0.586187 + 0.810176i \(0.699372\pi\)
\(12\) 0 0
\(13\) −13.3320 −0.284432 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(14\) −37.9829 3.45625i −0.725097 0.0659800i
\(15\) 0 0
\(16\) 9.89856 17.1448i 0.154665 0.267888i
\(17\) −32.1415 55.6707i −0.458557 0.794243i 0.540328 0.841454i \(-0.318300\pi\)
−0.998885 + 0.0472110i \(0.984967\pi\)
\(18\) 0 0
\(19\) 55.1748 95.5655i 0.666209 1.15391i −0.312747 0.949836i \(-0.601249\pi\)
0.978956 0.204071i \(-0.0654173\pi\)
\(20\) 54.5216 0.609570
\(21\) 0 0
\(22\) 61.3881 0.594908
\(23\) 9.67280 16.7538i 0.0876921 0.151887i −0.818843 0.574017i \(-0.805384\pi\)
0.906535 + 0.422130i \(0.138718\pi\)
\(24\) 0 0
\(25\) −42.6843 73.9314i −0.341474 0.591451i
\(26\) −13.7276 + 23.7769i −0.103546 + 0.179348i
\(27\) 0 0
\(28\) 40.1297 56.8890i 0.270850 0.383965i
\(29\) 111.113 0.711487 0.355744 0.934584i \(-0.384228\pi\)
0.355744 + 0.934584i \(0.384228\pi\)
\(30\) 0 0
\(31\) −96.4689 167.089i −0.558914 0.968067i −0.997587 0.0694206i \(-0.977885\pi\)
0.438674 0.898646i \(-0.355448\pi\)
\(32\) 76.4797 + 132.467i 0.422494 + 0.731782i
\(33\) 0 0
\(34\) −132.382 −0.667743
\(35\) −267.514 24.3424i −1.29195 0.117561i
\(36\) 0 0
\(37\) 35.7607 61.9393i 0.158892 0.275210i −0.775577 0.631253i \(-0.782541\pi\)
0.934470 + 0.356043i \(0.115874\pi\)
\(38\) −113.625 196.803i −0.485061 0.840151i
\(39\) 0 0
\(40\) 175.616 304.176i 0.694183 1.20236i
\(41\) 277.562 1.05727 0.528634 0.848850i \(-0.322704\pi\)
0.528634 + 0.848850i \(0.322704\pi\)
\(42\) 0 0
\(43\) −178.522 −0.633124 −0.316562 0.948572i \(-0.602528\pi\)
−0.316562 + 0.948572i \(0.602528\pi\)
\(44\) −56.0275 + 97.0424i −0.191965 + 0.332493i
\(45\) 0 0
\(46\) −19.9197 34.5020i −0.0638479 0.110588i
\(47\) −265.937 + 460.617i −0.825338 + 1.42953i 0.0763219 + 0.997083i \(0.475682\pi\)
−0.901660 + 0.432445i \(0.857651\pi\)
\(48\) 0 0
\(49\) −222.299 + 261.213i −0.648101 + 0.761554i
\(50\) −175.804 −0.497250
\(51\) 0 0
\(52\) −25.0578 43.4013i −0.0668247 0.115744i
\(53\) −155.416 269.188i −0.402793 0.697658i 0.591269 0.806475i \(-0.298627\pi\)
−0.994062 + 0.108816i \(0.965294\pi\)
\(54\) 0 0
\(55\) 432.357 1.05998
\(56\) −188.124 407.125i −0.448913 0.971507i
\(57\) 0 0
\(58\) 114.410 198.165i 0.259014 0.448626i
\(59\) 361.012 + 625.290i 0.796605 + 1.37976i 0.921815 + 0.387630i \(0.126706\pi\)
−0.125210 + 0.992130i \(0.539960\pi\)
\(60\) 0 0
\(61\) −331.535 + 574.235i −0.695880 + 1.20530i 0.274003 + 0.961729i \(0.411652\pi\)
−0.969883 + 0.243571i \(0.921681\pi\)
\(62\) −397.328 −0.813882
\(63\) 0 0
\(64\) 473.375 0.924560
\(65\) −96.6839 + 167.461i −0.184495 + 0.319554i
\(66\) 0 0
\(67\) 304.279 + 527.027i 0.554830 + 0.960994i 0.997917 + 0.0645154i \(0.0205502\pi\)
−0.443086 + 0.896479i \(0.646116\pi\)
\(68\) 120.822 209.269i 0.215467 0.373200i
\(69\) 0 0
\(70\) −318.867 + 452.035i −0.544456 + 0.771836i
\(71\) 976.305 1.63192 0.815958 0.578111i \(-0.196210\pi\)
0.815958 + 0.578111i \(0.196210\pi\)
\(72\) 0 0
\(73\) −130.574 226.161i −0.209350 0.362605i 0.742160 0.670223i \(-0.233801\pi\)
−0.951510 + 0.307618i \(0.900468\pi\)
\(74\) −73.6440 127.555i −0.115688 0.200378i
\(75\) 0 0
\(76\) 414.810 0.626078
\(77\) 318.229 451.131i 0.470982 0.667677i
\(78\) 0 0
\(79\) −618.075 + 1070.54i −0.880239 + 1.52462i −0.0291637 + 0.999575i \(0.509284\pi\)
−0.851075 + 0.525044i \(0.824049\pi\)
\(80\) −143.570 248.670i −0.200645 0.347527i
\(81\) 0 0
\(82\) 285.800 495.020i 0.384894 0.666656i
\(83\) 1225.79 1.62106 0.810529 0.585699i \(-0.199180\pi\)
0.810529 + 0.585699i \(0.199180\pi\)
\(84\) 0 0
\(85\) −932.367 −1.18976
\(86\) −183.820 + 318.386i −0.230486 + 0.399214i
\(87\) 0 0
\(88\) 360.933 + 625.154i 0.437222 + 0.757291i
\(89\) 395.991 685.876i 0.471629 0.816885i −0.527845 0.849341i \(-0.677000\pi\)
0.999473 + 0.0324564i \(0.0103330\pi\)
\(90\) 0 0
\(91\) 103.570 + 224.139i 0.119309 + 0.258200i
\(92\) 72.7211 0.0824098
\(93\) 0 0
\(94\) 547.659 + 948.573i 0.600923 + 1.04083i
\(95\) −800.260 1386.09i −0.864263 1.49695i
\(96\) 0 0
\(97\) −935.253 −0.978975 −0.489488 0.872010i \(-0.662816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(98\) 236.966 + 665.425i 0.244256 + 0.685899i
\(99\) 0 0
\(100\) 160.453 277.912i 0.160453 0.277912i
\(101\) 221.485 + 383.623i 0.218203 + 0.377940i 0.954259 0.298982i \(-0.0966470\pi\)
−0.736055 + 0.676921i \(0.763314\pi\)
\(102\) 0 0
\(103\) 349.700 605.699i 0.334534 0.579430i −0.648861 0.760907i \(-0.724754\pi\)
0.983395 + 0.181477i \(0.0580878\pi\)
\(104\) −322.848 −0.304402
\(105\) 0 0
\(106\) −640.114 −0.586541
\(107\) −955.591 + 1655.13i −0.863369 + 1.49540i 0.00528834 + 0.999986i \(0.498317\pi\)
−0.868657 + 0.495413i \(0.835017\pi\)
\(108\) 0 0
\(109\) 1035.71 + 1793.90i 0.910118 + 1.57637i 0.813896 + 0.581011i \(0.197343\pi\)
0.0962224 + 0.995360i \(0.469324\pi\)
\(110\) 445.189 771.090i 0.385883 0.668369i
\(111\) 0 0
\(112\) −365.139 33.2258i −0.308057 0.0280316i
\(113\) −2313.34 −1.92585 −0.962926 0.269767i \(-0.913053\pi\)
−0.962926 + 0.269767i \(0.913053\pi\)
\(114\) 0 0
\(115\) −140.295 242.998i −0.113762 0.197041i
\(116\) 208.839 + 361.721i 0.167157 + 0.289525i
\(117\) 0 0
\(118\) 1486.90 1.16000
\(119\) −686.253 + 972.851i −0.528644 + 0.749421i
\(120\) 0 0
\(121\) 221.201 383.132i 0.166192 0.287853i
\(122\) 682.748 + 1182.55i 0.506665 + 0.877570i
\(123\) 0 0
\(124\) 362.632 628.096i 0.262623 0.454877i
\(125\) 574.817 0.411306
\(126\) 0 0
\(127\) −1317.50 −0.920542 −0.460271 0.887778i \(-0.652248\pi\)
−0.460271 + 0.887778i \(0.652248\pi\)
\(128\) −124.414 + 215.491i −0.0859119 + 0.148804i
\(129\) 0 0
\(130\) 199.107 + 344.863i 0.134329 + 0.232665i
\(131\) 229.421 397.368i 0.153012 0.265024i −0.779321 0.626624i \(-0.784436\pi\)
0.932333 + 0.361600i \(0.117769\pi\)
\(132\) 0 0
\(133\) −2035.29 185.201i −1.32694 0.120744i
\(134\) 1253.24 0.807935
\(135\) 0 0
\(136\) −778.341 1348.13i −0.490752 0.850007i
\(137\) −666.378 1154.20i −0.415566 0.719781i 0.579922 0.814672i \(-0.303083\pi\)
−0.995488 + 0.0948911i \(0.969750\pi\)
\(138\) 0 0
\(139\) −406.835 −0.248254 −0.124127 0.992266i \(-0.539613\pi\)
−0.124127 + 0.992266i \(0.539613\pi\)
\(140\) −423.555 916.627i −0.255692 0.553351i
\(141\) 0 0
\(142\) 1005.28 1741.20i 0.594093 1.02900i
\(143\) −198.708 344.173i −0.116202 0.201267i
\(144\) 0 0
\(145\) 805.795 1395.68i 0.461501 0.799343i
\(146\) −537.797 −0.304852
\(147\) 0 0
\(148\) 268.853 0.149321
\(149\) 217.761 377.174i 0.119730 0.207378i −0.799931 0.600092i \(-0.795131\pi\)
0.919660 + 0.392714i \(0.128464\pi\)
\(150\) 0 0
\(151\) 982.668 + 1702.03i 0.529592 + 0.917280i 0.999404 + 0.0345136i \(0.0109882\pi\)
−0.469812 + 0.882766i \(0.655678\pi\)
\(152\) 1336.12 2314.22i 0.712983 1.23492i
\(153\) 0 0
\(154\) −476.897 1032.07i −0.249542 0.540041i
\(155\) −2798.39 −1.45014
\(156\) 0 0
\(157\) −415.741 720.085i −0.211336 0.366045i 0.740797 0.671729i \(-0.234448\pi\)
−0.952133 + 0.305684i \(0.901115\pi\)
\(158\) 1272.84 + 2204.62i 0.640895 + 1.11006i
\(159\) 0 0
\(160\) 2218.54 1.09619
\(161\) −356.811 32.4680i −0.174663 0.0158934i
\(162\) 0 0
\(163\) 588.061 1018.55i 0.282579 0.489442i −0.689440 0.724343i \(-0.742143\pi\)
0.972019 + 0.234901i \(0.0754766\pi\)
\(164\) 521.686 + 903.587i 0.248395 + 0.430233i
\(165\) 0 0
\(166\) 1262.17 2186.14i 0.590140 1.02215i
\(167\) 1674.29 0.775809 0.387905 0.921700i \(-0.373199\pi\)
0.387905 + 0.921700i \(0.373199\pi\)
\(168\) 0 0
\(169\) −2019.26 −0.919098
\(170\) −960.038 + 1662.83i −0.433127 + 0.750197i
\(171\) 0 0
\(172\) −335.536 581.166i −0.148747 0.257637i
\(173\) −716.460 + 1240.95i −0.314864 + 0.545360i −0.979409 0.201888i \(-0.935292\pi\)
0.664545 + 0.747249i \(0.268626\pi\)
\(174\) 0 0
\(175\) −911.352 + 1291.96i −0.393667 + 0.558073i
\(176\) 590.139 0.252747
\(177\) 0 0
\(178\) −815.486 1412.46i −0.343389 0.594767i
\(179\) 597.265 + 1034.49i 0.249395 + 0.431965i 0.963358 0.268219i \(-0.0864349\pi\)
−0.713963 + 0.700183i \(0.753102\pi\)
\(180\) 0 0
\(181\) 741.424 0.304473 0.152236 0.988344i \(-0.451352\pi\)
0.152236 + 0.988344i \(0.451352\pi\)
\(182\) 506.386 + 46.0785i 0.206241 + 0.0187668i
\(183\) 0 0
\(184\) 234.237 405.711i 0.0938489 0.162551i
\(185\) −518.676 898.373i −0.206129 0.357026i
\(186\) 0 0
\(187\) 958.118 1659.51i 0.374676 0.648959i
\(188\) −1999.34 −0.775623
\(189\) 0 0
\(190\) −3296.04 −1.25853
\(191\) 1951.99 3380.95i 0.739483 1.28082i −0.213246 0.976999i \(-0.568403\pi\)
0.952728 0.303823i \(-0.0982632\pi\)
\(192\) 0 0
\(193\) −885.627 1533.95i −0.330305 0.572104i 0.652267 0.757989i \(-0.273818\pi\)
−0.982572 + 0.185885i \(0.940485\pi\)
\(194\) −963.010 + 1667.98i −0.356392 + 0.617289i
\(195\) 0 0
\(196\) −1268.18 232.722i −0.462164 0.0848113i
\(197\) 830.366 0.300310 0.150155 0.988662i \(-0.452023\pi\)
0.150155 + 0.988662i \(0.452023\pi\)
\(198\) 0 0
\(199\) −531.253 920.156i −0.189244 0.327780i 0.755755 0.654855i \(-0.227270\pi\)
−0.944998 + 0.327075i \(0.893937\pi\)
\(200\) −1033.65 1790.33i −0.365449 0.632977i
\(201\) 0 0
\(202\) 912.232 0.317745
\(203\) −863.187 1868.05i −0.298443 0.645869i
\(204\) 0 0
\(205\) 2012.90 3486.44i 0.685789 1.18782i
\(206\) −720.158 1247.35i −0.243572 0.421878i
\(207\) 0 0
\(208\) −131.967 + 228.574i −0.0439917 + 0.0761958i
\(209\) 3289.45 1.08869
\(210\) 0 0
\(211\) −3848.67 −1.25570 −0.627851 0.778333i \(-0.716065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(212\) 584.217 1011.89i 0.189265 0.327817i
\(213\) 0 0
\(214\) 1967.90 + 3408.51i 0.628612 + 1.08879i
\(215\) −1294.65 + 2242.40i −0.410671 + 0.711303i
\(216\) 0 0
\(217\) −2059.71 + 2919.89i −0.644341 + 0.913435i
\(218\) 4265.79 1.32530
\(219\) 0 0
\(220\) 812.627 + 1407.51i 0.249033 + 0.431338i
\(221\) 428.509 + 742.200i 0.130428 + 0.225908i
\(222\) 0 0
\(223\) 5482.75 1.64642 0.823211 0.567736i \(-0.192181\pi\)
0.823211 + 0.567736i \(0.192181\pi\)
\(224\) 1632.92 2314.87i 0.487070 0.690484i
\(225\) 0 0
\(226\) −2382.00 + 4125.75i −0.701099 + 1.21434i
\(227\) −197.418 341.939i −0.0577230 0.0999791i 0.835720 0.549156i \(-0.185051\pi\)
−0.893443 + 0.449177i \(0.851717\pi\)
\(228\) 0 0
\(229\) 1911.78 3311.30i 0.551678 0.955534i −0.446476 0.894796i \(-0.647321\pi\)
0.998154 0.0607380i \(-0.0193454\pi\)
\(230\) −577.835 −0.165658
\(231\) 0 0
\(232\) 2690.72 0.761441
\(233\) 1268.77 2197.57i 0.356738 0.617888i −0.630676 0.776046i \(-0.717222\pi\)
0.987414 + 0.158159i \(0.0505557\pi\)
\(234\) 0 0
\(235\) 3857.17 + 6680.82i 1.07070 + 1.85451i
\(236\) −1357.06 + 2350.50i −0.374310 + 0.648324i
\(237\) 0 0
\(238\) 1028.42 + 2225.62i 0.280094 + 0.606159i
\(239\) 5368.81 1.45305 0.726526 0.687139i \(-0.241134\pi\)
0.726526 + 0.687139i \(0.241134\pi\)
\(240\) 0 0
\(241\) −1054.01 1825.60i −0.281721 0.487955i 0.690088 0.723726i \(-0.257572\pi\)
−0.971809 + 0.235771i \(0.924239\pi\)
\(242\) −455.532 789.005i −0.121003 0.209583i
\(243\) 0 0
\(244\) −2492.51 −0.653962
\(245\) 1668.95 + 4686.60i 0.435206 + 1.22211i
\(246\) 0 0
\(247\) −735.588 + 1274.08i −0.189491 + 0.328208i
\(248\) −2336.10 4046.24i −0.598155 1.03603i
\(249\) 0 0
\(250\) 591.877 1025.16i 0.149734 0.259347i
\(251\) −5717.94 −1.43790 −0.718951 0.695061i \(-0.755377\pi\)
−0.718951 + 0.695061i \(0.755377\pi\)
\(252\) 0 0
\(253\) 576.680 0.143303
\(254\) −1356.60 + 2349.69i −0.335120 + 0.580445i
\(255\) 0 0
\(256\) 2149.71 + 3723.41i 0.524832 + 0.909035i
\(257\) −2493.73 + 4319.28i −0.605272 + 1.04836i 0.386736 + 0.922190i \(0.373602\pi\)
−0.992008 + 0.126172i \(0.959731\pi\)
\(258\) 0 0
\(259\) −1319.14 120.035i −0.316477 0.0287978i
\(260\) −726.880 −0.173381
\(261\) 0 0
\(262\) −472.459 818.322i −0.111407 0.192962i
\(263\) −307.637 532.842i −0.0721281 0.124930i 0.827706 0.561162i \(-0.189646\pi\)
−0.899834 + 0.436233i \(0.856312\pi\)
\(264\) 0 0
\(265\) −4508.34 −1.04508
\(266\) −2426.00 + 3439.16i −0.559200 + 0.792738i
\(267\) 0 0
\(268\) −1143.80 + 1981.12i −0.260705 + 0.451553i
\(269\) 396.981 + 687.591i 0.0899790 + 0.155848i 0.907502 0.420048i \(-0.137987\pi\)
−0.817523 + 0.575896i \(0.804653\pi\)
\(270\) 0 0
\(271\) −1882.47 + 3260.54i −0.421964 + 0.730862i −0.996131 0.0878752i \(-0.971992\pi\)
0.574168 + 0.818738i \(0.305326\pi\)
\(272\) −1272.62 −0.283690
\(273\) 0 0
\(274\) −2744.62 −0.605141
\(275\) 1272.39 2203.85i 0.279011 0.483262i
\(276\) 0 0
\(277\) 1598.27 + 2768.29i 0.346682 + 0.600471i 0.985658 0.168756i \(-0.0539750\pi\)
−0.638976 + 0.769227i \(0.720642\pi\)
\(278\) −418.909 + 725.571i −0.0903758 + 0.156535i
\(279\) 0 0
\(280\) −6478.15 589.478i −1.38265 0.125814i
\(281\) −6225.15 −1.32157 −0.660785 0.750575i \(-0.729777\pi\)
−0.660785 + 0.750575i \(0.729777\pi\)
\(282\) 0 0
\(283\) 1858.75 + 3219.45i 0.390429 + 0.676242i 0.992506 0.122195i \(-0.0389935\pi\)
−0.602077 + 0.798438i \(0.705660\pi\)
\(284\) 1834.99 + 3178.30i 0.383404 + 0.664075i
\(285\) 0 0
\(286\) −818.423 −0.169211
\(287\) −2156.26 4666.43i −0.443485 0.959758i
\(288\) 0 0
\(289\) 390.347 676.100i 0.0794518 0.137615i
\(290\) −1659.42 2874.20i −0.336015 0.581996i
\(291\) 0 0
\(292\) 490.835 850.151i 0.0983696 0.170381i
\(293\) −6392.56 −1.27460 −0.637299 0.770616i \(-0.719948\pi\)
−0.637299 + 0.770616i \(0.719948\pi\)
\(294\) 0 0
\(295\) 10472.3 2.06685
\(296\) 865.983 1499.93i 0.170048 0.294532i
\(297\) 0 0
\(298\) −448.448 776.735i −0.0871742 0.150990i
\(299\) −128.957 + 223.361i −0.0249425 + 0.0432016i
\(300\) 0 0
\(301\) 1386.86 + 3001.34i 0.265572 + 0.574732i
\(302\) 4047.33 0.771183
\(303\) 0 0
\(304\) −1092.30 1891.92i −0.206078 0.356938i
\(305\) 4808.61 + 8328.76i 0.902755 + 1.56362i
\(306\) 0 0
\(307\) 939.255 0.174613 0.0873063 0.996182i \(-0.472174\pi\)
0.0873063 + 0.996182i \(0.472174\pi\)
\(308\) 2066.75 + 188.063i 0.382350 + 0.0347919i
\(309\) 0 0
\(310\) −2881.44 + 4990.80i −0.527918 + 0.914381i
\(311\) 1375.81 + 2382.97i 0.250851 + 0.434487i 0.963760 0.266769i \(-0.0859561\pi\)
−0.712909 + 0.701257i \(0.752623\pi\)
\(312\) 0 0
\(313\) 318.550 551.744i 0.0575255 0.0996372i −0.835829 0.548991i \(-0.815012\pi\)
0.893354 + 0.449353i \(0.148346\pi\)
\(314\) −1712.32 −0.307744
\(315\) 0 0
\(316\) −4646.75 −0.827216
\(317\) 1436.10 2487.39i 0.254445 0.440712i −0.710299 0.703900i \(-0.751440\pi\)
0.964745 + 0.263187i \(0.0847738\pi\)
\(318\) 0 0
\(319\) 1656.10 + 2868.45i 0.290670 + 0.503456i
\(320\) 3432.93 5946.02i 0.599709 1.03873i
\(321\) 0 0
\(322\) −425.306 + 602.925i −0.0736068 + 0.104347i
\(323\) −7093.60 −1.22198
\(324\) 0 0
\(325\) 569.065 + 985.650i 0.0971263 + 0.168228i
\(326\) −1211.03 2097.56i −0.205744 0.356359i
\(327\) 0 0
\(328\) 6721.47 1.13150
\(329\) 9809.92 + 892.651i 1.64389 + 0.149585i
\(330\) 0 0
\(331\) 3196.80 5537.02i 0.530852 0.919463i −0.468499 0.883464i \(-0.655205\pi\)
0.999352 0.0359995i \(-0.0114615\pi\)
\(332\) 2303.90 + 3990.47i 0.380852 + 0.659656i
\(333\) 0 0
\(334\) 1723.98 2986.01i 0.282430 0.489184i
\(335\) 8826.59 1.43955
\(336\) 0 0
\(337\) −12107.6 −1.95710 −0.978549 0.206016i \(-0.933950\pi\)
−0.978549 + 0.206016i \(0.933950\pi\)
\(338\) −2079.19 + 3601.26i −0.334594 + 0.579534i
\(339\) 0 0
\(340\) −1752.41 3035.26i −0.279522 0.484147i
\(341\) 2875.68 4980.82i 0.456676 0.790986i
\(342\) 0 0
\(343\) 6118.50 + 1708.08i 0.963172 + 0.268884i
\(344\) −4323.10 −0.677575
\(345\) 0 0
\(346\) 1475.45 + 2555.55i 0.229250 + 0.397073i
\(347\) −1355.07 2347.05i −0.209636 0.363101i 0.741964 0.670440i \(-0.233895\pi\)
−0.951600 + 0.307339i \(0.900561\pi\)
\(348\) 0 0
\(349\) −1175.22 −0.180252 −0.0901261 0.995930i \(-0.528727\pi\)
−0.0901261 + 0.995930i \(0.528727\pi\)
\(350\) 1365.75 + 2955.65i 0.208578 + 0.451390i
\(351\) 0 0
\(352\) −2279.81 + 3948.74i −0.345211 + 0.597923i
\(353\) −2638.20 4569.50i −0.397783 0.688980i 0.595669 0.803230i \(-0.296887\pi\)
−0.993452 + 0.114250i \(0.963554\pi\)
\(354\) 0 0
\(355\) 7080.21 12263.3i 1.05853 1.83343i
\(356\) 2977.10 0.443219
\(357\) 0 0
\(358\) 2459.96 0.363165
\(359\) 5643.27 9774.43i 0.829639 1.43698i −0.0686829 0.997639i \(-0.521880\pi\)
0.898322 0.439338i \(-0.144787\pi\)
\(360\) 0 0
\(361\) −2659.01 4605.55i −0.387668 0.671460i
\(362\) 763.428 1322.30i 0.110842 0.191984i
\(363\) 0 0
\(364\) −535.008 + 758.441i −0.0770385 + 0.109212i
\(365\) −3787.72 −0.543173
\(366\) 0 0
\(367\) −3783.80 6553.73i −0.538181 0.932158i −0.999002 0.0446643i \(-0.985778\pi\)
0.460821 0.887493i \(-0.347555\pi\)
\(368\) −191.493 331.676i −0.0271258 0.0469832i
\(369\) 0 0
\(370\) −2136.28 −0.300162
\(371\) −3318.29 + 4704.09i −0.464358 + 0.658286i
\(372\) 0 0
\(373\) 3251.99 5632.61i 0.451425 0.781891i −0.547050 0.837100i \(-0.684249\pi\)
0.998475 + 0.0552092i \(0.0175826\pi\)
\(374\) −1973.11 3417.52i −0.272799 0.472502i
\(375\) 0 0
\(376\) −6439.95 + 11154.3i −0.883285 + 1.52989i
\(377\) −1481.35 −0.202370
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730097 0.683344i \(-0.239475\pi\)
0.730097 + 0.683344i \(0.239475\pi\)
\(380\) 3008.22 5210.39i 0.406101 0.703388i
\(381\) 0 0
\(382\) −4019.85 6962.58i −0.538412 0.932557i
\(383\) 3183.06 5513.23i 0.424666 0.735542i −0.571724 0.820446i \(-0.693725\pi\)
0.996389 + 0.0849039i \(0.0270583\pi\)
\(384\) 0 0
\(385\) −3358.80 7268.87i −0.444624 0.962223i
\(386\) −3647.64 −0.480985
\(387\) 0 0
\(388\) −1757.83 3044.66i −0.230001 0.398374i
\(389\) 2951.72 + 5112.53i 0.384725 + 0.666363i 0.991731 0.128334i \(-0.0409629\pi\)
−0.607006 + 0.794697i \(0.707630\pi\)
\(390\) 0 0
\(391\) −1243.59 −0.160847
\(392\) −5383.20 + 6325.56i −0.693604 + 0.815022i
\(393\) 0 0
\(394\) 855.010 1480.92i 0.109327 0.189360i
\(395\) 8964.62 + 15527.2i 1.14192 + 1.97786i
\(396\) 0 0
\(397\) −1883.39 + 3262.13i −0.238097 + 0.412397i −0.960168 0.279422i \(-0.909857\pi\)
0.722071 + 0.691819i \(0.243190\pi\)
\(398\) −2188.08 −0.275574
\(399\) 0 0
\(400\) −1690.05 −0.211256
\(401\) −3626.00 + 6280.42i −0.451556 + 0.782118i −0.998483 0.0550625i \(-0.982464\pi\)
0.546927 + 0.837180i \(0.315798\pi\)
\(402\) 0 0
\(403\) 1286.12 + 2227.62i 0.158973 + 0.275349i
\(404\) −832.573 + 1442.06i −0.102530 + 0.177587i
\(405\) 0 0
\(406\) −4220.39 384.033i −0.515897 0.0469440i
\(407\) 2132.01 0.259655
\(408\) 0 0
\(409\) −6273.70 10866.4i −0.758471 1.31371i −0.943630 0.331002i \(-0.892613\pi\)
0.185159 0.982709i \(-0.440720\pi\)
\(410\) −4145.27 7179.82i −0.499318 0.864844i
\(411\) 0 0
\(412\) 2629.08 0.314383
\(413\) 7707.95 10927.0i 0.918362 1.30190i
\(414\) 0 0
\(415\) 8889.47 15397.0i 1.05149 1.82123i
\(416\) −1019.62 1766.04i −0.120171 0.208142i
\(417\) 0 0
\(418\) 3387.07 5866.58i 0.396333 0.686469i
\(419\) −12631.5 −1.47276 −0.736381 0.676567i \(-0.763467\pi\)
−0.736381 + 0.676567i \(0.763467\pi\)
\(420\) 0 0
\(421\) −3495.94 −0.404707 −0.202354 0.979312i \(-0.564859\pi\)
−0.202354 + 0.979312i \(0.564859\pi\)
\(422\) −3962.89 + 6863.92i −0.457134 + 0.791779i
\(423\) 0 0
\(424\) −3763.57 6518.69i −0.431073 0.746640i
\(425\) −2743.88 + 4752.53i −0.313171 + 0.542427i
\(426\) 0 0
\(427\) 12229.7 + 1112.84i 1.38603 + 0.126122i
\(428\) −7184.23 −0.811362
\(429\) 0 0
\(430\) 2666.14 + 4617.89i 0.299006 + 0.517894i
\(431\) 1172.59 + 2030.99i 0.131048 + 0.226982i 0.924081 0.382197i \(-0.124832\pi\)
−0.793033 + 0.609179i \(0.791499\pi\)
\(432\) 0 0
\(433\) 3250.63 0.360774 0.180387 0.983596i \(-0.442265\pi\)
0.180387 + 0.983596i \(0.442265\pi\)
\(434\) 3086.67 + 6679.94i 0.341393 + 0.738819i
\(435\) 0 0
\(436\) −3893.28 + 6743.36i −0.427648 + 0.740708i
\(437\) −1067.39 1848.77i −0.116842 0.202377i
\(438\) 0 0
\(439\) −8120.24 + 14064.7i −0.882820 + 1.52909i −0.0346287 + 0.999400i \(0.511025\pi\)
−0.848192 + 0.529689i \(0.822308\pi\)
\(440\) 10470.0 1.13440
\(441\) 0 0
\(442\) 1764.91 0.189928
\(443\) −2424.52 + 4199.39i −0.260028 + 0.450382i −0.966249 0.257610i \(-0.917065\pi\)
0.706221 + 0.707991i \(0.250398\pi\)
\(444\) 0 0
\(445\) −5743.49 9948.01i −0.611837 1.05973i
\(446\) 5645.47 9778.23i 0.599373 1.03815i
\(447\) 0 0
\(448\) −3677.44 7958.46i −0.387819 0.839290i
\(449\) 4139.93 0.435134 0.217567 0.976045i \(-0.430188\pi\)
0.217567 + 0.976045i \(0.430188\pi\)
\(450\) 0 0
\(451\) 4136.98 + 7165.46i 0.431935 + 0.748134i
\(452\) −4347.99 7530.94i −0.452461 0.783685i
\(453\) 0 0
\(454\) −813.110 −0.0840553
\(455\) 3566.49 + 324.532i 0.367471 + 0.0334380i
\(456\) 0 0
\(457\) −4616.24 + 7995.56i −0.472513 + 0.818417i −0.999505 0.0314531i \(-0.989987\pi\)
0.526992 + 0.849870i \(0.323320\pi\)
\(458\) −3937.04 6819.16i −0.401672 0.695717i
\(459\) 0 0
\(460\) 527.377 913.443i 0.0534545 0.0925859i
\(461\) −1274.90 −0.128803 −0.0644013 0.997924i \(-0.520514\pi\)
−0.0644013 + 0.997924i \(0.520514\pi\)
\(462\) 0 0
\(463\) 2061.80 0.206955 0.103477 0.994632i \(-0.467003\pi\)
0.103477 + 0.994632i \(0.467003\pi\)
\(464\) 1099.86 1905.01i 0.110042 0.190599i
\(465\) 0 0
\(466\) −2612.85 4525.59i −0.259738 0.449879i
\(467\) −484.021 + 838.348i −0.0479610 + 0.0830710i −0.889009 0.457889i \(-0.848606\pi\)
0.841048 + 0.540960i \(0.181939\pi\)
\(468\) 0 0
\(469\) 6496.66 9209.84i 0.639633 0.906761i
\(470\) 15886.6 1.55914
\(471\) 0 0
\(472\) 8742.29 + 15142.1i 0.852535 + 1.47663i
\(473\) −2660.81 4608.66i −0.258656 0.448005i
\(474\) 0 0
\(475\) −9420.39 −0.909973
\(476\) −4456.88 405.553i −0.429161 0.0390515i
\(477\) 0 0
\(478\) 5528.15 9575.03i 0.528978 0.916217i
\(479\) 3100.02 + 5369.40i 0.295707 + 0.512180i 0.975149 0.221549i \(-0.0711114\pi\)
−0.679442 + 0.733729i \(0.737778\pi\)
\(480\) 0 0
\(481\) −476.760 + 825.772i −0.0451941 + 0.0782785i
\(482\) −4341.17 −0.410238
\(483\) 0 0
\(484\) 1663.01 0.156181
\(485\) −6782.50 + 11747.6i −0.635005 + 1.09986i
\(486\) 0 0
\(487\) 4914.83 + 8512.74i 0.457315 + 0.792092i 0.998818 0.0486063i \(-0.0154780\pi\)
−0.541503 + 0.840699i \(0.682145\pi\)
\(488\) −8028.47 + 13905.7i −0.744738 + 1.28992i
\(489\) 0 0
\(490\) 10076.8 + 1849.19i 0.929030 + 0.170485i
\(491\) 5053.57 0.464489 0.232245 0.972657i \(-0.425393\pi\)
0.232245 + 0.972657i \(0.425393\pi\)
\(492\) 0 0
\(493\) −3571.33 6185.73i −0.326257 0.565094i
\(494\) 1514.84 + 2623.77i 0.137967 + 0.238966i
\(495\) 0 0
\(496\) −3819.61 −0.345777
\(497\) −7584.49 16413.8i −0.684529 1.48141i
\(498\) 0 0
\(499\) −7030.82 + 12177.7i −0.630747 + 1.09249i 0.356652 + 0.934237i \(0.383918\pi\)
−0.987399 + 0.158249i \(0.949415\pi\)
\(500\) 1080.38 + 1871.28i 0.0966325 + 0.167372i
\(501\) 0 0
\(502\) −5887.64 + 10197.7i −0.523463 + 0.906664i
\(503\) −8001.67 −0.709298 −0.354649 0.934999i \(-0.615400\pi\)
−0.354649 + 0.934999i \(0.615400\pi\)
\(504\) 0 0
\(505\) 6424.87 0.566144
\(506\) 593.794 1028.48i 0.0521687 0.0903589i
\(507\) 0 0
\(508\) −2476.27 4289.02i −0.216273 0.374596i
\(509\) −5456.91 + 9451.65i −0.475193 + 0.823059i −0.999596 0.0284114i \(-0.990955\pi\)
0.524403 + 0.851470i \(0.324288\pi\)
\(510\) 0 0
\(511\) −2787.88 + 3952.18i −0.241348 + 0.342141i
\(512\) 6863.42 0.592428
\(513\) 0 0
\(514\) 5135.49 + 8894.93i 0.440694 + 0.763304i
\(515\) −5072.08 8785.11i −0.433986 0.751686i
\(516\) 0 0
\(517\) −15854.8 −1.34873
\(518\) −1572.37 + 2229.04i −0.133371 + 0.189070i
\(519\) 0 0
\(520\) −2341.31 + 4055.26i −0.197448 + 0.341990i
\(521\) −7901.70 13686.1i −0.664452 1.15087i −0.979433 0.201767i \(-0.935332\pi\)
0.314981 0.949098i \(-0.398002\pi\)
\(522\) 0 0
\(523\) 323.047 559.534i 0.0270093 0.0467815i −0.852205 0.523208i \(-0.824735\pi\)
0.879214 + 0.476427i \(0.158068\pi\)
\(524\) 1724.81 0.143795
\(525\) 0 0
\(526\) −1267.07 −0.105032
\(527\) −6201.31 + 10741.0i −0.512587 + 0.887827i
\(528\) 0 0
\(529\) 5896.37 + 10212.8i 0.484620 + 0.839387i
\(530\) −4642.14 + 8040.41i −0.380456 + 0.658968i
\(531\) 0 0
\(532\) −3222.48 6973.86i −0.262617 0.568337i
\(533\) −3700.45 −0.300721
\(534\) 0 0
\(535\) 13860.0 + 24006.2i 1.12004 + 1.93996i
\(536\) 7368.45 + 12762.5i 0.593785 + 1.02847i
\(537\) 0 0
\(538\) 1635.05 0.131026
\(539\) −10056.7 1845.49i −0.803658 0.147479i
\(540\) 0 0
\(541\) −5123.33 + 8873.86i −0.407152 + 0.705207i −0.994569 0.104077i \(-0.966811\pi\)
0.587418 + 0.809284i \(0.300145\pi\)
\(542\) 3876.68 + 6714.61i 0.307228 + 0.532135i
\(543\) 0 0
\(544\) 4916.34 8515.36i 0.387475 0.671127i
\(545\) 30044.0 2.36137
\(546\) 0 0
\(547\) 4368.98 0.341506 0.170753 0.985314i \(-0.445380\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(548\) 2504.95 4338.70i 0.195267 0.338212i
\(549\) 0 0
\(550\) −2620.31 4538.50i −0.203146 0.351859i
\(551\) 6130.63 10618.6i 0.473999 0.820990i
\(552\) 0 0
\(553\) 22799.6 + 2074.65i 1.75323 + 0.159535i
\(554\) 6582.82 0.504833
\(555\) 0 0
\(556\) −764.656 1324.42i −0.0583249 0.101022i
\(557\) −4198.21 7271.52i −0.319361 0.553149i 0.660994 0.750391i \(-0.270135\pi\)
−0.980355 + 0.197242i \(0.936802\pi\)
\(558\) 0 0
\(559\) 2380.04 0.180081
\(560\) −3065.35 + 4345.52i −0.231312 + 0.327914i
\(561\) 0 0
\(562\) −6409.90 + 11102.3i −0.481113 + 0.833312i
\(563\) 6071.13 + 10515.5i 0.454472 + 0.787169i 0.998658 0.0517962i \(-0.0164946\pi\)
−0.544186 + 0.838965i \(0.683161\pi\)
\(564\) 0 0
\(565\) −16776.5 + 29057.7i −1.24919 + 2.16366i
\(566\) 7655.66 0.568536
\(567\) 0 0
\(568\) 23642.3 1.74649
\(569\) 5598.06 9696.12i 0.412448 0.714381i −0.582709 0.812681i \(-0.698007\pi\)
0.995157 + 0.0983003i \(0.0313406\pi\)
\(570\) 0 0
\(571\) −9829.79 17025.7i −0.720427 1.24782i −0.960829 0.277143i \(-0.910612\pi\)
0.240402 0.970674i \(-0.422721\pi\)
\(572\) 746.955 1293.76i 0.0546010 0.0945717i
\(573\) 0 0
\(574\) −10542.6 959.324i −0.766621 0.0697586i
\(575\) −1651.51 −0.119778
\(576\) 0 0
\(577\) −4258.23 7375.46i −0.307231 0.532140i 0.670525 0.741887i \(-0.266069\pi\)
−0.977756 + 0.209748i \(0.932736\pi\)
\(578\) −803.863 1392.33i −0.0578482 0.100196i
\(579\) 0 0
\(580\) 6058.05 0.433702
\(581\) −9522.62 20608.2i −0.679974 1.47155i
\(582\) 0 0
\(583\) 4632.85 8024.33i 0.329113 0.570041i
\(584\) −3161.99 5476.73i −0.224048 0.388063i
\(585\) 0 0
\(586\) −6582.28 + 11400.8i −0.464013 + 0.803694i
\(587\) 7115.53 0.500323 0.250161 0.968204i \(-0.419516\pi\)
0.250161 + 0.968204i \(0.419516\pi\)
\(588\) 0 0
\(589\) −21290.6 −1.48941
\(590\) 10783.1 18676.9i 0.752428 1.30324i
\(591\) 0 0
\(592\) −707.958 1226.22i −0.0491502 0.0851306i
\(593\) 3072.24 5321.28i 0.212752 0.368497i −0.739823 0.672802i \(-0.765091\pi\)
0.952575 + 0.304305i \(0.0984241\pi\)
\(594\) 0 0
\(595\) 7243.15 + 15675.1i 0.499059 + 1.08003i
\(596\) 1637.15 0.112517
\(597\) 0 0
\(598\) 265.569 + 459.979i 0.0181604 + 0.0314547i
\(599\) 4789.20 + 8295.13i 0.326680 + 0.565826i 0.981851 0.189654i \(-0.0607368\pi\)
−0.655171 + 0.755481i \(0.727403\pi\)
\(600\) 0 0
\(601\) −19113.8 −1.29728 −0.648642 0.761094i \(-0.724663\pi\)
−0.648642 + 0.761094i \(0.724663\pi\)
\(602\) 6780.77 + 617.015i 0.459076 + 0.0417735i
\(603\) 0 0
\(604\) −3693.90 + 6398.02i −0.248845 + 0.431013i
\(605\) −3208.32 5556.98i −0.215598 0.373427i
\(606\) 0 0
\(607\) −10221.3 + 17703.9i −0.683477 + 1.18382i 0.290435 + 0.956895i \(0.406200\pi\)
−0.973913 + 0.226923i \(0.927134\pi\)
\(608\) 16879.0 1.12588
\(609\) 0 0
\(610\) 19805.3 1.31458
\(611\) 3545.46 6140.92i 0.234753 0.406604i
\(612\) 0 0
\(613\) −8711.37 15088.5i −0.573978 0.994160i −0.996152 0.0876447i \(-0.972066\pi\)
0.422173 0.906515i \(-0.361267\pi\)
\(614\) 967.130 1675.12i 0.0635671 0.110101i
\(615\) 0 0
\(616\) 7706.27 10924.6i 0.504049 0.714554i
\(617\) 1805.17 0.117785 0.0588926 0.998264i \(-0.481243\pi\)
0.0588926 + 0.998264i \(0.481243\pi\)
\(618\) 0 0
\(619\) −4071.12 7051.38i −0.264349 0.457866i 0.703044 0.711146i \(-0.251824\pi\)
−0.967393 + 0.253281i \(0.918490\pi\)
\(620\) −5259.64 9109.97i −0.340697 0.590105i
\(621\) 0 0
\(622\) 5666.55 0.365286
\(623\) −14607.4 1329.19i −0.939376 0.0854783i
\(624\) 0 0
\(625\) 9504.14 16461.7i 0.608265 1.05355i
\(626\) −656.007 1136.24i −0.0418839 0.0725451i
\(627\) 0 0
\(628\) 1562.79 2706.84i 0.0993029 0.171998i
\(629\) −4597.61 −0.291445
\(630\) 0 0
\(631\) 3630.07 0.229019 0.114509 0.993422i \(-0.463470\pi\)
0.114509 + 0.993422i \(0.463470\pi\)
\(632\) −14967.4 + 25924.2i −0.942040 + 1.63166i
\(633\) 0 0
\(634\) −2957.43 5122.42i −0.185260 0.320879i
\(635\) −9554.54 + 16548.9i −0.597103 + 1.03421i
\(636\) 0 0
\(637\) 2963.68 3482.48i 0.184341 0.216611i
\(638\) 6821.00 0.423270
\(639\) 0 0
\(640\) 1804.51 + 3125.50i 0.111452 + 0.193041i
\(641\) 11111.8 + 19246.2i 0.684696 + 1.18593i 0.973532 + 0.228550i \(0.0733984\pi\)
−0.288836 + 0.957379i \(0.593268\pi\)
\(642\) 0 0
\(643\) −5013.00 −0.307455 −0.153727 0.988113i \(-0.549128\pi\)
−0.153727 + 0.988113i \(0.549128\pi\)
\(644\) −564.939 1222.60i −0.0345679 0.0748093i
\(645\) 0 0
\(646\) −7304.13 + 12651.1i −0.444856 + 0.770514i
\(647\) 3858.08 + 6682.39i 0.234431 + 0.406046i 0.959107 0.283043i \(-0.0913440\pi\)
−0.724676 + 0.689090i \(0.758011\pi\)
\(648\) 0 0
\(649\) −10761.5 + 18639.5i −0.650889 + 1.12737i
\(650\) 2343.82 0.141434
\(651\) 0 0
\(652\) 4421.10 0.265558
\(653\) −2822.20 + 4888.20i −0.169129 + 0.292940i −0.938114 0.346327i \(-0.887429\pi\)
0.768985 + 0.639267i \(0.220762\pi\)
\(654\) 0 0
\(655\) −3327.54 5763.46i −0.198500 0.343812i
\(656\) 2747.47 4758.75i 0.163522 0.283229i
\(657\) 0 0
\(658\) 11693.1 16576.4i 0.692770 0.982090i
\(659\) −8812.27 −0.520906 −0.260453 0.965487i \(-0.583872\pi\)
−0.260453 + 0.965487i \(0.583872\pi\)
\(660\) 0 0
\(661\) 3095.51 + 5361.58i 0.182150 + 0.315493i 0.942613 0.333889i \(-0.108361\pi\)
−0.760462 + 0.649382i \(0.775028\pi\)
\(662\) −6583.35 11402.7i −0.386510 0.669454i
\(663\) 0 0
\(664\) 29683.8 1.73487
\(665\) −17086.3 + 24222.1i −0.996360 + 1.41247i
\(666\) 0 0
\(667\) 1074.77 1861.56i 0.0623918 0.108066i
\(668\) 3146.86 + 5450.53i 0.182269 + 0.315699i
\(669\) 0 0
\(670\) 9088.54 15741.8i 0.524061 0.907701i
\(671\) −19765.7 −1.13718
\(672\) 0 0
\(673\) 29580.7 1.69428 0.847141 0.531368i \(-0.178322\pi\)
0.847141 + 0.531368i \(0.178322\pi\)
\(674\) −12466.9 + 21593.3i −0.712474 + 1.23404i
\(675\) 0 0
\(676\) −3795.25 6573.57i −0.215934 0.374008i
\(677\) 13145.0 22767.8i 0.746239 1.29252i −0.203374 0.979101i \(-0.565191\pi\)
0.949613 0.313423i \(-0.101476\pi\)
\(678\) 0 0
\(679\) 7265.58 + 15723.6i 0.410644 + 0.888686i
\(680\) −22578.3 −1.27329
\(681\) 0 0
\(682\) −5922.04 10257.3i −0.332502 0.575911i
\(683\) −405.342 702.073i −0.0227086 0.0393325i 0.854448 0.519537i \(-0.173896\pi\)
−0.877156 + 0.480205i \(0.840562\pi\)
\(684\) 0 0
\(685\) −19330.4 −1.07821
\(686\) 9346.36 9153.31i 0.520183 0.509439i
\(687\) 0 0
\(688\) −1767.11 + 3060.72i −0.0979220 + 0.169606i
\(689\) 2072.00 + 3588.81i 0.114567 + 0.198436i
\(690\) 0 0
\(691\) −585.690 + 1014.45i −0.0322442 + 0.0558485i −0.881697 0.471816i \(-0.843599\pi\)
0.849453 + 0.527664i \(0.176932\pi\)
\(692\) −5386.42 −0.295897
\(693\) 0 0
\(694\) −5581.14 −0.305269
\(695\) −2950.38 + 5110.21i −0.161028 + 0.278908i
\(696\) 0 0
\(697\) −8921.28 15452.1i −0.484817 0.839728i
\(698\) −1210.10 + 2095.95i −0.0656201 + 0.113657i
\(699\) 0 0
\(700\) −5918.79 538.579i −0.319585 0.0290805i
\(701\) 1057.70 0.0569885 0.0284943 0.999594i \(-0.490929\pi\)
0.0284943 + 0.999594i \(0.490929\pi\)
\(702\) 0 0
\(703\) −3946.18 6834.98i −0.211711 0.366694i
\(704\) 7055.49 + 12220.5i 0.377719 + 0.654228i
\(705\) 0 0
\(706\) −10866.0 −0.579245
\(707\) 4728.92 6703.84i 0.251555 0.356611i
\(708\) 0 0
\(709\) 14621.9 25325.8i 0.774521 1.34151i −0.160542 0.987029i \(-0.551324\pi\)
0.935063 0.354481i \(-0.115343\pi\)
\(710\) −14580.7 25254.5i −0.770708 1.33491i
\(711\) 0 0
\(712\) 9589.34 16609.2i 0.504741 0.874238i
\(713\) −3732.50 −0.196049
\(714\) 0 0
\(715\) −5764.17 −0.301493
\(716\) −2245.15 + 3888.72i −0.117186 + 0.202972i
\(717\) 0 0
\(718\) −11621.5 20129.0i −0.604054 1.04625i
\(719\) 12278.9 21267.6i 0.636890 1.10313i −0.349221 0.937040i \(-0.613554\pi\)
0.986111 0.166086i \(-0.0531128\pi\)
\(720\) 0 0
\(721\) −12899.8 1173.81i −0.666315 0.0606312i
\(722\) −10951.7 −0.564516
\(723\) 0 0
\(724\) 1393.53 + 2413.66i 0.0715331 + 0.123899i
\(725\) −4742.77 8214.72i −0.242955 0.420810i
\(726\) 0 0
\(727\) −23444.2 −1.19601 −0.598003 0.801494i \(-0.704039\pi\)
−0.598003 + 0.801494i \(0.704039\pi\)
\(728\) 2508.06 + 5427.77i 0.127685 + 0.276328i
\(729\) 0 0
\(730\) −3900.13 + 6755.22i −0.197740 + 0.342496i
\(731\) 5737.96 + 9938.44i 0.290323 + 0.502854i
\(732\) 0 0
\(733\) 17985.6 31152.0i 0.906296 1.56975i 0.0871278 0.996197i \(-0.472231\pi\)
0.819168 0.573553i \(-0.194436\pi\)
\(734\) −15584.4 −0.783692
\(735\) 0 0
\(736\) 2959.09 0.148198
\(737\) −9070.37 + 15710.3i −0.453340 + 0.785207i
\(738\) 0 0
\(739\) −6034.31 10451.7i −0.300373 0.520261i 0.675848 0.737041i \(-0.263778\pi\)
−0.976220 + 0.216780i \(0.930444\pi\)
\(740\) 1949.73 3377.03i 0.0968561 0.167760i
\(741\) 0 0
\(742\) 4972.77 + 10761.7i 0.246032 + 0.532446i
\(743\) 5475.09 0.270339 0.135169 0.990823i \(-0.456842\pi\)
0.135169 + 0.990823i \(0.456842\pi\)
\(744\) 0 0
\(745\) −3158.43 5470.56i −0.155323 0.269028i
\(746\) −6697.00 11599.5i −0.328679 0.569289i
\(747\) 0 0
\(748\) 7203.23 0.352107
\(749\) 35250.0 + 3207.56i 1.71963 + 0.156478i
\(750\) 0 0
\(751\) −12637.3 + 21888.4i −0.614036 + 1.06354i 0.376517 + 0.926410i \(0.377122\pi\)
−0.990553 + 0.137132i \(0.956212\pi\)
\(752\) 5264.79 + 9118.88i 0.255302 + 0.442196i
\(753\) 0 0
\(754\) −1525.31 + 2641.92i −0.0736720 + 0.127604i
\(755\) 28505.4 1.37406
\(756\) 0 0
\(757\) −23583.7 −1.13232 −0.566159 0.824296i \(-0.691571\pi\)
−0.566159 + 0.824296i \(0.691571\pi\)
\(758\) 11093.6 19214.6i 0.531578 0.920720i
\(759\) 0 0
\(760\) −19379.2 33565.7i −0.924942 1.60205i
\(761\) −8101.35 + 14032.0i −0.385905 + 0.668407i −0.991894 0.127066i \(-0.959444\pi\)
0.605989 + 0.795473i \(0.292777\pi\)
\(762\) 0 0
\(763\) 22113.4 31348.5i 1.04922 1.48741i
\(764\) 14675.3 0.694939
\(765\) 0 0
\(766\) −6555.06 11353.7i −0.309196 0.535543i
\(767\) −4812.99 8336.34i −0.226580 0.392448i
\(768\) 0 0
\(769\) −18603.1 −0.872362 −0.436181 0.899859i \(-0.643669\pi\)
−0.436181 + 0.899859i \(0.643669\pi\)
\(770\) −16422.2 1494.33i −0.768590 0.0699377i
\(771\) 0 0
\(772\) 3329.12 5766.20i 0.155204 0.268821i
\(773\) 13640.7 + 23626.3i 0.634697 + 1.09933i 0.986579 + 0.163283i \(0.0522083\pi\)
−0.351883 + 0.936044i \(0.614458\pi\)
\(774\) 0 0
\(775\) −8235.42 + 14264.2i −0.381709 + 0.661140i
\(776\) −22648.2 −1.04771
\(777\) 0 0
\(778\) 12157.3 0.560231
\(779\) 15314.5 26525.4i 0.704361 1.21999i