Properties

Label 189.4.e.e.163.3
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 40x^{10} + 1147x^{8} + 15564x^{6} + 154089x^{4} + 578934x^{2} + 1633284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(1.02968 + 1.78345i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.e.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02968 + 1.78345i) q^{2} +(1.87953 + 3.25543i) q^{4} +(-7.25204 + 12.5609i) q^{5} +(-7.76857 - 16.8122i) q^{7} -24.2161 q^{8} +O(q^{10})\) \(q+(-1.02968 + 1.78345i) q^{2} +(1.87953 + 3.25543i) q^{4} +(-7.25204 + 12.5609i) q^{5} +(-7.76857 - 16.8122i) q^{7} -24.2161 q^{8} +(-14.9345 - 25.8674i) q^{10} +(-14.9047 - 25.8157i) q^{11} -13.3320 q^{13} +(37.9829 + 3.45625i) q^{14} +(9.89856 - 17.1448i) q^{16} +(32.1415 + 55.6707i) q^{17} +(55.1748 - 95.5655i) q^{19} -54.5216 q^{20} +61.3881 q^{22} +(-9.67280 + 16.7538i) q^{23} +(-42.6843 - 73.9314i) q^{25} +(13.7276 - 23.7769i) q^{26} +(40.1297 - 56.8890i) q^{28} -111.113 q^{29} +(-96.4689 - 167.089i) q^{31} +(-76.4797 - 132.467i) q^{32} -132.382 q^{34} +(267.514 + 24.3424i) q^{35} +(35.7607 - 61.9393i) q^{37} +(113.625 + 196.803i) q^{38} +(175.616 - 304.176i) q^{40} -277.562 q^{41} -178.522 q^{43} +(56.0275 - 97.0424i) q^{44} +(-19.9197 - 34.5020i) q^{46} +(265.937 - 460.617i) q^{47} +(-222.299 + 261.213i) q^{49} +175.804 q^{50} +(-25.0578 - 43.4013i) q^{52} +(155.416 + 269.188i) q^{53} +432.357 q^{55} +(188.124 + 407.125i) q^{56} +(114.410 - 198.165i) q^{58} +(-361.012 - 625.290i) q^{59} +(-331.535 + 574.235i) q^{61} +397.328 q^{62} +473.375 q^{64} +(96.6839 - 167.461i) q^{65} +(304.279 + 527.027i) q^{67} +(-120.822 + 209.269i) q^{68} +(-318.867 + 452.035i) q^{70} -976.305 q^{71} +(-130.574 - 226.161i) q^{73} +(73.6440 + 127.555i) q^{74} +414.810 q^{76} +(-318.229 + 451.131i) q^{77} +(-618.075 + 1070.54i) q^{79} +(143.570 + 248.670i) q^{80} +(285.800 - 495.020i) q^{82} -1225.79 q^{83} -932.367 q^{85} +(183.820 - 318.386i) q^{86} +(360.933 + 625.154i) q^{88} +(-395.991 + 685.876i) q^{89} +(103.570 + 224.139i) q^{91} -72.7211 q^{92} +(547.659 + 948.573i) q^{94} +(800.260 + 1386.09i) q^{95} -935.253 q^{97} +(-236.966 - 665.425i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 32 q^{4} - 26 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 32 q^{4} - 26 q^{7} + 20 q^{10} + 104 q^{13} + 148 q^{16} + 62 q^{19} - 712 q^{22} + 46 q^{25} - 348 q^{28} + 82 q^{31} + 840 q^{34} + 1132 q^{37} + 444 q^{40} - 3132 q^{43} + 888 q^{46} + 366 q^{49} + 72 q^{52} + 448 q^{55} - 4 q^{58} - 886 q^{61} - 1848 q^{64} + 2084 q^{67} - 4460 q^{70} + 2398 q^{73} + 6408 q^{76} - 984 q^{79} + 3892 q^{82} - 7200 q^{85} + 5796 q^{88} - 6492 q^{91} - 2772 q^{94} - 1364 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02968 + 1.78345i −0.364046 + 0.630546i −0.988623 0.150417i \(-0.951938\pi\)
0.624576 + 0.780964i \(0.285272\pi\)
\(3\) 0 0
\(4\) 1.87953 + 3.25543i 0.234941 + 0.406929i
\(5\) −7.25204 + 12.5609i −0.648643 + 1.12348i 0.334805 + 0.942288i \(0.391330\pi\)
−0.983447 + 0.181194i \(0.942004\pi\)
\(6\) 0 0
\(7\) −7.76857 16.8122i −0.419463 0.907772i
\(8\) −24.2161 −1.07021
\(9\) 0 0
\(10\) −14.9345 25.8674i −0.472272 0.817999i
\(11\) −14.9047 25.8157i −0.408539 0.707610i 0.586187 0.810176i \(-0.300628\pi\)
−0.994726 + 0.102565i \(0.967295\pi\)
\(12\) 0 0
\(13\) −13.3320 −0.284432 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(14\) 37.9829 + 3.45625i 0.725097 + 0.0659800i
\(15\) 0 0
\(16\) 9.89856 17.1448i 0.154665 0.267888i
\(17\) 32.1415 + 55.6707i 0.458557 + 0.794243i 0.998885 0.0472110i \(-0.0150333\pi\)
−0.540328 + 0.841454i \(0.681700\pi\)
\(18\) 0 0
\(19\) 55.1748 95.5655i 0.666209 1.15391i −0.312747 0.949836i \(-0.601249\pi\)
0.978956 0.204071i \(-0.0654173\pi\)
\(20\) −54.5216 −0.609570
\(21\) 0 0
\(22\) 61.3881 0.594908
\(23\) −9.67280 + 16.7538i −0.0876921 + 0.151887i −0.906535 0.422130i \(-0.861282\pi\)
0.818843 + 0.574017i \(0.194616\pi\)
\(24\) 0 0
\(25\) −42.6843 73.9314i −0.341474 0.591451i
\(26\) 13.7276 23.7769i 0.103546 0.179348i
\(27\) 0 0
\(28\) 40.1297 56.8890i 0.270850 0.383965i
\(29\) −111.113 −0.711487 −0.355744 0.934584i \(-0.615772\pi\)
−0.355744 + 0.934584i \(0.615772\pi\)
\(30\) 0 0
\(31\) −96.4689 167.089i −0.558914 0.968067i −0.997587 0.0694206i \(-0.977885\pi\)
0.438674 0.898646i \(-0.355448\pi\)
\(32\) −76.4797 132.467i −0.422494 0.731782i
\(33\) 0 0
\(34\) −132.382 −0.667743
\(35\) 267.514 + 24.3424i 1.29195 + 0.117561i
\(36\) 0 0
\(37\) 35.7607 61.9393i 0.158892 0.275210i −0.775577 0.631253i \(-0.782541\pi\)
0.934470 + 0.356043i \(0.115874\pi\)
\(38\) 113.625 + 196.803i 0.485061 + 0.840151i
\(39\) 0 0
\(40\) 175.616 304.176i 0.694183 1.20236i
\(41\) −277.562 −1.05727 −0.528634 0.848850i \(-0.677296\pi\)
−0.528634 + 0.848850i \(0.677296\pi\)
\(42\) 0 0
\(43\) −178.522 −0.633124 −0.316562 0.948572i \(-0.602528\pi\)
−0.316562 + 0.948572i \(0.602528\pi\)
\(44\) 56.0275 97.0424i 0.191965 0.332493i
\(45\) 0 0
\(46\) −19.9197 34.5020i −0.0638479 0.110588i
\(47\) 265.937 460.617i 0.825338 1.42953i −0.0763219 0.997083i \(-0.524318\pi\)
0.901660 0.432445i \(-0.142349\pi\)
\(48\) 0 0
\(49\) −222.299 + 261.213i −0.648101 + 0.761554i
\(50\) 175.804 0.497250
\(51\) 0 0
\(52\) −25.0578 43.4013i −0.0668247 0.115744i
\(53\) 155.416 + 269.188i 0.402793 + 0.697658i 0.994062 0.108816i \(-0.0347061\pi\)
−0.591269 + 0.806475i \(0.701373\pi\)
\(54\) 0 0
\(55\) 432.357 1.05998
\(56\) 188.124 + 407.125i 0.448913 + 0.971507i
\(57\) 0 0
\(58\) 114.410 198.165i 0.259014 0.448626i
\(59\) −361.012 625.290i −0.796605 1.37976i −0.921815 0.387630i \(-0.873294\pi\)
0.125210 0.992130i \(-0.460040\pi\)
\(60\) 0 0
\(61\) −331.535 + 574.235i −0.695880 + 1.20530i 0.274003 + 0.961729i \(0.411652\pi\)
−0.969883 + 0.243571i \(0.921681\pi\)
\(62\) 397.328 0.813882
\(63\) 0 0
\(64\) 473.375 0.924560
\(65\) 96.6839 167.461i 0.184495 0.319554i
\(66\) 0 0
\(67\) 304.279 + 527.027i 0.554830 + 0.960994i 0.997917 + 0.0645154i \(0.0205502\pi\)
−0.443086 + 0.896479i \(0.646116\pi\)
\(68\) −120.822 + 209.269i −0.215467 + 0.373200i
\(69\) 0 0
\(70\) −318.867 + 452.035i −0.544456 + 0.771836i
\(71\) −976.305 −1.63192 −0.815958 0.578111i \(-0.803790\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(72\) 0 0
\(73\) −130.574 226.161i −0.209350 0.362605i 0.742160 0.670223i \(-0.233801\pi\)
−0.951510 + 0.307618i \(0.900468\pi\)
\(74\) 73.6440 + 127.555i 0.115688 + 0.200378i
\(75\) 0 0
\(76\) 414.810 0.626078
\(77\) −318.229 + 451.131i −0.470982 + 0.667677i
\(78\) 0 0
\(79\) −618.075 + 1070.54i −0.880239 + 1.52462i −0.0291637 + 0.999575i \(0.509284\pi\)
−0.851075 + 0.525044i \(0.824049\pi\)
\(80\) 143.570 + 248.670i 0.200645 + 0.347527i
\(81\) 0 0
\(82\) 285.800 495.020i 0.384894 0.666656i
\(83\) −1225.79 −1.62106 −0.810529 0.585699i \(-0.800820\pi\)
−0.810529 + 0.585699i \(0.800820\pi\)
\(84\) 0 0
\(85\) −932.367 −1.18976
\(86\) 183.820 318.386i 0.230486 0.399214i
\(87\) 0 0
\(88\) 360.933 + 625.154i 0.437222 + 0.757291i
\(89\) −395.991 + 685.876i −0.471629 + 0.816885i −0.999473 0.0324564i \(-0.989667\pi\)
0.527845 + 0.849341i \(0.323000\pi\)
\(90\) 0 0
\(91\) 103.570 + 224.139i 0.119309 + 0.258200i
\(92\) −72.7211 −0.0824098
\(93\) 0 0
\(94\) 547.659 + 948.573i 0.600923 + 1.04083i
\(95\) 800.260 + 1386.09i 0.864263 + 1.49695i
\(96\) 0 0
\(97\) −935.253 −0.978975 −0.489488 0.872010i \(-0.662816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(98\) −236.966 665.425i −0.244256 0.685899i
\(99\) 0 0
\(100\) 160.453 277.912i 0.160453 0.277912i
\(101\) −221.485 383.623i −0.218203 0.377940i 0.736055 0.676921i \(-0.236686\pi\)
−0.954259 + 0.298982i \(0.903353\pi\)
\(102\) 0 0
\(103\) 349.700 605.699i 0.334534 0.579430i −0.648861 0.760907i \(-0.724754\pi\)
0.983395 + 0.181477i \(0.0580878\pi\)
\(104\) 322.848 0.304402
\(105\) 0 0
\(106\) −640.114 −0.586541
\(107\) 955.591 1655.13i 0.863369 1.49540i −0.00528834 0.999986i \(-0.501683\pi\)
0.868657 0.495413i \(-0.164983\pi\)
\(108\) 0 0
\(109\) 1035.71 + 1793.90i 0.910118 + 1.57637i 0.813896 + 0.581011i \(0.197343\pi\)
0.0962224 + 0.995360i \(0.469324\pi\)
\(110\) −445.189 + 771.090i −0.385883 + 0.668369i
\(111\) 0 0
\(112\) −365.139 33.2258i −0.308057 0.0280316i
\(113\) 2313.34 1.92585 0.962926 0.269767i \(-0.0869467\pi\)
0.962926 + 0.269767i \(0.0869467\pi\)
\(114\) 0 0
\(115\) −140.295 242.998i −0.113762 0.197041i
\(116\) −208.839 361.721i −0.167157 0.289525i
\(117\) 0 0
\(118\) 1486.90 1.16000
\(119\) 686.253 972.851i 0.528644 0.749421i
\(120\) 0 0
\(121\) 221.201 383.132i 0.166192 0.287853i
\(122\) −682.748 1182.55i −0.506665 0.877570i
\(123\) 0 0
\(124\) 362.632 628.096i 0.262623 0.454877i
\(125\) −574.817 −0.411306
\(126\) 0 0
\(127\) −1317.50 −0.920542 −0.460271 0.887778i \(-0.652248\pi\)
−0.460271 + 0.887778i \(0.652248\pi\)
\(128\) 124.414 215.491i 0.0859119 0.148804i
\(129\) 0 0
\(130\) 199.107 + 344.863i 0.134329 + 0.232665i
\(131\) −229.421 + 397.368i −0.153012 + 0.265024i −0.932333 0.361600i \(-0.882231\pi\)
0.779321 + 0.626624i \(0.215564\pi\)
\(132\) 0 0
\(133\) −2035.29 185.201i −1.32694 0.120744i
\(134\) −1253.24 −0.807935
\(135\) 0 0
\(136\) −778.341 1348.13i −0.490752 0.850007i
\(137\) 666.378 + 1154.20i 0.415566 + 0.719781i 0.995488 0.0948911i \(-0.0302503\pi\)
−0.579922 + 0.814672i \(0.696917\pi\)
\(138\) 0 0
\(139\) −406.835 −0.248254 −0.124127 0.992266i \(-0.539613\pi\)
−0.124127 + 0.992266i \(0.539613\pi\)
\(140\) 423.555 + 916.627i 0.255692 + 0.553351i
\(141\) 0 0
\(142\) 1005.28 1741.20i 0.594093 1.02900i
\(143\) 198.708 + 344.173i 0.116202 + 0.201267i
\(144\) 0 0
\(145\) 805.795 1395.68i 0.461501 0.799343i
\(146\) 537.797 0.304852
\(147\) 0 0
\(148\) 268.853 0.149321
\(149\) −217.761 + 377.174i −0.119730 + 0.207378i −0.919660 0.392714i \(-0.871536\pi\)
0.799931 + 0.600092i \(0.204869\pi\)
\(150\) 0 0
\(151\) 982.668 + 1702.03i 0.529592 + 0.917280i 0.999404 + 0.0345136i \(0.0109882\pi\)
−0.469812 + 0.882766i \(0.655678\pi\)
\(152\) −1336.12 + 2314.22i −0.712983 + 1.23492i
\(153\) 0 0
\(154\) −476.897 1032.07i −0.249542 0.540041i
\(155\) 2798.39 1.45014
\(156\) 0 0
\(157\) −415.741 720.085i −0.211336 0.366045i 0.740797 0.671729i \(-0.234448\pi\)
−0.952133 + 0.305684i \(0.901115\pi\)
\(158\) −1272.84 2204.62i −0.640895 1.11006i
\(159\) 0 0
\(160\) 2218.54 1.09619
\(161\) 356.811 + 32.4680i 0.174663 + 0.0158934i
\(162\) 0 0
\(163\) 588.061 1018.55i 0.282579 0.489442i −0.689440 0.724343i \(-0.742143\pi\)
0.972019 + 0.234901i \(0.0754766\pi\)
\(164\) −521.686 903.587i −0.248395 0.430233i
\(165\) 0 0
\(166\) 1262.17 2186.14i 0.590140 1.02215i
\(167\) −1674.29 −0.775809 −0.387905 0.921700i \(-0.626801\pi\)
−0.387905 + 0.921700i \(0.626801\pi\)
\(168\) 0 0
\(169\) −2019.26 −0.919098
\(170\) 960.038 1662.83i 0.433127 0.750197i
\(171\) 0 0
\(172\) −335.536 581.166i −0.148747 0.257637i
\(173\) 716.460 1240.95i 0.314864 0.545360i −0.664545 0.747249i \(-0.731374\pi\)
0.979409 + 0.201888i \(0.0647078\pi\)
\(174\) 0 0
\(175\) −911.352 + 1291.96i −0.393667 + 0.558073i
\(176\) −590.139 −0.252747
\(177\) 0 0
\(178\) −815.486 1412.46i −0.343389 0.594767i
\(179\) −597.265 1034.49i −0.249395 0.431965i 0.713963 0.700183i \(-0.246898\pi\)
−0.963358 + 0.268219i \(0.913565\pi\)
\(180\) 0 0
\(181\) 741.424 0.304473 0.152236 0.988344i \(-0.451352\pi\)
0.152236 + 0.988344i \(0.451352\pi\)
\(182\) −506.386 46.0785i −0.206241 0.0187668i
\(183\) 0 0
\(184\) 234.237 405.711i 0.0938489 0.162551i
\(185\) 518.676 + 898.373i 0.206129 + 0.357026i
\(186\) 0 0
\(187\) 958.118 1659.51i 0.374676 0.648959i
\(188\) 1999.34 0.775623
\(189\) 0 0
\(190\) −3296.04 −1.25853
\(191\) −1951.99 + 3380.95i −0.739483 + 1.28082i 0.213246 + 0.976999i \(0.431597\pi\)
−0.952728 + 0.303823i \(0.901737\pi\)
\(192\) 0 0
\(193\) −885.627 1533.95i −0.330305 0.572104i 0.652267 0.757989i \(-0.273818\pi\)
−0.982572 + 0.185885i \(0.940485\pi\)
\(194\) 963.010 1667.98i 0.356392 0.617289i
\(195\) 0 0
\(196\) −1268.18 232.722i −0.462164 0.0848113i
\(197\) −830.366 −0.300310 −0.150155 0.988662i \(-0.547977\pi\)
−0.150155 + 0.988662i \(0.547977\pi\)
\(198\) 0 0
\(199\) −531.253 920.156i −0.189244 0.327780i 0.755755 0.654855i \(-0.227270\pi\)
−0.944998 + 0.327075i \(0.893937\pi\)
\(200\) 1033.65 + 1790.33i 0.365449 + 0.632977i
\(201\) 0 0
\(202\) 912.232 0.317745
\(203\) 863.187 + 1868.05i 0.298443 + 0.645869i
\(204\) 0 0
\(205\) 2012.90 3486.44i 0.685789 1.18782i
\(206\) 720.158 + 1247.35i 0.243572 + 0.421878i
\(207\) 0 0
\(208\) −131.967 + 228.574i −0.0439917 + 0.0761958i
\(209\) −3289.45 −1.08869
\(210\) 0 0
\(211\) −3848.67 −1.25570 −0.627851 0.778333i \(-0.716065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(212\) −584.217 + 1011.89i −0.189265 + 0.327817i
\(213\) 0 0
\(214\) 1967.90 + 3408.51i 0.628612 + 1.08879i
\(215\) 1294.65 2242.40i 0.410671 0.711303i
\(216\) 0 0
\(217\) −2059.71 + 2919.89i −0.644341 + 0.913435i
\(218\) −4265.79 −1.32530
\(219\) 0 0
\(220\) 812.627 + 1407.51i 0.249033 + 0.431338i
\(221\) −428.509 742.200i −0.130428 0.225908i
\(222\) 0 0
\(223\) 5482.75 1.64642 0.823211 0.567736i \(-0.192181\pi\)
0.823211 + 0.567736i \(0.192181\pi\)
\(224\) −1632.92 + 2314.87i −0.487070 + 0.690484i
\(225\) 0 0
\(226\) −2382.00 + 4125.75i −0.701099 + 1.21434i
\(227\) 197.418 + 341.939i 0.0577230 + 0.0999791i 0.893443 0.449177i \(-0.148283\pi\)
−0.835720 + 0.549156i \(0.814949\pi\)
\(228\) 0 0
\(229\) 1911.78 3311.30i 0.551678 0.955534i −0.446476 0.894796i \(-0.647321\pi\)
0.998154 0.0607380i \(-0.0193454\pi\)
\(230\) 577.835 0.165658
\(231\) 0 0
\(232\) 2690.72 0.761441
\(233\) −1268.77 + 2197.57i −0.356738 + 0.617888i −0.987414 0.158159i \(-0.949444\pi\)
0.630676 + 0.776046i \(0.282778\pi\)
\(234\) 0 0
\(235\) 3857.17 + 6680.82i 1.07070 + 1.85451i
\(236\) 1357.06 2350.50i 0.374310 0.648324i
\(237\) 0 0
\(238\) 1028.42 + 2225.62i 0.280094 + 0.606159i
\(239\) −5368.81 −1.45305 −0.726526 0.687139i \(-0.758866\pi\)
−0.726526 + 0.687139i \(0.758866\pi\)
\(240\) 0 0
\(241\) −1054.01 1825.60i −0.281721 0.487955i 0.690088 0.723726i \(-0.257572\pi\)
−0.971809 + 0.235771i \(0.924239\pi\)
\(242\) 455.532 + 789.005i 0.121003 + 0.209583i
\(243\) 0 0
\(244\) −2492.51 −0.653962
\(245\) −1668.95 4686.60i −0.435206 1.22211i
\(246\) 0 0
\(247\) −735.588 + 1274.08i −0.189491 + 0.328208i
\(248\) 2336.10 + 4046.24i 0.598155 + 1.03603i
\(249\) 0 0
\(250\) 591.877 1025.16i 0.149734 0.259347i
\(251\) 5717.94 1.43790 0.718951 0.695061i \(-0.244623\pi\)
0.718951 + 0.695061i \(0.244623\pi\)
\(252\) 0 0
\(253\) 576.680 0.143303
\(254\) 1356.60 2349.69i 0.335120 0.580445i
\(255\) 0 0
\(256\) 2149.71 + 3723.41i 0.524832 + 0.909035i
\(257\) 2493.73 4319.28i 0.605272 1.04836i −0.386736 0.922190i \(-0.626398\pi\)
0.992008 0.126172i \(-0.0402690\pi\)
\(258\) 0 0
\(259\) −1319.14 120.035i −0.316477 0.0287978i
\(260\) 726.880 0.173381
\(261\) 0 0
\(262\) −472.459 818.322i −0.111407 0.192962i
\(263\) 307.637 + 532.842i 0.0721281 + 0.124930i 0.899834 0.436233i \(-0.143688\pi\)
−0.827706 + 0.561162i \(0.810354\pi\)
\(264\) 0 0
\(265\) −4508.34 −1.04508
\(266\) 2426.00 3439.16i 0.559200 0.792738i
\(267\) 0 0
\(268\) −1143.80 + 1981.12i −0.260705 + 0.451553i
\(269\) −396.981 687.591i −0.0899790 0.155848i 0.817523 0.575896i \(-0.195347\pi\)
−0.907502 + 0.420048i \(0.862013\pi\)
\(270\) 0 0
\(271\) −1882.47 + 3260.54i −0.421964 + 0.730862i −0.996131 0.0878752i \(-0.971992\pi\)
0.574168 + 0.818738i \(0.305326\pi\)
\(272\) 1272.62 0.283690
\(273\) 0 0
\(274\) −2744.62 −0.605141
\(275\) −1272.39 + 2203.85i −0.279011 + 0.483262i
\(276\) 0 0
\(277\) 1598.27 + 2768.29i 0.346682 + 0.600471i 0.985658 0.168756i \(-0.0539750\pi\)
−0.638976 + 0.769227i \(0.720642\pi\)
\(278\) 418.909 725.571i 0.0903758 0.156535i
\(279\) 0 0
\(280\) −6478.15 589.478i −1.38265 0.125814i
\(281\) 6225.15 1.32157 0.660785 0.750575i \(-0.270223\pi\)
0.660785 + 0.750575i \(0.270223\pi\)
\(282\) 0 0
\(283\) 1858.75 + 3219.45i 0.390429 + 0.676242i 0.992506 0.122195i \(-0.0389935\pi\)
−0.602077 + 0.798438i \(0.705660\pi\)
\(284\) −1834.99 3178.30i −0.383404 0.664075i
\(285\) 0 0
\(286\) −818.423 −0.169211
\(287\) 2156.26 + 4666.43i 0.443485 + 0.959758i
\(288\) 0 0
\(289\) 390.347 676.100i 0.0794518 0.137615i
\(290\) 1659.42 + 2874.20i 0.336015 + 0.581996i
\(291\) 0 0
\(292\) 490.835 850.151i 0.0983696 0.170381i
\(293\) 6392.56 1.27460 0.637299 0.770616i \(-0.280052\pi\)
0.637299 + 0.770616i \(0.280052\pi\)
\(294\) 0 0
\(295\) 10472.3 2.06685
\(296\) −865.983 + 1499.93i −0.170048 + 0.294532i
\(297\) 0 0
\(298\) −448.448 776.735i −0.0871742 0.150990i
\(299\) 128.957 223.361i 0.0249425 0.0432016i
\(300\) 0 0
\(301\) 1386.86 + 3001.34i 0.265572 + 0.574732i
\(302\) −4047.33 −0.771183
\(303\) 0 0
\(304\) −1092.30 1891.92i −0.206078 0.356938i
\(305\) −4808.61 8328.76i −0.902755 1.56362i
\(306\) 0 0
\(307\) 939.255 0.174613 0.0873063 0.996182i \(-0.472174\pi\)
0.0873063 + 0.996182i \(0.472174\pi\)
\(308\) −2066.75 188.063i −0.382350 0.0347919i
\(309\) 0 0
\(310\) −2881.44 + 4990.80i −0.527918 + 0.914381i
\(311\) −1375.81 2382.97i −0.250851 0.434487i 0.712909 0.701257i \(-0.247377\pi\)
−0.963760 + 0.266769i \(0.914044\pi\)
\(312\) 0 0
\(313\) 318.550 551.744i 0.0575255 0.0996372i −0.835829 0.548991i \(-0.815012\pi\)
0.893354 + 0.449353i \(0.148346\pi\)
\(314\) 1712.32 0.307744
\(315\) 0 0
\(316\) −4646.75 −0.827216
\(317\) −1436.10 + 2487.39i −0.254445 + 0.440712i −0.964745 0.263187i \(-0.915226\pi\)
0.710299 + 0.703900i \(0.248560\pi\)
\(318\) 0 0
\(319\) 1656.10 + 2868.45i 0.290670 + 0.503456i
\(320\) −3432.93 + 5946.02i −0.599709 + 1.03873i
\(321\) 0 0
\(322\) −425.306 + 602.925i −0.0736068 + 0.104347i
\(323\) 7093.60 1.22198
\(324\) 0 0
\(325\) 569.065 + 985.650i 0.0971263 + 0.168228i
\(326\) 1211.03 + 2097.56i 0.205744 + 0.356359i
\(327\) 0 0
\(328\) 6721.47 1.13150
\(329\) −9809.92 892.651i −1.64389 0.149585i
\(330\) 0 0
\(331\) 3196.80 5537.02i 0.530852 0.919463i −0.468499 0.883464i \(-0.655205\pi\)
0.999352 0.0359995i \(-0.0114615\pi\)
\(332\) −2303.90 3990.47i −0.380852 0.659656i
\(333\) 0 0
\(334\) 1723.98 2986.01i 0.282430 0.489184i
\(335\) −8826.59 −1.43955
\(336\) 0 0
\(337\) −12107.6 −1.95710 −0.978549 0.206016i \(-0.933950\pi\)
−0.978549 + 0.206016i \(0.933950\pi\)
\(338\) 2079.19 3601.26i 0.334594 0.579534i
\(339\) 0 0
\(340\) −1752.41 3035.26i −0.279522 0.484147i
\(341\) −2875.68 + 4980.82i −0.456676 + 0.790986i
\(342\) 0 0
\(343\) 6118.50 + 1708.08i 0.963172 + 0.268884i
\(344\) 4323.10 0.677575
\(345\) 0 0
\(346\) 1475.45 + 2555.55i 0.229250 + 0.397073i
\(347\) 1355.07 + 2347.05i 0.209636 + 0.363101i 0.951600 0.307339i \(-0.0994386\pi\)
−0.741964 + 0.670440i \(0.766105\pi\)
\(348\) 0 0
\(349\) −1175.22 −0.180252 −0.0901261 0.995930i \(-0.528727\pi\)
−0.0901261 + 0.995930i \(0.528727\pi\)
\(350\) −1365.75 2955.65i −0.208578 0.451390i
\(351\) 0 0
\(352\) −2279.81 + 3948.74i −0.345211 + 0.597923i
\(353\) 2638.20 + 4569.50i 0.397783 + 0.688980i 0.993452 0.114250i \(-0.0364464\pi\)
−0.595669 + 0.803230i \(0.703113\pi\)
\(354\) 0 0
\(355\) 7080.21 12263.3i 1.05853 1.83343i
\(356\) −2977.10 −0.443219
\(357\) 0 0
\(358\) 2459.96 0.363165
\(359\) −5643.27 + 9774.43i −0.829639 + 1.43698i 0.0686829 + 0.997639i \(0.478120\pi\)
−0.898322 + 0.439338i \(0.855213\pi\)
\(360\) 0 0
\(361\) −2659.01 4605.55i −0.387668 0.671460i
\(362\) −763.428 + 1322.30i −0.110842 + 0.191984i
\(363\) 0 0
\(364\) −535.008 + 758.441i −0.0770385 + 0.109212i
\(365\) 3787.72 0.543173
\(366\) 0 0
\(367\) −3783.80 6553.73i −0.538181 0.932158i −0.999002 0.0446643i \(-0.985778\pi\)
0.460821 0.887493i \(-0.347555\pi\)
\(368\) 191.493 + 331.676i 0.0271258 + 0.0469832i
\(369\) 0 0
\(370\) −2136.28 −0.300162
\(371\) 3318.29 4704.09i 0.464358 0.658286i
\(372\) 0 0
\(373\) 3251.99 5632.61i 0.451425 0.781891i −0.547050 0.837100i \(-0.684249\pi\)
0.998475 + 0.0552092i \(0.0175826\pi\)
\(374\) 1973.11 + 3417.52i 0.272799 + 0.472502i
\(375\) 0 0
\(376\) −6439.95 + 11154.3i −0.883285 + 1.52989i
\(377\) 1481.35 0.202370
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730097 0.683344i \(-0.239475\pi\)
0.730097 + 0.683344i \(0.239475\pi\)
\(380\) −3008.22 + 5210.39i −0.406101 + 0.703388i
\(381\) 0 0
\(382\) −4019.85 6962.58i −0.538412 0.932557i
\(383\) −3183.06 + 5513.23i −0.424666 + 0.735542i −0.996389 0.0849039i \(-0.972942\pi\)
0.571724 + 0.820446i \(0.306275\pi\)
\(384\) 0 0
\(385\) −3358.80 7268.87i −0.444624 0.962223i
\(386\) 3647.64 0.480985
\(387\) 0 0
\(388\) −1757.83 3044.66i −0.230001 0.398374i
\(389\) −2951.72 5112.53i −0.384725 0.666363i 0.607006 0.794697i \(-0.292370\pi\)
−0.991731 + 0.128334i \(0.959037\pi\)
\(390\) 0 0
\(391\) −1243.59 −0.160847
\(392\) 5383.20 6325.56i 0.693604 0.815022i
\(393\) 0 0
\(394\) 855.010 1480.92i 0.109327 0.189360i
\(395\) −8964.62 15527.2i −1.14192 1.97786i
\(396\) 0 0
\(397\) −1883.39 + 3262.13i −0.238097 + 0.412397i −0.960168 0.279422i \(-0.909857\pi\)
0.722071 + 0.691819i \(0.243190\pi\)
\(398\) 2188.08 0.275574
\(399\) 0 0
\(400\) −1690.05 −0.211256
\(401\) 3626.00 6280.42i 0.451556 0.782118i −0.546927 0.837180i \(-0.684202\pi\)
0.998483 + 0.0550625i \(0.0175358\pi\)
\(402\) 0 0
\(403\) 1286.12 + 2227.62i 0.158973 + 0.275349i
\(404\) 832.573 1442.06i 0.102530 0.177587i
\(405\) 0 0
\(406\) −4220.39 384.033i −0.515897 0.0469440i
\(407\) −2132.01 −0.259655
\(408\) 0 0
\(409\) −6273.70 10866.4i −0.758471 1.31371i −0.943630 0.331002i \(-0.892613\pi\)
0.185159 0.982709i \(-0.440720\pi\)
\(410\) 4145.27 + 7179.82i 0.499318 + 0.864844i
\(411\) 0 0
\(412\) 2629.08 0.314383
\(413\) −7707.95 + 10927.0i −0.918362 + 1.30190i
\(414\) 0 0
\(415\) 8889.47 15397.0i 1.05149 1.82123i
\(416\) 1019.62 + 1766.04i 0.120171 + 0.208142i
\(417\) 0 0
\(418\) 3387.07 5866.58i 0.396333 0.686469i
\(419\) 12631.5 1.47276 0.736381 0.676567i \(-0.236533\pi\)
0.736381 + 0.676567i \(0.236533\pi\)
\(420\) 0 0
\(421\) −3495.94 −0.404707 −0.202354 0.979312i \(-0.564859\pi\)
−0.202354 + 0.979312i \(0.564859\pi\)
\(422\) 3962.89 6863.92i 0.457134 0.791779i
\(423\) 0 0
\(424\) −3763.57 6518.69i −0.431073 0.746640i
\(425\) 2743.88 4752.53i 0.313171 0.542427i
\(426\) 0 0
\(427\) 12229.7 + 1112.84i 1.38603 + 0.126122i
\(428\) 7184.23 0.811362
\(429\) 0 0
\(430\) 2666.14 + 4617.89i 0.299006 + 0.517894i
\(431\) −1172.59 2030.99i −0.131048 0.226982i 0.793033 0.609179i \(-0.208501\pi\)
−0.924081 + 0.382197i \(0.875168\pi\)
\(432\) 0 0
\(433\) 3250.63 0.360774 0.180387 0.983596i \(-0.442265\pi\)
0.180387 + 0.983596i \(0.442265\pi\)
\(434\) −3086.67 6679.94i −0.341393 0.738819i
\(435\) 0 0
\(436\) −3893.28 + 6743.36i −0.427648 + 0.740708i
\(437\) 1067.39 + 1848.77i 0.116842 + 0.202377i
\(438\) 0 0
\(439\) −8120.24 + 14064.7i −0.882820 + 1.52909i −0.0346287 + 0.999400i \(0.511025\pi\)
−0.848192 + 0.529689i \(0.822308\pi\)
\(440\) −10470.0 −1.13440
\(441\) 0 0
\(442\) 1764.91 0.189928
\(443\) 2424.52 4199.39i 0.260028 0.450382i −0.706221 0.707991i \(-0.749602\pi\)
0.966249 + 0.257610i \(0.0829349\pi\)
\(444\) 0 0
\(445\) −5743.49 9948.01i −0.611837 1.05973i
\(446\) −5645.47 + 9778.23i −0.599373 + 1.03815i
\(447\) 0 0
\(448\) −3677.44 7958.46i −0.387819 0.839290i
\(449\) −4139.93 −0.435134 −0.217567 0.976045i \(-0.569812\pi\)
−0.217567 + 0.976045i \(0.569812\pi\)
\(450\) 0 0
\(451\) 4136.98 + 7165.46i 0.431935 + 0.748134i
\(452\) 4347.99 + 7530.94i 0.452461 + 0.783685i
\(453\) 0 0
\(454\) −813.110 −0.0840553
\(455\) −3566.49 324.532i −0.367471 0.0334380i
\(456\) 0 0
\(457\) −4616.24 + 7995.56i −0.472513 + 0.818417i −0.999505 0.0314531i \(-0.989987\pi\)
0.526992 + 0.849870i \(0.323320\pi\)
\(458\) 3937.04 + 6819.16i 0.401672 + 0.695717i
\(459\) 0 0
\(460\) 527.377 913.443i 0.0534545 0.0925859i
\(461\) 1274.90 0.128803 0.0644013 0.997924i \(-0.479486\pi\)
0.0644013 + 0.997924i \(0.479486\pi\)
\(462\) 0 0
\(463\) 2061.80 0.206955 0.103477 0.994632i \(-0.467003\pi\)
0.103477 + 0.994632i \(0.467003\pi\)
\(464\) −1099.86 + 1905.01i −0.110042 + 0.190599i
\(465\) 0 0
\(466\) −2612.85 4525.59i −0.259738 0.449879i
\(467\) 484.021 838.348i 0.0479610 0.0830710i −0.841048 0.540960i \(-0.818061\pi\)
0.889009 + 0.457889i \(0.151394\pi\)
\(468\) 0 0
\(469\) 6496.66 9209.84i 0.639633 0.906761i
\(470\) −15886.6 −1.55914
\(471\) 0 0
\(472\) 8742.29 + 15142.1i 0.852535 + 1.47663i
\(473\) 2660.81 + 4608.66i 0.258656 + 0.448005i
\(474\) 0 0
\(475\) −9420.39 −0.909973
\(476\) 4456.88 + 405.553i 0.429161 + 0.0390515i
\(477\) 0 0
\(478\) 5528.15 9575.03i 0.528978 0.916217i
\(479\) −3100.02 5369.40i −0.295707 0.512180i 0.679442 0.733729i \(-0.262222\pi\)
−0.975149 + 0.221549i \(0.928889\pi\)
\(480\) 0 0
\(481\) −476.760 + 825.772i −0.0451941 + 0.0782785i
\(482\) 4341.17 0.410238
\(483\) 0 0
\(484\) 1663.01 0.156181
\(485\) 6782.50 11747.6i 0.635005 1.09986i
\(486\) 0 0
\(487\) 4914.83 + 8512.74i 0.457315 + 0.792092i 0.998818 0.0486063i \(-0.0154780\pi\)
−0.541503 + 0.840699i \(0.682145\pi\)
\(488\) 8028.47 13905.7i 0.744738 1.28992i
\(489\) 0 0
\(490\) 10076.8 + 1849.19i 0.929030 + 0.170485i
\(491\) −5053.57 −0.464489 −0.232245 0.972657i \(-0.574607\pi\)
−0.232245 + 0.972657i \(0.574607\pi\)
\(492\) 0 0
\(493\) −3571.33 6185.73i −0.326257 0.565094i
\(494\) −1514.84 2623.77i −0.137967 0.238966i
\(495\) 0 0
\(496\) −3819.61 −0.345777
\(497\) 7584.49 + 16413.8i 0.684529 + 1.48141i
\(498\) 0 0
\(499\) −7030.82 + 12177.7i −0.630747 + 1.09249i 0.356652 + 0.934237i \(0.383918\pi\)
−0.987399 + 0.158249i \(0.949415\pi\)
\(500\) −1080.38 1871.28i −0.0966325 0.167372i
\(501\) 0 0
\(502\) −5887.64 + 10197.7i −0.523463 + 0.906664i
\(503\) 8001.67 0.709298 0.354649 0.934999i \(-0.384600\pi\)
0.354649 + 0.934999i \(0.384600\pi\)
\(504\) 0 0
\(505\) 6424.87 0.566144
\(506\) −593.794 + 1028.48i −0.0521687 + 0.0903589i
\(507\) 0 0
\(508\) −2476.27 4289.02i −0.216273 0.374596i
\(509\) 5456.91 9451.65i 0.475193 0.823059i −0.524403 0.851470i \(-0.675712\pi\)
0.999596 + 0.0284114i \(0.00904484\pi\)
\(510\) 0 0
\(511\) −2787.88 + 3952.18i −0.241348 + 0.342141i
\(512\) −6863.42 −0.592428
\(513\) 0 0
\(514\) 5135.49 + 8894.93i 0.440694 + 0.763304i
\(515\) 5072.08 + 8785.11i 0.433986 + 0.751686i
\(516\) 0 0
\(517\) −15854.8 −1.34873
\(518\) 1572.37 2229.04i 0.133371 0.189070i
\(519\) 0 0
\(520\) −2341.31 + 4055.26i −0.197448 + 0.341990i
\(521\) 7901.70 + 13686.1i 0.664452 + 1.15087i 0.979433 + 0.201767i \(0.0646685\pi\)
−0.314981 + 0.949098i \(0.601998\pi\)
\(522\) 0 0
\(523\) 323.047 559.534i 0.0270093 0.0467815i −0.852205 0.523208i \(-0.824735\pi\)
0.879214 + 0.476427i \(0.158068\pi\)
\(524\) −1724.81 −0.143795
\(525\) 0 0
\(526\) −1267.07 −0.105032
\(527\) 6201.31 10741.0i 0.512587 0.887827i
\(528\) 0 0
\(529\) 5896.37 + 10212.8i 0.484620 + 0.839387i
\(530\) 4642.14 8040.41i 0.380456 0.658968i
\(531\) 0 0
\(532\) −3222.48 6973.86i −0.262617 0.568337i
\(533\) 3700.45 0.300721
\(534\) 0 0
\(535\) 13860.0 + 24006.2i 1.12004 + 1.93996i
\(536\) −7368.45 12762.5i −0.593785 1.02847i
\(537\) 0 0
\(538\) 1635.05 0.131026
\(539\) 10056.7 + 1845.49i 0.803658 + 0.147479i
\(540\) 0 0
\(541\) −5123.33 + 8873.86i −0.407152 + 0.705207i −0.994569 0.104077i \(-0.966811\pi\)
0.587418 + 0.809284i \(0.300145\pi\)
\(542\) −3876.68 6714.61i −0.307228 0.532135i
\(543\) 0 0
\(544\) 4916.34 8515.36i 0.387475 0.671127i
\(545\) −30044.0 −2.36137
\(546\) 0 0
\(547\) 4368.98 0.341506 0.170753 0.985314i \(-0.445380\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(548\) −2504.95 + 4338.70i −0.195267 + 0.338212i
\(549\) 0 0
\(550\) −2620.31 4538.50i −0.203146 0.351859i
\(551\) −6130.63 + 10618.6i −0.473999 + 0.820990i
\(552\) 0 0
\(553\) 22799.6 + 2074.65i 1.75323 + 0.159535i
\(554\) −6582.82 −0.504833
\(555\) 0 0
\(556\) −764.656 1324.42i −0.0583249 0.101022i
\(557\) 4198.21 + 7271.52i 0.319361 + 0.553149i 0.980355 0.197242i \(-0.0631984\pi\)
−0.660994 + 0.750391i \(0.729865\pi\)
\(558\) 0 0
\(559\) 2380.04 0.180081
\(560\) 3065.35 4345.52i 0.231312 0.327914i
\(561\) 0 0
\(562\) −6409.90 + 11102.3i −0.481113 + 0.833312i
\(563\) −6071.13 10515.5i −0.454472 0.787169i 0.544186 0.838965i \(-0.316839\pi\)
−0.998658 + 0.0517962i \(0.983505\pi\)
\(564\) 0 0
\(565\) −16776.5 + 29057.7i −1.24919 + 2.16366i
\(566\) −7655.66 −0.568536
\(567\) 0 0
\(568\) 23642.3 1.74649
\(569\) −5598.06 + 9696.12i −0.412448 + 0.714381i −0.995157 0.0983003i \(-0.968659\pi\)
0.582709 + 0.812681i \(0.301993\pi\)
\(570\) 0 0
\(571\) −9829.79 17025.7i −0.720427 1.24782i −0.960829 0.277143i \(-0.910612\pi\)
0.240402 0.970674i \(-0.422721\pi\)
\(572\) −746.955 + 1293.76i −0.0546010 + 0.0945717i
\(573\) 0 0
\(574\) −10542.6 959.324i −0.766621 0.0697586i
\(575\) 1651.51 0.119778
\(576\) 0 0
\(577\) −4258.23 7375.46i −0.307231 0.532140i 0.670525 0.741887i \(-0.266069\pi\)
−0.977756 + 0.209748i \(0.932736\pi\)
\(578\) 803.863 + 1392.33i 0.0578482 + 0.100196i
\(579\) 0 0
\(580\) 6058.05 0.433702
\(581\) 9522.62 + 20608.2i 0.679974 + 1.47155i
\(582\) 0 0
\(583\) 4632.85 8024.33i 0.329113 0.570041i
\(584\) 3161.99 + 5476.73i 0.224048 + 0.388063i
\(585\) 0 0
\(586\) −6582.28 + 11400.8i −0.464013 + 0.803694i
\(587\) −7115.53 −0.500323 −0.250161 0.968204i \(-0.580484\pi\)
−0.250161 + 0.968204i \(0.580484\pi\)
\(588\) 0 0
\(589\) −21290.6 −1.48941
\(590\) −10783.1 + 18676.9i −0.752428 + 1.30324i
\(591\) 0 0
\(592\) −707.958 1226.22i −0.0491502 0.0851306i
\(593\) −3072.24 + 5321.28i −0.212752 + 0.368497i −0.952575 0.304305i \(-0.901576\pi\)
0.739823 + 0.672802i \(0.234909\pi\)
\(594\) 0 0
\(595\) 7243.15 + 15675.1i 0.499059 + 1.08003i
\(596\) −1637.15 −0.112517
\(597\) 0 0
\(598\) 265.569 + 459.979i 0.0181604 + 0.0314547i
\(599\) −4789.20 8295.13i −0.326680 0.565826i 0.655171 0.755481i \(-0.272597\pi\)
−0.981851 + 0.189654i \(0.939263\pi\)
\(600\) 0 0
\(601\) −19113.8 −1.29728 −0.648642 0.761094i \(-0.724663\pi\)
−0.648642 + 0.761094i \(0.724663\pi\)
\(602\) −6780.77 617.015i −0.459076 0.0417735i
\(603\) 0 0
\(604\) −3693.90 + 6398.02i −0.248845 + 0.431013i
\(605\) 3208.32 + 5556.98i 0.215598 + 0.373427i
\(606\) 0 0
\(607\) −10221.3 + 17703.9i −0.683477 + 1.18382i 0.290435 + 0.956895i \(0.406200\pi\)
−0.973913 + 0.226923i \(0.927134\pi\)
\(608\) −16879.0 −1.12588
\(609\) 0 0
\(610\) 19805.3 1.31458
\(611\) −3545.46 + 6140.92i −0.234753 + 0.406604i
\(612\) 0 0
\(613\) −8711.37 15088.5i −0.573978 0.994160i −0.996152 0.0876447i \(-0.972066\pi\)
0.422173 0.906515i \(-0.361267\pi\)
\(614\) −967.130 + 1675.12i −0.0635671 + 0.110101i
\(615\) 0 0
\(616\) 7706.27 10924.6i 0.504049 0.714554i
\(617\) −1805.17 −0.117785 −0.0588926 0.998264i \(-0.518757\pi\)
−0.0588926 + 0.998264i \(0.518757\pi\)
\(618\) 0 0
\(619\) −4071.12 7051.38i −0.264349 0.457866i 0.703044 0.711146i \(-0.251824\pi\)
−0.967393 + 0.253281i \(0.918490\pi\)
\(620\) 5259.64 + 9109.97i 0.340697 + 0.590105i
\(621\) 0 0
\(622\) 5666.55 0.365286
\(623\) 14607.4 + 1329.19i 0.939376 + 0.0854783i
\(624\) 0 0
\(625\) 9504.14 16461.7i 0.608265 1.05355i
\(626\) 656.007 + 1136.24i 0.0418839 + 0.0725451i
\(627\) 0 0
\(628\) 1562.79 2706.84i 0.0993029 0.171998i
\(629\) 4597.61 0.291445
\(630\) 0 0
\(631\) 3630.07 0.229019 0.114509 0.993422i \(-0.463470\pi\)
0.114509 + 0.993422i \(0.463470\pi\)
\(632\) 14967.4 25924.2i 0.942040 1.63166i
\(633\) 0 0
\(634\) −2957.43 5122.42i −0.185260 0.320879i
\(635\) 9554.54 16548.9i 0.597103 1.03421i
\(636\) 0 0
\(637\) 2963.68 3482.48i 0.184341 0.216611i
\(638\) −6821.00 −0.423270
\(639\) 0 0
\(640\) 1804.51 + 3125.50i 0.111452 + 0.193041i
\(641\) −11111.8 19246.2i −0.684696 1.18593i −0.973532 0.228550i \(-0.926602\pi\)
0.288836 0.957379i \(-0.406732\pi\)
\(642\) 0 0
\(643\) −5013.00 −0.307455 −0.153727 0.988113i \(-0.549128\pi\)
−0.153727 + 0.988113i \(0.549128\pi\)
\(644\) 564.939 + 1222.60i 0.0345679 + 0.0748093i
\(645\) 0 0
\(646\) −7304.13 + 12651.1i −0.444856 + 0.770514i
\(647\) −3858.08 6682.39i −0.234431 0.406046i 0.724676 0.689090i \(-0.241989\pi\)
−0.959107 + 0.283043i \(0.908656\pi\)
\(648\) 0 0
\(649\) −10761.5 + 18639.5i −0.650889 + 1.12737i
\(650\) −2343.82 −0.141434
\(651\) 0 0
\(652\) 4421.10 0.265558
\(653\) 2822.20 4888.20i 0.169129 0.292940i −0.768985 0.639267i \(-0.779238\pi\)
0.938114 + 0.346327i \(0.112571\pi\)
\(654\) 0 0
\(655\) −3327.54 5763.46i −0.198500 0.343812i
\(656\) −2747.47 + 4758.75i −0.163522 + 0.283229i
\(657\) 0 0
\(658\) 11693.1 16576.4i 0.692770 0.982090i
\(659\) 8812.27 0.520906 0.260453 0.965487i \(-0.416128\pi\)
0.260453 + 0.965487i \(0.416128\pi\)
\(660\) 0 0
\(661\) 3095.51 + 5361.58i 0.182150 + 0.315493i 0.942613 0.333889i \(-0.108361\pi\)
−0.760462 + 0.649382i \(0.775028\pi\)
\(662\) 6583.35 + 11402.7i 0.386510 + 0.669454i
\(663\) 0 0
\(664\) 29683.8 1.73487
\(665\) 17086.3 24222.1i 0.996360 1.41247i
\(666\) 0 0
\(667\) 1074.77 1861.56i 0.0623918 0.108066i
\(668\) −3146.86 5450.53i −0.182269 0.315699i
\(669\) 0 0
\(670\) 9088.54 15741.8i 0.524061 0.907701i
\(671\) 19765.7 1.13718
\(672\) 0 0
\(673\) 29580.7 1.69428 0.847141 0.531368i \(-0.178322\pi\)
0.847141 + 0.531368i \(0.178322\pi\)
\(674\) 12466.9 21593.3i 0.712474 1.23404i
\(675\) 0 0
\(676\) −3795.25 6573.57i −0.215934 0.374008i
\(677\) −13145.0 + 22767.8i −0.746239 + 1.29252i 0.203374 + 0.979101i \(0.434809\pi\)
−0.949613 + 0.313423i \(0.898524\pi\)
\(678\) 0 0
\(679\) 7265.58 + 15723.6i 0.410644 + 0.888686i
\(680\) 22578.3 1.27329
\(681\) 0 0
\(682\) −5922.04 10257.3i −0.332502 0.575911i
\(683\) 405.342 + 702.073i 0.0227086 + 0.0393325i 0.877156 0.480205i \(-0.159438\pi\)
−0.854448 + 0.519537i \(0.826104\pi\)
\(684\) 0 0
\(685\) −19330.4 −1.07821
\(686\) −9346.36 + 9153.31i −0.520183 + 0.509439i
\(687\) 0 0
\(688\) −1767.11 + 3060.72i −0.0979220 + 0.169606i
\(689\) −2072.00 3588.81i −0.114567 0.198436i
\(690\) 0 0
\(691\) −585.690 + 1014.45i −0.0322442 + 0.0558485i −0.881697 0.471816i \(-0.843599\pi\)
0.849453 + 0.527664i \(0.176932\pi\)
\(692\) 5386.42 0.295897
\(693\) 0 0
\(694\) −5581.14 −0.305269
\(695\) 2950.38 5110.21i 0.161028 0.278908i
\(696\) 0 0
\(697\) −8921.28 15452.1i −0.484817 0.839728i
\(698\) 1210.10 2095.95i 0.0656201 0.113657i
\(699\) 0 0
\(700\) −5918.79 538.579i −0.319585 0.0290805i
\(701\) −1057.70 −0.0569885 −0.0284943 0.999594i \(-0.509071\pi\)
−0.0284943 + 0.999594i \(0.509071\pi\)
\(702\) 0 0
\(703\) −3946.18 6834.98i −0.211711 0.366694i
\(704\) −7055.49 12220.5i −0.377719 0.654228i
\(705\) 0 0
\(706\) −10866.0 −0.579245
\(707\) −4728.92 + 6703.84i −0.251555 + 0.356611i
\(708\) 0 0
\(709\) 14621.9 25325.8i 0.774521 1.34151i −0.160542 0.987029i \(-0.551324\pi\)
0.935063 0.354481i \(-0.115343\pi\)
\(710\) 14580.7 + 25254.5i 0.770708 + 1.33491i
\(711\) 0 0
\(712\) 9589.34 16609.2i 0.504741 0.874238i
\(713\) 3732.50 0.196049
\(714\) 0 0
\(715\) −5764.17 −0.301493
\(716\) 2245.15 3888.72i 0.117186 0.202972i
\(717\) 0 0
\(718\) −11621.5 20129.0i −0.604054 1.04625i
\(719\) −12278.9 + 21267.6i −0.636890 + 1.10313i 0.349221 + 0.937040i \(0.386446\pi\)
−0.986111 + 0.166086i \(0.946887\pi\)
\(720\) 0 0
\(721\) −12899.8 1173.81i −0.666315 0.0606312i
\(722\) 10951.7 0.564516
\(723\) 0 0
\(724\) 1393.53 + 2413.66i 0.0715331 + 0.123899i
\(725\) 4742.77 + 8214.72i 0.242955 + 0.420810i
\(726\) 0 0
\(727\) −23444.2 −1.19601 −0.598003 0.801494i \(-0.704039\pi\)
−0.598003 + 0.801494i \(0.704039\pi\)
\(728\) −2508.06 5427.77i −0.127685 0.276328i
\(729\) 0 0
\(730\) −3900.13 + 6755.22i −0.197740 + 0.342496i
\(731\) −5737.96 9938.44i −0.290323 0.502854i
\(732\) 0 0
\(733\) 17985.6 31152.0i 0.906296 1.56975i 0.0871278 0.996197i \(-0.472231\pi\)
0.819168 0.573553i \(-0.194436\pi\)
\(734\) 15584.4 0.783692
\(735\) 0 0
\(736\) 2959.09 0.148198
\(737\) 9070.37 15710.3i 0.453340 0.785207i
\(738\) 0 0
\(739\) −6034.31 10451.7i −0.300373 0.520261i 0.675848 0.737041i \(-0.263778\pi\)
−0.976220 + 0.216780i \(0.930444\pi\)
\(740\) −1949.73 + 3377.03i −0.0968561 + 0.167760i
\(741\) 0 0
\(742\) 4972.77 + 10761.7i 0.246032 + 0.532446i
\(743\) −5475.09 −0.270339 −0.135169 0.990823i \(-0.543158\pi\)
−0.135169 + 0.990823i \(0.543158\pi\)
\(744\) 0 0
\(745\) −3158.43 5470.56i −0.155323 0.269028i
\(746\) 6697.00 + 11599.5i 0.328679 + 0.569289i
\(747\) 0 0
\(748\) 7203.23 0.352107
\(749\) −35250.0 3207.56i −1.71963 0.156478i
\(750\) 0 0
\(751\) −12637.3 + 21888.4i −0.614036 + 1.06354i 0.376517 + 0.926410i \(0.377122\pi\)
−0.990553 + 0.137132i \(0.956212\pi\)
\(752\) −5264.79 9118.88i −0.255302 0.442196i
\(753\) 0 0
\(754\) −1525.31 + 2641.92i −0.0736720 + 0.127604i
\(755\) −28505.4 −1.37406
\(756\) 0 0
\(757\) −23583.7 −1.13232 −0.566159 0.824296i \(-0.691571\pi\)
−0.566159 + 0.824296i \(0.691571\pi\)
\(758\) −11093.6 + 19214.6i −0.531578 + 0.920720i
\(759\) 0 0
\(760\) −19379.2 33565.7i −0.924942 1.60205i
\(761\) 8101.35 14032.0i 0.385905 0.668407i −0.605989 0.795473i \(-0.707223\pi\)
0.991894 + 0.127066i \(0.0405559\pi\)
\(762\) 0 0
\(763\) 22113.4 31348.5i 1.04922 1.48741i
\(764\) −14675.3 −0.694939
\(765\) 0 0
\(766\) −6555.06 11353.7i −0.309196 0.535543i
\(767\) 4812.99 + 8336.34i 0.226580 + 0.392448i
\(768\) 0 0
\(769\) −18603.1 −0.872362 −0.436181 0.899859i \(-0.643669\pi\)
−0.436181 + 0.899859i \(0.643669\pi\)
\(770\) 16422.2 + 1494.33i 0.768590 + 0.0699377i
\(771\) 0 0
\(772\) 3329.12 5766.20i 0.155204 0.268821i
\(773\) −13640.7 23626.3i −0.634697 1.09933i −0.986579 0.163283i \(-0.947792\pi\)
0.351883 0.936044i \(-0.385542\pi\)
\(774\) 0 0
\(775\) −8235.42 + 14264.2i −0.381709 + 0.661140i
\(776\) 22648.2 1.04771
\(777\) 0 0
\(778\) 12157.3 0.560231
\(779\) −15314.5 + 26525.4i −0.704361 + 1.21999i
\(780\)