Properties

Label 189.4.e.e.163.1
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 40x^{10} + 1147x^{8} + 15564x^{6} + 154089x^{4} + 578934x^{2} + 1633284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(2.35377 + 4.07684i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.e.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.35377 + 4.07684i) q^{2} +(-7.08042 - 12.2637i) q^{4} +(-0.415227 + 0.719194i) q^{5} +(16.4314 - 8.54463i) q^{7} +29.0024 q^{8} +O(q^{10})\) \(q+(-2.35377 + 4.07684i) q^{2} +(-7.08042 - 12.2637i) q^{4} +(-0.415227 + 0.719194i) q^{5} +(16.4314 - 8.54463i) q^{7} +29.0024 q^{8} +(-1.95469 - 3.38563i) q^{10} +(34.1251 + 59.1065i) q^{11} -35.7721 q^{13} +(-3.84045 + 87.1001i) q^{14} +(-11.6214 + 20.1289i) q^{16} +(-7.33893 - 12.7114i) q^{17} +(-43.3847 + 75.1445i) q^{19} +11.7599 q^{20} -321.290 q^{22} +(-29.2043 + 50.5834i) q^{23} +(62.1552 + 107.656i) q^{25} +(84.1991 - 145.837i) q^{26} +(-221.129 - 141.009i) q^{28} -67.1398 q^{29} +(34.7501 + 60.1889i) q^{31} +(61.3013 + 106.177i) q^{32} +69.0965 q^{34} +(-0.677492 + 15.3653i) q^{35} +(144.620 - 250.489i) q^{37} +(-204.235 - 353.745i) q^{38} +(-12.0426 + 20.8583i) q^{40} -357.750 q^{41} -235.801 q^{43} +(483.241 - 836.998i) q^{44} +(-137.480 - 238.123i) q^{46} +(-225.034 + 389.769i) q^{47} +(196.979 - 280.800i) q^{49} -585.195 q^{50} +(253.282 + 438.697i) q^{52} +(-86.2322 - 149.358i) q^{53} -56.6787 q^{55} +(476.548 - 247.815i) q^{56} +(158.031 - 273.718i) q^{58} +(222.928 + 386.123i) q^{59} +(-238.157 + 412.500i) q^{61} -327.174 q^{62} -763.099 q^{64} +(14.8535 - 25.7271i) q^{65} +(402.160 + 696.562i) q^{67} +(-103.925 + 180.004i) q^{68} +(-61.0471 - 38.9283i) q^{70} +353.412 q^{71} +(389.023 + 673.807i) q^{73} +(680.803 + 1179.19i) q^{74} +1228.73 q^{76} +(1065.77 + 679.613i) q^{77} +(37.0998 - 64.2587i) q^{79} +(-9.65105 - 16.7161i) q^{80} +(842.059 - 1458.49i) q^{82} -1168.49 q^{83} +12.1893 q^{85} +(555.020 - 961.324i) q^{86} +(989.711 + 1714.23i) q^{88} +(-757.361 + 1311.79i) q^{89} +(-587.784 + 305.659i) q^{91} +827.116 q^{92} +(-1059.35 - 1834.85i) q^{94} +(-36.0289 - 62.4039i) q^{95} +1631.46 q^{97} +(681.134 + 1463.99i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 32 q^{4} - 26 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 32 q^{4} - 26 q^{7} + 20 q^{10} + 104 q^{13} + 148 q^{16} + 62 q^{19} - 712 q^{22} + 46 q^{25} - 348 q^{28} + 82 q^{31} + 840 q^{34} + 1132 q^{37} + 444 q^{40} - 3132 q^{43} + 888 q^{46} + 366 q^{49} + 72 q^{52} + 448 q^{55} - 4 q^{58} - 886 q^{61} - 1848 q^{64} + 2084 q^{67} - 4460 q^{70} + 2398 q^{73} + 6408 q^{76} - 984 q^{79} + 3892 q^{82} - 7200 q^{85} + 5796 q^{88} - 6492 q^{91} - 2772 q^{94} - 1364 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.35377 + 4.07684i −0.832182 + 1.44138i 0.0641227 + 0.997942i \(0.479575\pi\)
−0.896304 + 0.443439i \(0.853758\pi\)
\(3\) 0 0
\(4\) −7.08042 12.2637i −0.885053 1.53296i
\(5\) −0.415227 + 0.719194i −0.0371390 + 0.0643266i −0.883997 0.467492i \(-0.845158\pi\)
0.846858 + 0.531818i \(0.178491\pi\)
\(6\) 0 0
\(7\) 16.4314 8.54463i 0.887210 0.461367i
\(8\) 29.0024 1.28174
\(9\) 0 0
\(10\) −1.95469 3.38563i −0.0618128 0.107063i
\(11\) 34.1251 + 59.1065i 0.935374 + 1.62012i 0.773965 + 0.633229i \(0.218271\pi\)
0.161410 + 0.986887i \(0.448396\pi\)
\(12\) 0 0
\(13\) −35.7721 −0.763184 −0.381592 0.924331i \(-0.624624\pi\)
−0.381592 + 0.924331i \(0.624624\pi\)
\(14\) −3.84045 + 87.1001i −0.0733146 + 1.66275i
\(15\) 0 0
\(16\) −11.6214 + 20.1289i −0.181585 + 0.314514i
\(17\) −7.33893 12.7114i −0.104703 0.181351i 0.808914 0.587927i \(-0.200056\pi\)
−0.913617 + 0.406576i \(0.866723\pi\)
\(18\) 0 0
\(19\) −43.3847 + 75.1445i −0.523849 + 0.907333i 0.475766 + 0.879572i \(0.342171\pi\)
−0.999615 + 0.0277607i \(0.991162\pi\)
\(20\) 11.7599 0.131480
\(21\) 0 0
\(22\) −321.290 −3.11361
\(23\) −29.2043 + 50.5834i −0.264762 + 0.458581i −0.967501 0.252866i \(-0.918627\pi\)
0.702739 + 0.711447i \(0.251960\pi\)
\(24\) 0 0
\(25\) 62.1552 + 107.656i 0.497241 + 0.861247i
\(26\) 84.1991 145.837i 0.635108 1.10004i
\(27\) 0 0
\(28\) −221.129 141.009i −1.49248 0.951720i
\(29\) −67.1398 −0.429915 −0.214958 0.976623i \(-0.568961\pi\)
−0.214958 + 0.976623i \(0.568961\pi\)
\(30\) 0 0
\(31\) 34.7501 + 60.1889i 0.201332 + 0.348718i 0.948958 0.315403i \(-0.102140\pi\)
−0.747626 + 0.664120i \(0.768806\pi\)
\(32\) 61.3013 + 106.177i 0.338645 + 0.586551i
\(33\) 0 0
\(34\) 69.0965 0.348528
\(35\) −0.677492 + 15.3653i −0.00327192 + 0.0742059i
\(36\) 0 0
\(37\) 144.620 250.489i 0.642578 1.11298i −0.342277 0.939599i \(-0.611198\pi\)
0.984855 0.173379i \(-0.0554685\pi\)
\(38\) −204.235 353.745i −0.871875 1.51013i
\(39\) 0 0
\(40\) −12.0426 + 20.8583i −0.0476024 + 0.0824498i
\(41\) −357.750 −1.36271 −0.681355 0.731953i \(-0.738609\pi\)
−0.681355 + 0.731953i \(0.738609\pi\)
\(42\) 0 0
\(43\) −235.801 −0.836263 −0.418132 0.908386i \(-0.637315\pi\)
−0.418132 + 0.908386i \(0.637315\pi\)
\(44\) 483.241 836.998i 1.65571 2.86778i
\(45\) 0 0
\(46\) −137.480 238.123i −0.440660 0.763246i
\(47\) −225.034 + 389.769i −0.698394 + 1.20965i 0.270629 + 0.962684i \(0.412768\pi\)
−0.969023 + 0.246970i \(0.920565\pi\)
\(48\) 0 0
\(49\) 196.979 280.800i 0.574282 0.818658i
\(50\) −585.195 −1.65518
\(51\) 0 0
\(52\) 253.282 + 438.697i 0.675458 + 1.16993i
\(53\) −86.2322 149.358i −0.223489 0.387094i 0.732376 0.680900i \(-0.238411\pi\)
−0.955865 + 0.293806i \(0.905078\pi\)
\(54\) 0 0
\(55\) −56.6787 −0.138955
\(56\) 476.548 247.815i 1.13717 0.591350i
\(57\) 0 0
\(58\) 158.031 273.718i 0.357768 0.619672i
\(59\) 222.928 + 386.123i 0.491912 + 0.852016i 0.999957 0.00931467i \(-0.00296499\pi\)
−0.508045 + 0.861330i \(0.669632\pi\)
\(60\) 0 0
\(61\) −238.157 + 412.500i −0.499883 + 0.865823i −1.00000 0.000134725i \(-0.999957\pi\)
0.500117 + 0.865958i \(0.333290\pi\)
\(62\) −327.174 −0.670180
\(63\) 0 0
\(64\) −763.099 −1.49043
\(65\) 14.8535 25.7271i 0.0283439 0.0490931i
\(66\) 0 0
\(67\) 402.160 + 696.562i 0.733309 + 1.27013i 0.955461 + 0.295116i \(0.0953583\pi\)
−0.222153 + 0.975012i \(0.571308\pi\)
\(68\) −103.925 + 180.004i −0.185336 + 0.321011i
\(69\) 0 0
\(70\) −61.0471 38.9283i −0.104236 0.0664689i
\(71\) 353.412 0.590737 0.295368 0.955383i \(-0.404558\pi\)
0.295368 + 0.955383i \(0.404558\pi\)
\(72\) 0 0
\(73\) 389.023 + 673.807i 0.623721 + 1.08032i 0.988787 + 0.149335i \(0.0477133\pi\)
−0.365065 + 0.930982i \(0.618953\pi\)
\(74\) 680.803 + 1179.19i 1.06948 + 1.85240i
\(75\) 0 0
\(76\) 1228.73 1.85454
\(77\) 1065.77 + 679.613i 1.57734 + 1.00583i
\(78\) 0 0
\(79\) 37.0998 64.2587i 0.0528361 0.0915149i −0.838398 0.545059i \(-0.816507\pi\)
0.891234 + 0.453544i \(0.149841\pi\)
\(80\) −9.65105 16.7161i −0.0134878 0.0233615i
\(81\) 0 0
\(82\) 842.059 1458.49i 1.13402 1.96418i
\(83\) −1168.49 −1.54529 −0.772643 0.634840i \(-0.781066\pi\)
−0.772643 + 0.634840i \(0.781066\pi\)
\(84\) 0 0
\(85\) 12.1893 0.0155543
\(86\) 555.020 961.324i 0.695923 1.20537i
\(87\) 0 0
\(88\) 989.711 + 1714.23i 1.19890 + 2.07656i
\(89\) −757.361 + 1311.79i −0.902023 + 1.56235i −0.0771598 + 0.997019i \(0.524585\pi\)
−0.824864 + 0.565332i \(0.808748\pi\)
\(90\) 0 0
\(91\) −587.784 + 305.659i −0.677104 + 0.352108i
\(92\) 827.116 0.937313
\(93\) 0 0
\(94\) −1059.35 1834.85i −1.16238 2.01330i
\(95\) −36.0289 62.4039i −0.0389104 0.0673948i
\(96\) 0 0
\(97\) 1631.46 1.70772 0.853862 0.520499i \(-0.174254\pi\)
0.853862 + 0.520499i \(0.174254\pi\)
\(98\) 681.134 + 1463.99i 0.702091 + 1.50903i
\(99\) 0 0
\(100\) 880.170 1524.50i 0.880170 1.52450i
\(101\) −602.865 1044.19i −0.593934 1.02872i −0.993696 0.112105i \(-0.964241\pi\)
0.399762 0.916619i \(-0.369093\pi\)
\(102\) 0 0
\(103\) 242.681 420.336i 0.232156 0.402106i −0.726286 0.687392i \(-0.758755\pi\)
0.958442 + 0.285286i \(0.0920886\pi\)
\(104\) −1037.48 −0.978201
\(105\) 0 0
\(106\) 811.881 0.743933
\(107\) 129.050 223.522i 0.116596 0.201950i −0.801821 0.597565i \(-0.796135\pi\)
0.918417 + 0.395615i \(0.129468\pi\)
\(108\) 0 0
\(109\) −290.623 503.374i −0.255382 0.442335i 0.709617 0.704587i \(-0.248868\pi\)
−0.964999 + 0.262253i \(0.915535\pi\)
\(110\) 133.408 231.070i 0.115636 0.200288i
\(111\) 0 0
\(112\) −18.9618 + 430.046i −0.0159975 + 0.362817i
\(113\) 708.244 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(114\) 0 0
\(115\) −24.2528 42.0071i −0.0196660 0.0340625i
\(116\) 475.378 + 823.379i 0.380498 + 0.659042i
\(117\) 0 0
\(118\) −2098.88 −1.63744
\(119\) −229.203 146.157i −0.176563 0.112590i
\(120\) 0 0
\(121\) −1663.55 + 2881.36i −1.24985 + 2.16481i
\(122\) −1121.13 1941.86i −0.831988 1.44104i
\(123\) 0 0
\(124\) 492.091 852.326i 0.356380 0.617267i
\(125\) −207.041 −0.148146
\(126\) 0 0
\(127\) 2348.04 1.64059 0.820296 0.571939i \(-0.193809\pi\)
0.820296 + 0.571939i \(0.193809\pi\)
\(128\) 1305.74 2261.62i 0.901661 1.56172i
\(129\) 0 0
\(130\) 69.9234 + 121.111i 0.0471745 + 0.0817087i
\(131\) 1202.91 2083.50i 0.802279 1.38959i −0.115834 0.993269i \(-0.536954\pi\)
0.918113 0.396320i \(-0.129713\pi\)
\(132\) 0 0
\(133\) −70.7873 + 1605.43i −0.0461507 + 1.04668i
\(134\) −3786.36 −2.44098
\(135\) 0 0
\(136\) −212.846 368.661i −0.134202 0.232444i
\(137\) 593.775 + 1028.45i 0.370289 + 0.641360i 0.989610 0.143778i \(-0.0459252\pi\)
−0.619320 + 0.785138i \(0.712592\pi\)
\(138\) 0 0
\(139\) −712.439 −0.434736 −0.217368 0.976090i \(-0.569747\pi\)
−0.217368 + 0.976090i \(0.569747\pi\)
\(140\) 193.231 100.484i 0.116650 0.0606604i
\(141\) 0 0
\(142\) −831.849 + 1440.81i −0.491600 + 0.851477i
\(143\) −1220.73 2114.36i −0.713863 1.23645i
\(144\) 0 0
\(145\) 27.8782 48.2865i 0.0159666 0.0276550i
\(146\) −3662.67 −2.07620
\(147\) 0 0
\(148\) −4095.89 −2.27486
\(149\) 1104.62 1913.26i 0.607342 1.05195i −0.384335 0.923194i \(-0.625569\pi\)
0.991677 0.128753i \(-0.0410975\pi\)
\(150\) 0 0
\(151\) 273.491 + 473.701i 0.147394 + 0.255293i 0.930263 0.366892i \(-0.119578\pi\)
−0.782870 + 0.622185i \(0.786245\pi\)
\(152\) −1258.26 + 2179.37i −0.671436 + 1.16296i
\(153\) 0 0
\(154\) −5279.24 + 2745.31i −2.76242 + 1.43651i
\(155\) −57.7166 −0.0299091
\(156\) 0 0
\(157\) −935.096 1619.63i −0.475343 0.823318i 0.524258 0.851559i \(-0.324343\pi\)
−0.999601 + 0.0282414i \(0.991009\pi\)
\(158\) 174.648 + 302.500i 0.0879385 + 0.152314i
\(159\) 0 0
\(160\) −101.816 −0.0503078
\(161\) −47.6504 + 1080.69i −0.0233253 + 0.529010i
\(162\) 0 0
\(163\) 1518.70 2630.46i 0.729777 1.26401i −0.227200 0.973848i \(-0.572957\pi\)
0.956977 0.290163i \(-0.0937096\pi\)
\(164\) 2533.02 + 4387.32i 1.20607 + 2.08898i
\(165\) 0 0
\(166\) 2750.36 4763.76i 1.28596 2.22735i
\(167\) 2967.09 1.37485 0.687426 0.726255i \(-0.258741\pi\)
0.687426 + 0.726255i \(0.258741\pi\)
\(168\) 0 0
\(169\) −917.358 −0.417550
\(170\) −28.6907 + 49.6937i −0.0129440 + 0.0224196i
\(171\) 0 0
\(172\) 1669.57 + 2891.78i 0.740138 + 1.28196i
\(173\) 1933.41 3348.76i 0.849677 1.47168i −0.0318190 0.999494i \(-0.510130\pi\)
0.881496 0.472191i \(-0.156537\pi\)
\(174\) 0 0
\(175\) 1941.17 + 1237.84i 0.838508 + 0.534696i
\(176\) −1586.33 −0.679399
\(177\) 0 0
\(178\) −3565.30 6175.28i −1.50129 2.60032i
\(179\) −167.363 289.881i −0.0698844 0.121043i 0.828966 0.559299i \(-0.188930\pi\)
−0.898850 + 0.438256i \(0.855596\pi\)
\(180\) 0 0
\(181\) −1564.56 −0.642502 −0.321251 0.946994i \(-0.604103\pi\)
−0.321251 + 0.946994i \(0.604103\pi\)
\(182\) 137.381 3115.75i 0.0559525 1.26898i
\(183\) 0 0
\(184\) −846.995 + 1467.04i −0.339355 + 0.587780i
\(185\) 120.100 + 208.020i 0.0477294 + 0.0826698i
\(186\) 0 0
\(187\) 500.884 867.557i 0.195873 0.339262i
\(188\) 6373.33 2.47246
\(189\) 0 0
\(190\) 339.215 0.129522
\(191\) −1533.57 + 2656.22i −0.580971 + 1.00627i 0.414394 + 0.910098i \(0.363994\pi\)
−0.995365 + 0.0961730i \(0.969340\pi\)
\(192\) 0 0
\(193\) 1111.80 + 1925.69i 0.414658 + 0.718209i 0.995392 0.0958843i \(-0.0305679\pi\)
−0.580734 + 0.814093i \(0.697235\pi\)
\(194\) −3840.07 + 6651.19i −1.42114 + 2.46148i
\(195\) 0 0
\(196\) −4838.32 427.498i −1.76324 0.155794i
\(197\) 1856.18 0.671306 0.335653 0.941986i \(-0.391043\pi\)
0.335653 + 0.941986i \(0.391043\pi\)
\(198\) 0 0
\(199\) 496.801 + 860.485i 0.176971 + 0.306523i 0.940842 0.338846i \(-0.110037\pi\)
−0.763870 + 0.645370i \(0.776703\pi\)
\(200\) 1802.65 + 3122.28i 0.637333 + 1.10389i
\(201\) 0 0
\(202\) 5676.02 1.97704
\(203\) −1103.20 + 573.684i −0.381425 + 0.198349i
\(204\) 0 0
\(205\) 148.547 257.291i 0.0506097 0.0876585i
\(206\) 1142.43 + 1978.75i 0.386392 + 0.669251i
\(207\) 0 0
\(208\) 415.723 720.053i 0.138583 0.240032i
\(209\) −5922.03 −1.95998
\(210\) 0 0
\(211\) −545.079 −0.177843 −0.0889213 0.996039i \(-0.528342\pi\)
−0.0889213 + 0.996039i \(0.528342\pi\)
\(212\) −1221.12 + 2115.04i −0.395599 + 0.685197i
\(213\) 0 0
\(214\) 607.509 + 1052.24i 0.194058 + 0.336118i
\(215\) 97.9109 169.587i 0.0310580 0.0537940i
\(216\) 0 0
\(217\) 1085.28 + 692.059i 0.339511 + 0.216498i
\(218\) 2736.23 0.850097
\(219\) 0 0
\(220\) 401.309 + 695.088i 0.122983 + 0.213013i
\(221\) 262.529 + 454.713i 0.0799077 + 0.138404i
\(222\) 0 0
\(223\) −3446.72 −1.03502 −0.517510 0.855677i \(-0.673141\pi\)
−0.517510 + 0.855677i \(0.673141\pi\)
\(224\) 1914.51 + 1220.83i 0.571064 + 0.364154i
\(225\) 0 0
\(226\) −1667.04 + 2887.40i −0.490663 + 0.849853i
\(227\) 243.149 + 421.146i 0.0710940 + 0.123138i 0.899381 0.437166i \(-0.144018\pi\)
−0.828287 + 0.560304i \(0.810684\pi\)
\(228\) 0 0
\(229\) −2107.34 + 3650.02i −0.608109 + 1.05328i 0.383442 + 0.923565i \(0.374738\pi\)
−0.991552 + 0.129712i \(0.958595\pi\)
\(230\) 228.342 0.0654627
\(231\) 0 0
\(232\) −1947.21 −0.551038
\(233\) 549.671 952.058i 0.154550 0.267688i −0.778345 0.627837i \(-0.783941\pi\)
0.932895 + 0.360148i \(0.117274\pi\)
\(234\) 0 0
\(235\) −186.880 323.685i −0.0518753 0.0898506i
\(236\) 3156.85 5467.83i 0.870736 1.50816i
\(237\) 0 0
\(238\) 1135.35 590.404i 0.309217 0.160799i
\(239\) 4558.99 1.23388 0.616939 0.787011i \(-0.288373\pi\)
0.616939 + 0.787011i \(0.288373\pi\)
\(240\) 0 0
\(241\) 544.702 + 943.452i 0.145591 + 0.252171i 0.929593 0.368587i \(-0.120158\pi\)
−0.784002 + 0.620758i \(0.786825\pi\)
\(242\) −7831.22 13564.1i −2.08021 3.60302i
\(243\) 0 0
\(244\) 6745.01 1.76969
\(245\) 120.158 + 258.261i 0.0313332 + 0.0673457i
\(246\) 0 0
\(247\) 1551.96 2688.07i 0.399793 0.692462i
\(248\) 1007.84 + 1745.62i 0.258055 + 0.446964i
\(249\) 0 0
\(250\) 487.325 844.072i 0.123285 0.213535i
\(251\) 6356.75 1.59855 0.799273 0.600969i \(-0.205218\pi\)
0.799273 + 0.600969i \(0.205218\pi\)
\(252\) 0 0
\(253\) −3986.41 −0.990606
\(254\) −5526.75 + 9572.60i −1.36527 + 2.36472i
\(255\) 0 0
\(256\) 3094.44 + 5359.73i 0.755478 + 1.30853i
\(257\) 531.716 920.959i 0.129056 0.223532i −0.794255 0.607585i \(-0.792138\pi\)
0.923311 + 0.384052i \(0.125472\pi\)
\(258\) 0 0
\(259\) 235.965 5351.60i 0.0566106 1.28391i
\(260\) −420.677 −0.100343
\(261\) 0 0
\(262\) 5662.73 + 9808.13i 1.33528 + 2.31278i
\(263\) −1837.29 3182.29i −0.430770 0.746115i 0.566170 0.824288i \(-0.308425\pi\)
−0.996940 + 0.0781735i \(0.975091\pi\)
\(264\) 0 0
\(265\) 143.224 0.0332006
\(266\) −6378.47 4067.40i −1.47026 0.937549i
\(267\) 0 0
\(268\) 5694.93 9863.91i 1.29803 2.24826i
\(269\) −3479.97 6027.48i −0.788764 1.36618i −0.926725 0.375741i \(-0.877388\pi\)
0.137961 0.990438i \(-0.455945\pi\)
\(270\) 0 0
\(271\) 3297.89 5712.11i 0.739235 1.28039i −0.213606 0.976920i \(-0.568521\pi\)
0.952840 0.303472i \(-0.0981459\pi\)
\(272\) 341.155 0.0760499
\(273\) 0 0
\(274\) −5590.43 −1.23259
\(275\) −4242.11 + 7347.55i −0.930214 + 1.61118i
\(276\) 0 0
\(277\) 1560.53 + 2702.92i 0.338495 + 0.586290i 0.984150 0.177339i \(-0.0567489\pi\)
−0.645655 + 0.763629i \(0.723416\pi\)
\(278\) 1676.91 2904.50i 0.361779 0.626620i
\(279\) 0 0
\(280\) −19.6489 + 445.630i −0.00419374 + 0.0951124i
\(281\) 1662.38 0.352915 0.176457 0.984308i \(-0.443536\pi\)
0.176457 + 0.984308i \(0.443536\pi\)
\(282\) 0 0
\(283\) −226.639 392.551i −0.0476053 0.0824548i 0.841241 0.540661i \(-0.181826\pi\)
−0.888846 + 0.458206i \(0.848492\pi\)
\(284\) −2502.31 4334.12i −0.522833 0.905574i
\(285\) 0 0
\(286\) 11493.2 2.37625
\(287\) −5878.31 + 3056.84i −1.20901 + 0.628709i
\(288\) 0 0
\(289\) 2348.78 4068.21i 0.478075 0.828049i
\(290\) 131.238 + 227.310i 0.0265743 + 0.0460280i
\(291\) 0 0
\(292\) 5508.89 9541.68i 1.10405 1.91228i
\(293\) −772.774 −0.154082 −0.0770408 0.997028i \(-0.524547\pi\)
−0.0770408 + 0.997028i \(0.524547\pi\)
\(294\) 0 0
\(295\) −370.263 −0.0730764
\(296\) 4194.33 7264.79i 0.823616 1.42654i
\(297\) 0 0
\(298\) 5200.03 + 9006.72i 1.01084 + 1.75082i
\(299\) 1044.70 1809.47i 0.202062 0.349982i
\(300\) 0 0
\(301\) −3874.53 + 2014.83i −0.741941 + 0.385824i
\(302\) −2574.94 −0.490633
\(303\) 0 0
\(304\) −1008.38 1746.57i −0.190246 0.329516i
\(305\) −197.778 342.562i −0.0371303 0.0643116i
\(306\) 0 0
\(307\) 4193.64 0.779621 0.389810 0.920895i \(-0.372541\pi\)
0.389810 + 0.920895i \(0.372541\pi\)
\(308\) 788.466 17882.1i 0.145867 3.30821i
\(309\) 0 0
\(310\) 135.851 235.302i 0.0248898 0.0431104i
\(311\) 199.870 + 346.185i 0.0364424 + 0.0631201i 0.883671 0.468108i \(-0.155064\pi\)
−0.847229 + 0.531228i \(0.821731\pi\)
\(312\) 0 0
\(313\) −1865.24 + 3230.69i −0.336836 + 0.583417i −0.983836 0.179073i \(-0.942690\pi\)
0.647000 + 0.762490i \(0.276023\pi\)
\(314\) 8803.99 1.58229
\(315\) 0 0
\(316\) −1050.73 −0.187051
\(317\) −4186.74 + 7251.64i −0.741800 + 1.28483i 0.209875 + 0.977728i \(0.432694\pi\)
−0.951675 + 0.307107i \(0.900639\pi\)
\(318\) 0 0
\(319\) −2291.15 3968.40i −0.402132 0.696513i
\(320\) 316.859 548.816i 0.0553530 0.0958741i
\(321\) 0 0
\(322\) −4293.66 2737.96i −0.743094 0.473853i
\(323\) 1273.59 0.219394
\(324\) 0 0
\(325\) −2223.42 3851.08i −0.379487 0.657290i
\(326\) 7149.32 + 12383.0i 1.21461 + 2.10377i
\(327\) 0 0
\(328\) −10375.6 −1.74664
\(329\) −367.169 + 8327.27i −0.0615280 + 1.39543i
\(330\) 0 0
\(331\) 674.858 1168.89i 0.112065 0.194102i −0.804538 0.593902i \(-0.797587\pi\)
0.916603 + 0.399799i \(0.130920\pi\)
\(332\) 8273.43 + 14330.0i 1.36766 + 2.36886i
\(333\) 0 0
\(334\) −6983.83 + 12096.4i −1.14413 + 1.98169i
\(335\) −667.950 −0.108937
\(336\) 0 0
\(337\) −6629.72 −1.07164 −0.535822 0.844331i \(-0.679998\pi\)
−0.535822 + 0.844331i \(0.679998\pi\)
\(338\) 2159.25 3739.92i 0.347478 0.601849i
\(339\) 0 0
\(340\) −86.3052 149.485i −0.0137663 0.0238440i
\(341\) −2371.70 + 4107.91i −0.376642 + 0.652363i
\(342\) 0 0
\(343\) 837.297 6297.03i 0.131807 0.991275i
\(344\) −6838.79 −1.07187
\(345\) 0 0
\(346\) 9101.57 + 15764.4i 1.41417 + 2.44942i
\(347\) −2476.47 4289.37i −0.383123 0.663589i 0.608384 0.793643i \(-0.291818\pi\)
−0.991507 + 0.130054i \(0.958485\pi\)
\(348\) 0 0
\(349\) −4498.12 −0.689911 −0.344955 0.938619i \(-0.612106\pi\)
−0.344955 + 0.938619i \(0.612106\pi\)
\(350\) −9615.54 + 5000.27i −1.46849 + 0.763645i
\(351\) 0 0
\(352\) −4183.83 + 7246.61i −0.633520 + 1.09729i
\(353\) 806.677 + 1397.21i 0.121629 + 0.210668i 0.920410 0.390954i \(-0.127855\pi\)
−0.798781 + 0.601622i \(0.794521\pi\)
\(354\) 0 0
\(355\) −146.746 + 254.172i −0.0219394 + 0.0380001i
\(356\) 21449.7 3.19335
\(357\) 0 0
\(358\) 1575.73 0.232626
\(359\) −6593.45 + 11420.2i −0.969328 + 1.67893i −0.271821 + 0.962348i \(0.587626\pi\)
−0.697507 + 0.716578i \(0.745708\pi\)
\(360\) 0 0
\(361\) −334.959 580.167i −0.0488350 0.0845847i
\(362\) 3682.61 6378.47i 0.534679 0.926091i
\(363\) 0 0
\(364\) 7910.26 + 5044.18i 1.13904 + 0.726338i
\(365\) −646.130 −0.0926575
\(366\) 0 0
\(367\) −2551.69 4419.66i −0.362936 0.628623i 0.625507 0.780219i \(-0.284892\pi\)
−0.988443 + 0.151596i \(0.951559\pi\)
\(368\) −678.792 1175.70i −0.0961535 0.166543i
\(369\) 0 0
\(370\) −1130.75 −0.158878
\(371\) −2693.12 1717.34i −0.376873 0.240323i
\(372\) 0 0
\(373\) 729.593 1263.69i 0.101279 0.175420i −0.810933 0.585139i \(-0.801040\pi\)
0.912212 + 0.409719i \(0.134373\pi\)
\(374\) 2357.93 + 4084.05i 0.326004 + 0.564656i
\(375\) 0 0
\(376\) −6526.51 + 11304.2i −0.895157 + 1.55046i
\(377\) 2401.73 0.328104
\(378\) 0 0
\(379\) 2332.75 0.316162 0.158081 0.987426i \(-0.449469\pi\)
0.158081 + 0.987426i \(0.449469\pi\)
\(380\) −510.200 + 883.693i −0.0688756 + 0.119296i
\(381\) 0 0
\(382\) −7219.34 12504.3i −0.966946 1.67480i
\(383\) 2825.55 4894.00i 0.376969 0.652929i −0.613651 0.789578i \(-0.710300\pi\)
0.990620 + 0.136648i \(0.0436330\pi\)
\(384\) 0 0
\(385\) −931.307 + 484.298i −0.123283 + 0.0641094i
\(386\) −10467.7 −1.38028
\(387\) 0 0
\(388\) −11551.4 20007.6i −1.51143 2.61787i
\(389\) 4520.41 + 7829.58i 0.589188 + 1.02050i 0.994339 + 0.106253i \(0.0338854\pi\)
−0.405152 + 0.914250i \(0.632781\pi\)
\(390\) 0 0
\(391\) 857.314 0.110886
\(392\) 5712.85 8143.86i 0.736078 1.04930i
\(393\) 0 0
\(394\) −4369.01 + 7567.35i −0.558649 + 0.967608i
\(395\) 30.8097 + 53.3639i 0.00392456 + 0.00679754i
\(396\) 0 0
\(397\) −1762.18 + 3052.18i −0.222774 + 0.385855i −0.955649 0.294507i \(-0.904844\pi\)
0.732876 + 0.680363i \(0.238178\pi\)
\(398\) −4677.41 −0.589089
\(399\) 0 0
\(400\) −2889.33 −0.361166
\(401\) 2234.91 3870.97i 0.278319 0.482062i −0.692648 0.721276i \(-0.743556\pi\)
0.970967 + 0.239213i \(0.0768895\pi\)
\(402\) 0 0
\(403\) −1243.08 2153.08i −0.153654 0.266136i
\(404\) −8537.09 + 14786.7i −1.05133 + 1.82095i
\(405\) 0 0
\(406\) 257.847 5847.88i 0.0315191 0.714841i
\(407\) 19740.7 2.40420
\(408\) 0 0
\(409\) 3766.18 + 6523.22i 0.455320 + 0.788637i 0.998707 0.0508458i \(-0.0161917\pi\)
−0.543387 + 0.839482i \(0.682858\pi\)
\(410\) 699.290 + 1211.21i 0.0842329 + 0.145896i
\(411\) 0 0
\(412\) −6873.15 −0.821882
\(413\) 6962.29 + 4439.68i 0.829520 + 0.528965i
\(414\) 0 0
\(415\) 485.189 840.373i 0.0573904 0.0994031i
\(416\) −2192.88 3798.17i −0.258449 0.447646i
\(417\) 0 0
\(418\) 13939.1 24143.2i 1.63106 2.82508i
\(419\) −15486.4 −1.80563 −0.902814 0.430031i \(-0.858502\pi\)
−0.902814 + 0.430031i \(0.858502\pi\)
\(420\) 0 0
\(421\) 4408.87 0.510393 0.255196 0.966889i \(-0.417860\pi\)
0.255196 + 0.966889i \(0.417860\pi\)
\(422\) 1282.99 2222.20i 0.147997 0.256339i
\(423\) 0 0
\(424\) −2500.94 4331.75i −0.286454 0.496152i
\(425\) 912.305 1580.16i 0.104125 0.180350i
\(426\) 0 0
\(427\) −388.582 + 8812.90i −0.0440393 + 0.998796i
\(428\) −3654.93 −0.412774
\(429\) 0 0
\(430\) 460.918 + 798.334i 0.0516918 + 0.0895328i
\(431\) −5178.32 8969.11i −0.578726 1.00238i −0.995626 0.0934300i \(-0.970217\pi\)
0.416900 0.908952i \(-0.363116\pi\)
\(432\) 0 0
\(433\) −1398.15 −0.155175 −0.0775875 0.996986i \(-0.524722\pi\)
−0.0775875 + 0.996986i \(0.524722\pi\)
\(434\) −5375.92 + 2795.58i −0.594590 + 0.309199i
\(435\) 0 0
\(436\) −4115.47 + 7128.20i −0.452053 + 0.782979i
\(437\) −2534.04 4389.09i −0.277390 0.480454i
\(438\) 0 0
\(439\) 1724.66 2987.20i 0.187502 0.324763i −0.756915 0.653514i \(-0.773294\pi\)
0.944417 + 0.328750i \(0.106627\pi\)
\(440\) −1643.82 −0.178104
\(441\) 0 0
\(442\) −2471.73 −0.265991
\(443\) 1122.33 1943.93i 0.120369 0.208485i −0.799544 0.600607i \(-0.794926\pi\)
0.919913 + 0.392122i \(0.128259\pi\)
\(444\) 0 0
\(445\) −628.953 1089.38i −0.0670005 0.116048i
\(446\) 8112.78 14051.7i 0.861325 1.49186i
\(447\) 0 0
\(448\) −12538.7 + 6520.39i −1.32232 + 0.687633i
\(449\) 7639.18 0.802929 0.401465 0.915875i \(-0.368501\pi\)
0.401465 + 0.915875i \(0.368501\pi\)
\(450\) 0 0
\(451\) −12208.3 21145.3i −1.27464 2.20775i
\(452\) −5014.66 8685.65i −0.521836 0.903847i
\(453\) 0 0
\(454\) −2289.26 −0.236652
\(455\) 24.2353 549.648i 0.00249707 0.0566327i
\(456\) 0 0
\(457\) −270.412 + 468.367i −0.0276790 + 0.0479415i −0.879533 0.475838i \(-0.842145\pi\)
0.851854 + 0.523779i \(0.175478\pi\)
\(458\) −9920.38 17182.6i −1.01212 1.75304i
\(459\) 0 0
\(460\) −343.441 + 594.857i −0.0348109 + 0.0602942i
\(461\) −8627.25 −0.871608 −0.435804 0.900042i \(-0.643536\pi\)
−0.435804 + 0.900042i \(0.643536\pi\)
\(462\) 0 0
\(463\) 4497.71 0.451461 0.225730 0.974190i \(-0.427523\pi\)
0.225730 + 0.974190i \(0.427523\pi\)
\(464\) 780.260 1351.45i 0.0780661 0.135214i
\(465\) 0 0
\(466\) 2587.59 + 4481.84i 0.257227 + 0.445531i
\(467\) −1246.53 + 2159.06i −0.123518 + 0.213939i −0.921153 0.389202i \(-0.872751\pi\)
0.797635 + 0.603141i \(0.206084\pi\)
\(468\) 0 0
\(469\) 12559.9 + 8009.14i 1.23659 + 0.788546i
\(470\) 1759.48 0.172679
\(471\) 0 0
\(472\) 6465.45 + 11198.5i 0.630501 + 1.09206i
\(473\) −8046.75 13937.4i −0.782219 1.35484i
\(474\) 0 0
\(475\) −10786.3 −1.04192
\(476\) −169.567 + 3845.72i −0.0163279 + 0.370311i
\(477\) 0 0
\(478\) −10730.8 + 18586.3i −1.02681 + 1.77849i
\(479\) −4169.63 7222.02i −0.397736 0.688899i 0.595710 0.803199i \(-0.296871\pi\)
−0.993446 + 0.114301i \(0.963537\pi\)
\(480\) 0 0
\(481\) −5173.36 + 8960.52i −0.490405 + 0.849407i
\(482\) −5128.41 −0.484632
\(483\) 0 0
\(484\) 47114.6 4.42474
\(485\) −677.424 + 1173.33i −0.0634232 + 0.109852i
\(486\) 0 0
\(487\) 1552.42 + 2688.88i 0.144450 + 0.250194i 0.929167 0.369659i \(-0.120525\pi\)
−0.784718 + 0.619853i \(0.787192\pi\)
\(488\) −6907.12 + 11963.5i −0.640719 + 1.10976i
\(489\) 0 0
\(490\) −1335.71 118.019i −0.123146 0.0108807i
\(491\) 496.579 0.0456421 0.0228211 0.999740i \(-0.492735\pi\)
0.0228211 + 0.999740i \(0.492735\pi\)
\(492\) 0 0
\(493\) 492.734 + 853.440i 0.0450134 + 0.0779656i
\(494\) 7305.90 + 12654.2i 0.665401 + 1.15251i
\(495\) 0 0
\(496\) −1615.38 −0.146236
\(497\) 5807.04 3019.78i 0.524107 0.272546i
\(498\) 0 0
\(499\) 6626.79 11477.9i 0.594501 1.02971i −0.399116 0.916900i \(-0.630683\pi\)
0.993617 0.112805i \(-0.0359836\pi\)
\(500\) 1465.94 + 2539.07i 0.131117 + 0.227102i
\(501\) 0 0
\(502\) −14962.3 + 25915.5i −1.33028 + 2.30411i
\(503\) 1625.59 0.144099 0.0720493 0.997401i \(-0.477046\pi\)
0.0720493 + 0.997401i \(0.477046\pi\)
\(504\) 0 0
\(505\) 1001.30 0.0882325
\(506\) 9383.07 16252.0i 0.824364 1.42784i
\(507\) 0 0
\(508\) −16625.2 28795.6i −1.45201 2.51496i
\(509\) −3541.52 + 6134.10i −0.308399 + 0.534163i −0.978012 0.208547i \(-0.933127\pi\)
0.669613 + 0.742710i \(0.266460\pi\)
\(510\) 0 0
\(511\) 12149.6 + 7747.50i 1.05179 + 0.670703i
\(512\) −8242.42 −0.711459
\(513\) 0 0
\(514\) 2503.07 + 4335.44i 0.214797 + 0.372039i
\(515\) 201.535 + 349.070i 0.0172441 + 0.0298677i
\(516\) 0 0
\(517\) −30717.2 −2.61304
\(518\) 21262.2 + 13558.4i 1.80349 + 1.15004i
\(519\) 0 0
\(520\) 430.788 746.146i 0.0363294 0.0629244i
\(521\) −8282.67 14346.0i −0.696489 1.20635i −0.969676 0.244393i \(-0.921411\pi\)
0.273188 0.961961i \(-0.411922\pi\)
\(522\) 0 0
\(523\) 3236.34 5605.51i 0.270584 0.468665i −0.698428 0.715681i \(-0.746117\pi\)
0.969011 + 0.247016i \(0.0794499\pi\)
\(524\) −34068.4 −2.84024
\(525\) 0 0
\(526\) 17298.2 1.43391
\(527\) 510.057 883.445i 0.0421602 0.0730236i
\(528\) 0 0
\(529\) 4377.71 + 7582.42i 0.359802 + 0.623196i
\(530\) −337.115 + 583.900i −0.0276289 + 0.0478547i
\(531\) 0 0
\(532\) 20189.7 10499.0i 1.64536 0.855621i
\(533\) 12797.5 1.04000
\(534\) 0 0
\(535\) 107.170 + 185.624i 0.00866051 + 0.0150005i
\(536\) 11663.6 + 20202.0i 0.939909 + 1.62797i
\(537\) 0 0
\(538\) 32764.1 2.62558
\(539\) 23319.0 + 2060.39i 1.86349 + 0.164652i
\(540\) 0 0
\(541\) 1694.46 2934.89i 0.134659 0.233236i −0.790808 0.612064i \(-0.790339\pi\)
0.925467 + 0.378828i \(0.123673\pi\)
\(542\) 15524.9 + 26890.0i 1.23036 + 2.13104i
\(543\) 0 0
\(544\) 899.772 1558.45i 0.0709144 0.122827i
\(545\) 482.698 0.0379385
\(546\) 0 0
\(547\) 10055.2 0.785980 0.392990 0.919543i \(-0.371441\pi\)
0.392990 + 0.919543i \(0.371441\pi\)
\(548\) 8408.36 14563.7i 0.655452 1.13528i
\(549\) 0 0
\(550\) −19969.9 34588.8i −1.54821 2.68159i
\(551\) 2912.84 5045.18i 0.225211 0.390076i
\(552\) 0 0
\(553\) 60.5328 1372.86i 0.00465482 0.105570i
\(554\) −14692.5 −1.12676
\(555\) 0 0
\(556\) 5044.37 + 8737.11i 0.384764 + 0.666431i
\(557\) 2816.25 + 4877.90i 0.214234 + 0.371065i 0.953035 0.302859i \(-0.0979410\pi\)
−0.738801 + 0.673924i \(0.764608\pi\)
\(558\) 0 0
\(559\) 8435.10 0.638223
\(560\) −301.413 192.204i −0.0227447 0.0145037i
\(561\) 0 0
\(562\) −3912.84 + 6777.24i −0.293689 + 0.508684i
\(563\) −725.207 1256.10i −0.0542874 0.0940286i 0.837605 0.546277i \(-0.183955\pi\)
−0.891892 + 0.452248i \(0.850622\pi\)
\(564\) 0 0
\(565\) −294.082 + 509.364i −0.0218975 + 0.0379276i
\(566\) 2133.82 0.158465
\(567\) 0 0
\(568\) 10249.8 0.757169
\(569\) 8015.20 13882.7i 0.590536 1.02284i −0.403625 0.914925i \(-0.632250\pi\)
0.994160 0.107913i \(-0.0344168\pi\)
\(570\) 0 0
\(571\) 8270.39 + 14324.7i 0.606139 + 1.04986i 0.991870 + 0.127252i \(0.0406157\pi\)
−0.385732 + 0.922611i \(0.626051\pi\)
\(572\) −17286.5 + 29941.2i −1.26361 + 2.18864i
\(573\) 0 0
\(574\) 1373.92 31160.0i 0.0999065 2.26584i
\(575\) −7260.80 −0.526602
\(576\) 0 0
\(577\) 1019.63 + 1766.06i 0.0735666 + 0.127421i 0.900462 0.434935i \(-0.143229\pi\)
−0.826895 + 0.562356i \(0.809895\pi\)
\(578\) 11057.0 + 19151.2i 0.795690 + 1.37818i
\(579\) 0 0
\(580\) −789.558 −0.0565252
\(581\) −19199.9 + 9984.34i −1.37099 + 0.712944i
\(582\) 0 0
\(583\) 5885.37 10193.8i 0.418091 0.724155i
\(584\) 11282.6 + 19542.0i 0.799446 + 1.38468i
\(585\) 0 0
\(586\) 1818.93 3150.48i 0.128224 0.222090i
\(587\) 20392.1 1.43385 0.716927 0.697148i \(-0.245548\pi\)
0.716927 + 0.697148i \(0.245548\pi\)
\(588\) 0 0
\(589\) −6030.49 −0.421871
\(590\) 871.512 1509.50i 0.0608129 0.105331i
\(591\) 0 0
\(592\) 3361.38 + 5822.09i 0.233365 + 0.404200i
\(593\) 10134.5 17553.4i 0.701810 1.21557i −0.266020 0.963967i \(-0.585709\pi\)
0.967830 0.251604i \(-0.0809579\pi\)
\(594\) 0 0
\(595\) 200.286 104.153i 0.0137999 0.00717622i
\(596\) −31284.7 −2.15012
\(597\) 0 0
\(598\) 4917.96 + 8518.15i 0.336305 + 0.582497i
\(599\) 11158.9 + 19327.8i 0.761169 + 1.31838i 0.942248 + 0.334915i \(0.108708\pi\)
−0.181079 + 0.983468i \(0.557959\pi\)
\(600\) 0 0
\(601\) 1880.78 0.127652 0.0638259 0.997961i \(-0.479670\pi\)
0.0638259 + 0.997961i \(0.479670\pi\)
\(602\) 905.583 20538.3i 0.0613103 1.39050i
\(603\) 0 0
\(604\) 3872.87 6708.01i 0.260902 0.451896i
\(605\) −1381.50 2392.83i −0.0928364 0.160797i
\(606\) 0 0
\(607\) 8180.82 14169.6i 0.547033 0.947489i −0.451443 0.892300i \(-0.649090\pi\)
0.998476 0.0551891i \(-0.0175762\pi\)
\(608\) −10638.2 −0.709595
\(609\) 0 0
\(610\) 1862.09 0.123597
\(611\) 8049.92 13942.9i 0.533003 0.923188i
\(612\) 0 0
\(613\) 7960.70 + 13788.3i 0.524518 + 0.908492i 0.999592 + 0.0285467i \(0.00908792\pi\)
−0.475074 + 0.879946i \(0.657579\pi\)
\(614\) −9870.84 + 17096.8i −0.648786 + 1.12373i
\(615\) 0 0
\(616\) 30909.7 + 19710.4i 2.02174 + 1.28921i
\(617\) 7690.80 0.501815 0.250908 0.968011i \(-0.419271\pi\)
0.250908 + 0.968011i \(0.419271\pi\)
\(618\) 0 0
\(619\) 302.006 + 523.089i 0.0196101 + 0.0339657i 0.875664 0.482921i \(-0.160424\pi\)
−0.856054 + 0.516887i \(0.827091\pi\)
\(620\) 408.658 + 707.817i 0.0264712 + 0.0458494i
\(621\) 0 0
\(622\) −1881.79 −0.121307
\(623\) −1235.73 + 28025.8i −0.0794676 + 1.80230i
\(624\) 0 0
\(625\) −7683.43 + 13308.1i −0.491739 + 0.851718i
\(626\) −8780.67 15208.6i −0.560617 0.971017i
\(627\) 0 0
\(628\) −13241.8 + 22935.4i −0.841407 + 1.45736i
\(629\) −4245.43 −0.269120
\(630\) 0 0
\(631\) −10806.1 −0.681752 −0.340876 0.940108i \(-0.610724\pi\)
−0.340876 + 0.940108i \(0.610724\pi\)
\(632\) 1075.98 1863.66i 0.0677220 0.117298i
\(633\) 0 0
\(634\) −19709.2 34137.3i −1.23462 2.13843i
\(635\) −974.970 + 1688.70i −0.0609300 + 0.105534i
\(636\) 0 0
\(637\) −7046.34 + 10044.8i −0.438283 + 0.624786i
\(638\) 21571.4 1.33859
\(639\) 0 0
\(640\) 1084.36 + 1878.17i 0.0669736 + 0.116002i
\(641\) 2223.81 + 3851.76i 0.137029 + 0.237340i 0.926371 0.376613i \(-0.122911\pi\)
−0.789342 + 0.613954i \(0.789578\pi\)
\(642\) 0 0
\(643\) 13531.3 0.829897 0.414949 0.909845i \(-0.363800\pi\)
0.414949 + 0.909845i \(0.363800\pi\)
\(644\) 13590.6 7067.40i 0.831593 0.432445i
\(645\) 0 0
\(646\) −2997.73 + 5192.22i −0.182576 + 0.316231i
\(647\) −9488.46 16434.5i −0.576553 0.998620i −0.995871 0.0907801i \(-0.971064\pi\)
0.419318 0.907840i \(-0.362269\pi\)
\(648\) 0 0
\(649\) −15214.9 + 26353.0i −0.920243 + 1.59391i
\(650\) 20933.6 1.26321
\(651\) 0 0
\(652\) −43012.1 −2.58357
\(653\) 4398.36 7618.19i 0.263585 0.456543i −0.703607 0.710590i \(-0.748428\pi\)
0.967192 + 0.254046i \(0.0817616\pi\)
\(654\) 0 0
\(655\) 998.959 + 1730.25i 0.0595917 + 0.103216i
\(656\) 4157.56 7201.11i 0.247447 0.428592i
\(657\) 0 0
\(658\) −33084.7 21097.3i −1.96015 1.24994i
\(659\) −24279.6 −1.43520 −0.717601 0.696455i \(-0.754760\pi\)
−0.717601 + 0.696455i \(0.754760\pi\)
\(660\) 0 0
\(661\) 12817.7 + 22200.8i 0.754234 + 1.30637i 0.945754 + 0.324883i \(0.105325\pi\)
−0.191520 + 0.981489i \(0.561342\pi\)
\(662\) 3176.91 + 5502.58i 0.186517 + 0.323057i
\(663\) 0 0
\(664\) −33889.1 −1.98065
\(665\) −1125.22 717.527i −0.0656154 0.0418414i
\(666\) 0 0
\(667\) 1960.77 3396.16i 0.113825 0.197151i
\(668\) −21008.2 36387.4i −1.21682 2.10759i
\(669\) 0 0
\(670\) 1572.20 2723.13i 0.0906557 0.157020i
\(671\) −32508.6 −1.87031
\(672\) 0 0
\(673\) −23355.1 −1.33770 −0.668852 0.743396i \(-0.733214\pi\)
−0.668852 + 0.743396i \(0.733214\pi\)
\(674\) 15604.8 27028.3i 0.891803 1.54465i
\(675\) 0 0
\(676\) 6495.28 + 11250.2i 0.369554 + 0.640086i
\(677\) 8996.86 15583.0i 0.510750 0.884644i −0.489173 0.872187i \(-0.662701\pi\)
0.999922 0.0124573i \(-0.00396539\pi\)
\(678\) 0 0
\(679\) 26807.0 13940.2i 1.51511 0.787887i
\(680\) 353.518 0.0199365
\(681\) 0 0
\(682\) −11164.9 19338.1i −0.626870 1.08577i
\(683\) 8965.46 + 15528.6i 0.502275 + 0.869966i 0.999997 + 0.00262913i \(0.000836880\pi\)
−0.497721 + 0.867337i \(0.665830\pi\)
\(684\) 0 0
\(685\) −986.205 −0.0550087
\(686\) 23701.2 + 18235.3i 1.31912 + 1.01491i
\(687\) 0 0
\(688\) 2740.35 4746.42i 0.151853 0.263017i
\(689\) 3084.70 + 5342.86i 0.170563 + 0.295424i
\(690\) 0 0
\(691\) −12909.0 + 22359.1i −0.710683 + 1.23094i 0.253918 + 0.967226i \(0.418281\pi\)
−0.964601 + 0.263714i \(0.915053\pi\)
\(692\) −54757.4 −3.00804
\(693\) 0 0
\(694\) 23316.1 1.27531
\(695\) 295.824 512.382i 0.0161457 0.0279651i
\(696\) 0 0
\(697\) 2625.50 + 4547.50i 0.142680 + 0.247129i
\(698\) 10587.5 18338.1i 0.574131 0.994424i
\(699\) 0 0
\(700\) 1436.10 32570.3i 0.0775423 1.75863i
\(701\) −16727.2 −0.901250 −0.450625 0.892713i \(-0.648799\pi\)
−0.450625 + 0.892713i \(0.648799\pi\)
\(702\) 0 0
\(703\) 12548.6 + 21734.8i 0.673228 + 1.16606i
\(704\) −26040.9 45104.1i −1.39411 2.41466i
\(705\) 0 0
\(706\) −7594.92 −0.404870
\(707\) −18828.1 12006.3i −1.00156 0.638673i
\(708\) 0 0
\(709\) 3445.71 5968.14i 0.182519 0.316133i −0.760218 0.649667i \(-0.774908\pi\)
0.942738 + 0.333535i \(0.108241\pi\)
\(710\) −690.812 1196.52i −0.0365151 0.0632460i
\(711\) 0 0
\(712\) −21965.3 + 38045.0i −1.15616 + 2.00252i
\(713\) −4059.41 −0.213220
\(714\) 0 0
\(715\) 2027.51 0.106049
\(716\) −2370.00 + 4104.97i −0.123703 + 0.214260i
\(717\) 0 0
\(718\) −31038.9 53760.9i −1.61331 2.79434i
\(719\) 5203.19 9012.19i 0.269884 0.467452i −0.698948 0.715172i \(-0.746348\pi\)
0.968832 + 0.247721i \(0.0796815\pi\)
\(720\) 0 0
\(721\) 395.964 8980.31i 0.0204528 0.463862i
\(722\) 3153.66 0.162558
\(723\) 0 0
\(724\) 11077.8 + 19187.2i 0.568649 + 0.984929i
\(725\) −4173.08 7227.99i −0.213772 0.370263i
\(726\) 0 0
\(727\) 2203.46 0.112410 0.0562049 0.998419i \(-0.482100\pi\)
0.0562049 + 0.998419i \(0.482100\pi\)
\(728\) −17047.1 + 8864.85i −0.867869 + 0.451309i
\(729\) 0 0
\(730\) 1520.84 2634.17i 0.0771079 0.133555i
\(731\) 1730.53 + 2997.36i 0.0875593 + 0.151657i
\(732\) 0 0
\(733\) 4386.85 7598.24i 0.221053 0.382875i −0.734075 0.679069i \(-0.762384\pi\)
0.955128 + 0.296193i \(0.0957172\pi\)
\(734\) 24024.4 1.20811
\(735\) 0 0
\(736\) −7161.06 −0.358641
\(737\) −27447.6 + 47540.6i −1.37184 + 2.37609i
\(738\) 0 0
\(739\) −13692.9 23716.9i −0.681601 1.18057i −0.974492 0.224422i \(-0.927951\pi\)
0.292891 0.956146i \(-0.405383\pi\)
\(740\) 1700.72 2945.73i 0.0844861 0.146334i
\(741\) 0 0
\(742\) 13340.3 6937.22i 0.660024 0.343226i
\(743\) 28890.0 1.42648 0.713239 0.700921i \(-0.247228\pi\)
0.713239 + 0.700921i \(0.247228\pi\)
\(744\) 0 0
\(745\) 917.335 + 1588.87i 0.0451121 + 0.0781365i
\(746\) 3434.58 + 5948.87i 0.168564 + 0.291962i
\(747\) 0 0
\(748\) −14185.9 −0.693432
\(749\) 210.561 4775.45i 0.0102720 0.232966i
\(750\) 0 0
\(751\) 10403.8 18020.0i 0.505515 0.875577i −0.494465 0.869198i \(-0.664636\pi\)
0.999980 0.00637972i \(-0.00203074\pi\)
\(752\) −5230.42 9059.36i −0.253635 0.439310i
\(753\) 0 0
\(754\) −5653.11 + 9791.47i −0.273043 + 0.472924i
\(755\) −454.244 −0.0218962
\(756\) 0 0
\(757\) 14372.8 0.690078 0.345039 0.938588i \(-0.387866\pi\)
0.345039 + 0.938588i \(0.387866\pi\)
\(758\) −5490.75 + 9510.26i −0.263104 + 0.455710i
\(759\) 0 0
\(760\) −1044.93 1809.86i −0.0498729 0.0863824i
\(761\) −13486.8 + 23359.8i −0.642439 + 1.11274i 0.342447 + 0.939537i \(0.388744\pi\)
−0.984887 + 0.173200i \(0.944589\pi\)
\(762\) 0 0
\(763\) −9076.47 5787.85i −0.430656 0.274619i
\(764\) 43433.4 2.05676
\(765\) 0 0
\(766\) 13301.4 + 23038.7i 0.627413 + 1.08671i
\(767\) −7974.61 13812.4i −0.375419 0.650245i
\(768\) 0 0
\(769\) −3264.38 −0.153077 −0.0765387 0.997067i \(-0.524387\pi\)
−0.0765387 + 0.997067i \(0.524387\pi\)
\(770\) 217.672 4936.72i 0.0101875 0.231048i
\(771\) 0 0
\(772\) 15744.0 27269.4i 0.733989 1.27131i
\(773\) 11067.7 + 19169.8i 0.514977 + 0.891966i 0.999849 + 0.0173811i \(0.00553285\pi\)
−0.484872 + 0.874585i \(0.661134\pi\)
\(774\) 0 0
\(775\) −4319.80 + 7482.11i −0.200221 + 0.346794i
\(776\) 47316.1 2.18885
\(777\) 0 0
\(778\) −42560.0 −1.96124
\(779\) 15520.9 26882.9i 0.713854 1.23643i
\(780\) 0 0