Properties

Label 189.4.e.e.109.4
Level $189$
Weight $4$
Character 189.109
Analytic conductor $11.151$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 40x^{10} + 1147x^{8} + 15564x^{6} + 154089x^{4} + 578934x^{2} + 1633284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.4
Root \(-1.02968 + 1.78345i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.4.e.e.163.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02968 + 1.78345i) q^{2} +(1.87953 - 3.25543i) q^{4} +(7.25204 + 12.5609i) q^{5} +(-7.76857 + 16.8122i) q^{7} +24.2161 q^{8} +O(q^{10})\) \(q+(1.02968 + 1.78345i) q^{2} +(1.87953 - 3.25543i) q^{4} +(7.25204 + 12.5609i) q^{5} +(-7.76857 + 16.8122i) q^{7} +24.2161 q^{8} +(-14.9345 + 25.8674i) q^{10} +(14.9047 - 25.8157i) q^{11} -13.3320 q^{13} +(-37.9829 + 3.45625i) q^{14} +(9.89856 + 17.1448i) q^{16} +(-32.1415 + 55.6707i) q^{17} +(55.1748 + 95.5655i) q^{19} +54.5216 q^{20} +61.3881 q^{22} +(9.67280 + 16.7538i) q^{23} +(-42.6843 + 73.9314i) q^{25} +(-13.7276 - 23.7769i) q^{26} +(40.1297 + 56.8890i) q^{28} +111.113 q^{29} +(-96.4689 + 167.089i) q^{31} +(76.4797 - 132.467i) q^{32} -132.382 q^{34} +(-267.514 + 24.3424i) q^{35} +(35.7607 + 61.9393i) q^{37} +(-113.625 + 196.803i) q^{38} +(175.616 + 304.176i) q^{40} +277.562 q^{41} -178.522 q^{43} +(-56.0275 - 97.0424i) q^{44} +(-19.9197 + 34.5020i) q^{46} +(-265.937 - 460.617i) q^{47} +(-222.299 - 261.213i) q^{49} -175.804 q^{50} +(-25.0578 + 43.4013i) q^{52} +(-155.416 + 269.188i) q^{53} +432.357 q^{55} +(-188.124 + 407.125i) q^{56} +(114.410 + 198.165i) q^{58} +(361.012 - 625.290i) q^{59} +(-331.535 - 574.235i) q^{61} -397.328 q^{62} +473.375 q^{64} +(-96.6839 - 167.461i) q^{65} +(304.279 - 527.027i) q^{67} +(120.822 + 209.269i) q^{68} +(-318.867 - 452.035i) q^{70} +976.305 q^{71} +(-130.574 + 226.161i) q^{73} +(-73.6440 + 127.555i) q^{74} +414.810 q^{76} +(318.229 + 451.131i) q^{77} +(-618.075 - 1070.54i) q^{79} +(-143.570 + 248.670i) q^{80} +(285.800 + 495.020i) q^{82} +1225.79 q^{83} -932.367 q^{85} +(-183.820 - 318.386i) q^{86} +(360.933 - 625.154i) q^{88} +(395.991 + 685.876i) q^{89} +(103.570 - 224.139i) q^{91} +72.7211 q^{92} +(547.659 - 948.573i) q^{94} +(-800.260 + 1386.09i) q^{95} -935.253 q^{97} +(236.966 - 665.425i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 32 q^{4} - 26 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 32 q^{4} - 26 q^{7} + 20 q^{10} + 104 q^{13} + 148 q^{16} + 62 q^{19} - 712 q^{22} + 46 q^{25} - 348 q^{28} + 82 q^{31} + 840 q^{34} + 1132 q^{37} + 444 q^{40} - 3132 q^{43} + 888 q^{46} + 366 q^{49} + 72 q^{52} + 448 q^{55} - 4 q^{58} - 886 q^{61} - 1848 q^{64} + 2084 q^{67} - 4460 q^{70} + 2398 q^{73} + 6408 q^{76} - 984 q^{79} + 3892 q^{82} - 7200 q^{85} + 5796 q^{88} - 6492 q^{91} - 2772 q^{94} - 1364 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02968 + 1.78345i 0.364046 + 0.630546i 0.988623 0.150417i \(-0.0480617\pi\)
−0.624576 + 0.780964i \(0.714728\pi\)
\(3\) 0 0
\(4\) 1.87953 3.25543i 0.234941 0.406929i
\(5\) 7.25204 + 12.5609i 0.648643 + 1.12348i 0.983447 + 0.181194i \(0.0579963\pi\)
−0.334805 + 0.942288i \(0.608670\pi\)
\(6\) 0 0
\(7\) −7.76857 + 16.8122i −0.419463 + 0.907772i
\(8\) 24.2161 1.07021
\(9\) 0 0
\(10\) −14.9345 + 25.8674i −0.472272 + 0.817999i
\(11\) 14.9047 25.8157i 0.408539 0.707610i −0.586187 0.810176i \(-0.699372\pi\)
0.994726 + 0.102565i \(0.0327051\pi\)
\(12\) 0 0
\(13\) −13.3320 −0.284432 −0.142216 0.989836i \(-0.545423\pi\)
−0.142216 + 0.989836i \(0.545423\pi\)
\(14\) −37.9829 + 3.45625i −0.725097 + 0.0659800i
\(15\) 0 0
\(16\) 9.89856 + 17.1448i 0.154665 + 0.267888i
\(17\) −32.1415 + 55.6707i −0.458557 + 0.794243i −0.998885 0.0472110i \(-0.984967\pi\)
0.540328 + 0.841454i \(0.318300\pi\)
\(18\) 0 0
\(19\) 55.1748 + 95.5655i 0.666209 + 1.15391i 0.978956 + 0.204071i \(0.0654173\pi\)
−0.312747 + 0.949836i \(0.601249\pi\)
\(20\) 54.5216 0.609570
\(21\) 0 0
\(22\) 61.3881 0.594908
\(23\) 9.67280 + 16.7538i 0.0876921 + 0.151887i 0.906535 0.422130i \(-0.138718\pi\)
−0.818843 + 0.574017i \(0.805384\pi\)
\(24\) 0 0
\(25\) −42.6843 + 73.9314i −0.341474 + 0.591451i
\(26\) −13.7276 23.7769i −0.103546 0.179348i
\(27\) 0 0
\(28\) 40.1297 + 56.8890i 0.270850 + 0.383965i
\(29\) 111.113 0.711487 0.355744 0.934584i \(-0.384228\pi\)
0.355744 + 0.934584i \(0.384228\pi\)
\(30\) 0 0
\(31\) −96.4689 + 167.089i −0.558914 + 0.968067i 0.438674 + 0.898646i \(0.355448\pi\)
−0.997587 + 0.0694206i \(0.977885\pi\)
\(32\) 76.4797 132.467i 0.422494 0.731782i
\(33\) 0 0
\(34\) −132.382 −0.667743
\(35\) −267.514 + 24.3424i −1.29195 + 0.117561i
\(36\) 0 0
\(37\) 35.7607 + 61.9393i 0.158892 + 0.275210i 0.934470 0.356043i \(-0.115874\pi\)
−0.775577 + 0.631253i \(0.782541\pi\)
\(38\) −113.625 + 196.803i −0.485061 + 0.840151i
\(39\) 0 0
\(40\) 175.616 + 304.176i 0.694183 + 1.20236i
\(41\) 277.562 1.05727 0.528634 0.848850i \(-0.322704\pi\)
0.528634 + 0.848850i \(0.322704\pi\)
\(42\) 0 0
\(43\) −178.522 −0.633124 −0.316562 0.948572i \(-0.602528\pi\)
−0.316562 + 0.948572i \(0.602528\pi\)
\(44\) −56.0275 97.0424i −0.191965 0.332493i
\(45\) 0 0
\(46\) −19.9197 + 34.5020i −0.0638479 + 0.110588i
\(47\) −265.937 460.617i −0.825338 1.42953i −0.901660 0.432445i \(-0.857651\pi\)
0.0763219 0.997083i \(-0.475682\pi\)
\(48\) 0 0
\(49\) −222.299 261.213i −0.648101 0.761554i
\(50\) −175.804 −0.497250
\(51\) 0 0
\(52\) −25.0578 + 43.4013i −0.0668247 + 0.115744i
\(53\) −155.416 + 269.188i −0.402793 + 0.697658i −0.994062 0.108816i \(-0.965294\pi\)
0.591269 + 0.806475i \(0.298627\pi\)
\(54\) 0 0
\(55\) 432.357 1.05998
\(56\) −188.124 + 407.125i −0.448913 + 0.971507i
\(57\) 0 0
\(58\) 114.410 + 198.165i 0.259014 + 0.448626i
\(59\) 361.012 625.290i 0.796605 1.37976i −0.125210 0.992130i \(-0.539960\pi\)
0.921815 0.387630i \(-0.126706\pi\)
\(60\) 0 0
\(61\) −331.535 574.235i −0.695880 1.20530i −0.969883 0.243571i \(-0.921681\pi\)
0.274003 0.961729i \(-0.411652\pi\)
\(62\) −397.328 −0.813882
\(63\) 0 0
\(64\) 473.375 0.924560
\(65\) −96.6839 167.461i −0.184495 0.319554i
\(66\) 0 0
\(67\) 304.279 527.027i 0.554830 0.960994i −0.443086 0.896479i \(-0.646116\pi\)
0.997917 0.0645154i \(-0.0205502\pi\)
\(68\) 120.822 + 209.269i 0.215467 + 0.373200i
\(69\) 0 0
\(70\) −318.867 452.035i −0.544456 0.771836i
\(71\) 976.305 1.63192 0.815958 0.578111i \(-0.196210\pi\)
0.815958 + 0.578111i \(0.196210\pi\)
\(72\) 0 0
\(73\) −130.574 + 226.161i −0.209350 + 0.362605i −0.951510 0.307618i \(-0.900468\pi\)
0.742160 + 0.670223i \(0.233801\pi\)
\(74\) −73.6440 + 127.555i −0.115688 + 0.200378i
\(75\) 0 0
\(76\) 414.810 0.626078
\(77\) 318.229 + 451.131i 0.470982 + 0.667677i
\(78\) 0 0
\(79\) −618.075 1070.54i −0.880239 1.52462i −0.851075 0.525044i \(-0.824049\pi\)
−0.0291637 0.999575i \(-0.509284\pi\)
\(80\) −143.570 + 248.670i −0.200645 + 0.347527i
\(81\) 0 0
\(82\) 285.800 + 495.020i 0.384894 + 0.666656i
\(83\) 1225.79 1.62106 0.810529 0.585699i \(-0.199180\pi\)
0.810529 + 0.585699i \(0.199180\pi\)
\(84\) 0 0
\(85\) −932.367 −1.18976
\(86\) −183.820 318.386i −0.230486 0.399214i
\(87\) 0 0
\(88\) 360.933 625.154i 0.437222 0.757291i
\(89\) 395.991 + 685.876i 0.471629 + 0.816885i 0.999473 0.0324564i \(-0.0103330\pi\)
−0.527845 + 0.849341i \(0.677000\pi\)
\(90\) 0 0
\(91\) 103.570 224.139i 0.119309 0.258200i
\(92\) 72.7211 0.0824098
\(93\) 0 0
\(94\) 547.659 948.573i 0.600923 1.04083i
\(95\) −800.260 + 1386.09i −0.864263 + 1.49695i
\(96\) 0 0
\(97\) −935.253 −0.978975 −0.489488 0.872010i \(-0.662816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(98\) 236.966 665.425i 0.244256 0.685899i
\(99\) 0 0
\(100\) 160.453 + 277.912i 0.160453 + 0.277912i
\(101\) 221.485 383.623i 0.218203 0.377940i −0.736055 0.676921i \(-0.763314\pi\)
0.954259 + 0.298982i \(0.0966470\pi\)
\(102\) 0 0
\(103\) 349.700 + 605.699i 0.334534 + 0.579430i 0.983395 0.181477i \(-0.0580878\pi\)
−0.648861 + 0.760907i \(0.724754\pi\)
\(104\) −322.848 −0.304402
\(105\) 0 0
\(106\) −640.114 −0.586541
\(107\) −955.591 1655.13i −0.863369 1.49540i −0.868657 0.495413i \(-0.835017\pi\)
0.00528834 0.999986i \(-0.498317\pi\)
\(108\) 0 0
\(109\) 1035.71 1793.90i 0.910118 1.57637i 0.0962224 0.995360i \(-0.469324\pi\)
0.813896 0.581011i \(-0.197343\pi\)
\(110\) 445.189 + 771.090i 0.385883 + 0.668369i
\(111\) 0 0
\(112\) −365.139 + 33.2258i −0.308057 + 0.0280316i
\(113\) −2313.34 −1.92585 −0.962926 0.269767i \(-0.913053\pi\)
−0.962926 + 0.269767i \(0.913053\pi\)
\(114\) 0 0
\(115\) −140.295 + 242.998i −0.113762 + 0.197041i
\(116\) 208.839 361.721i 0.167157 0.289525i
\(117\) 0 0
\(118\) 1486.90 1.16000
\(119\) −686.253 972.851i −0.528644 0.749421i
\(120\) 0 0
\(121\) 221.201 + 383.132i 0.166192 + 0.287853i
\(122\) 682.748 1182.55i 0.506665 0.877570i
\(123\) 0 0
\(124\) 362.632 + 628.096i 0.262623 + 0.454877i
\(125\) 574.817 0.411306
\(126\) 0 0
\(127\) −1317.50 −0.920542 −0.460271 0.887778i \(-0.652248\pi\)
−0.460271 + 0.887778i \(0.652248\pi\)
\(128\) −124.414 215.491i −0.0859119 0.148804i
\(129\) 0 0
\(130\) 199.107 344.863i 0.134329 0.232665i
\(131\) 229.421 + 397.368i 0.153012 + 0.265024i 0.932333 0.361600i \(-0.117769\pi\)
−0.779321 + 0.626624i \(0.784436\pi\)
\(132\) 0 0
\(133\) −2035.29 + 185.201i −1.32694 + 0.120744i
\(134\) 1253.24 0.807935
\(135\) 0 0
\(136\) −778.341 + 1348.13i −0.490752 + 0.850007i
\(137\) −666.378 + 1154.20i −0.415566 + 0.719781i −0.995488 0.0948911i \(-0.969750\pi\)
0.579922 + 0.814672i \(0.303083\pi\)
\(138\) 0 0
\(139\) −406.835 −0.248254 −0.124127 0.992266i \(-0.539613\pi\)
−0.124127 + 0.992266i \(0.539613\pi\)
\(140\) −423.555 + 916.627i −0.255692 + 0.553351i
\(141\) 0 0
\(142\) 1005.28 + 1741.20i 0.594093 + 1.02900i
\(143\) −198.708 + 344.173i −0.116202 + 0.201267i
\(144\) 0 0
\(145\) 805.795 + 1395.68i 0.461501 + 0.799343i
\(146\) −537.797 −0.304852
\(147\) 0 0
\(148\) 268.853 0.149321
\(149\) 217.761 + 377.174i 0.119730 + 0.207378i 0.919660 0.392714i \(-0.128464\pi\)
−0.799931 + 0.600092i \(0.795131\pi\)
\(150\) 0 0
\(151\) 982.668 1702.03i 0.529592 0.917280i −0.469812 0.882766i \(-0.655678\pi\)
0.999404 0.0345136i \(-0.0109882\pi\)
\(152\) 1336.12 + 2314.22i 0.712983 + 1.23492i
\(153\) 0 0
\(154\) −476.897 + 1032.07i −0.249542 + 0.540041i
\(155\) −2798.39 −1.45014
\(156\) 0 0
\(157\) −415.741 + 720.085i −0.211336 + 0.366045i −0.952133 0.305684i \(-0.901115\pi\)
0.740797 + 0.671729i \(0.234448\pi\)
\(158\) 1272.84 2204.62i 0.640895 1.11006i
\(159\) 0 0
\(160\) 2218.54 1.09619
\(161\) −356.811 + 32.4680i −0.174663 + 0.0158934i
\(162\) 0 0
\(163\) 588.061 + 1018.55i 0.282579 + 0.489442i 0.972019 0.234901i \(-0.0754766\pi\)
−0.689440 + 0.724343i \(0.742143\pi\)
\(164\) 521.686 903.587i 0.248395 0.430233i
\(165\) 0 0
\(166\) 1262.17 + 2186.14i 0.590140 + 1.02215i
\(167\) 1674.29 0.775809 0.387905 0.921700i \(-0.373199\pi\)
0.387905 + 0.921700i \(0.373199\pi\)
\(168\) 0 0
\(169\) −2019.26 −0.919098
\(170\) −960.038 1662.83i −0.433127 0.750197i
\(171\) 0 0
\(172\) −335.536 + 581.166i −0.148747 + 0.257637i
\(173\) −716.460 1240.95i −0.314864 0.545360i 0.664545 0.747249i \(-0.268626\pi\)
−0.979409 + 0.201888i \(0.935292\pi\)
\(174\) 0 0
\(175\) −911.352 1291.96i −0.393667 0.558073i
\(176\) 590.139 0.252747
\(177\) 0 0
\(178\) −815.486 + 1412.46i −0.343389 + 0.594767i
\(179\) 597.265 1034.49i 0.249395 0.431965i −0.713963 0.700183i \(-0.753102\pi\)
0.963358 + 0.268219i \(0.0864349\pi\)
\(180\) 0 0
\(181\) 741.424 0.304473 0.152236 0.988344i \(-0.451352\pi\)
0.152236 + 0.988344i \(0.451352\pi\)
\(182\) 506.386 46.0785i 0.206241 0.0187668i
\(183\) 0 0
\(184\) 234.237 + 405.711i 0.0938489 + 0.162551i
\(185\) −518.676 + 898.373i −0.206129 + 0.357026i
\(186\) 0 0
\(187\) 958.118 + 1659.51i 0.374676 + 0.648959i
\(188\) −1999.34 −0.775623
\(189\) 0 0
\(190\) −3296.04 −1.25853
\(191\) 1951.99 + 3380.95i 0.739483 + 1.28082i 0.952728 + 0.303823i \(0.0982632\pi\)
−0.213246 + 0.976999i \(0.568403\pi\)
\(192\) 0 0
\(193\) −885.627 + 1533.95i −0.330305 + 0.572104i −0.982572 0.185885i \(-0.940485\pi\)
0.652267 + 0.757989i \(0.273818\pi\)
\(194\) −963.010 1667.98i −0.356392 0.617289i
\(195\) 0 0
\(196\) −1268.18 + 232.722i −0.462164 + 0.0848113i
\(197\) 830.366 0.300310 0.150155 0.988662i \(-0.452023\pi\)
0.150155 + 0.988662i \(0.452023\pi\)
\(198\) 0 0
\(199\) −531.253 + 920.156i −0.189244 + 0.327780i −0.944998 0.327075i \(-0.893937\pi\)
0.755755 + 0.654855i \(0.227270\pi\)
\(200\) −1033.65 + 1790.33i −0.365449 + 0.632977i
\(201\) 0 0
\(202\) 912.232 0.317745
\(203\) −863.187 + 1868.05i −0.298443 + 0.645869i
\(204\) 0 0
\(205\) 2012.90 + 3486.44i 0.685789 + 1.18782i
\(206\) −720.158 + 1247.35i −0.243572 + 0.421878i
\(207\) 0 0
\(208\) −131.967 228.574i −0.0439917 0.0761958i
\(209\) 3289.45 1.08869
\(210\) 0 0
\(211\) −3848.67 −1.25570 −0.627851 0.778333i \(-0.716065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(212\) 584.217 + 1011.89i 0.189265 + 0.327817i
\(213\) 0 0
\(214\) 1967.90 3408.51i 0.628612 1.08879i
\(215\) −1294.65 2242.40i −0.410671 0.711303i
\(216\) 0 0
\(217\) −2059.71 2919.89i −0.644341 0.913435i
\(218\) 4265.79 1.32530
\(219\) 0 0
\(220\) 812.627 1407.51i 0.249033 0.431338i
\(221\) 428.509 742.200i 0.130428 0.225908i
\(222\) 0 0
\(223\) 5482.75 1.64642 0.823211 0.567736i \(-0.192181\pi\)
0.823211 + 0.567736i \(0.192181\pi\)
\(224\) 1632.92 + 2314.87i 0.487070 + 0.690484i
\(225\) 0 0
\(226\) −2382.00 4125.75i −0.701099 1.21434i
\(227\) −197.418 + 341.939i −0.0577230 + 0.0999791i −0.893443 0.449177i \(-0.851717\pi\)
0.835720 + 0.549156i \(0.185051\pi\)
\(228\) 0 0
\(229\) 1911.78 + 3311.30i 0.551678 + 0.955534i 0.998154 + 0.0607380i \(0.0193454\pi\)
−0.446476 + 0.894796i \(0.647321\pi\)
\(230\) −577.835 −0.165658
\(231\) 0 0
\(232\) 2690.72 0.761441
\(233\) 1268.77 + 2197.57i 0.356738 + 0.617888i 0.987414 0.158159i \(-0.0505557\pi\)
−0.630676 + 0.776046i \(0.717222\pi\)
\(234\) 0 0
\(235\) 3857.17 6680.82i 1.07070 1.85451i
\(236\) −1357.06 2350.50i −0.374310 0.648324i
\(237\) 0 0
\(238\) 1028.42 2225.62i 0.280094 0.606159i
\(239\) 5368.81 1.45305 0.726526 0.687139i \(-0.241134\pi\)
0.726526 + 0.687139i \(0.241134\pi\)
\(240\) 0 0
\(241\) −1054.01 + 1825.60i −0.281721 + 0.487955i −0.971809 0.235771i \(-0.924239\pi\)
0.690088 + 0.723726i \(0.257572\pi\)
\(242\) −455.532 + 789.005i −0.121003 + 0.209583i
\(243\) 0 0
\(244\) −2492.51 −0.653962
\(245\) 1668.95 4686.60i 0.435206 1.22211i
\(246\) 0 0
\(247\) −735.588 1274.08i −0.189491 0.328208i
\(248\) −2336.10 + 4046.24i −0.598155 + 1.03603i
\(249\) 0 0
\(250\) 591.877 + 1025.16i 0.149734 + 0.259347i
\(251\) −5717.94 −1.43790 −0.718951 0.695061i \(-0.755377\pi\)
−0.718951 + 0.695061i \(0.755377\pi\)
\(252\) 0 0
\(253\) 576.680 0.143303
\(254\) −1356.60 2349.69i −0.335120 0.580445i
\(255\) 0 0
\(256\) 2149.71 3723.41i 0.524832 0.909035i
\(257\) −2493.73 4319.28i −0.605272 1.04836i −0.992008 0.126172i \(-0.959731\pi\)
0.386736 0.922190i \(-0.373602\pi\)
\(258\) 0 0
\(259\) −1319.14 + 120.035i −0.316477 + 0.0287978i
\(260\) −726.880 −0.173381
\(261\) 0 0
\(262\) −472.459 + 818.322i −0.111407 + 0.192962i
\(263\) −307.637 + 532.842i −0.0721281 + 0.124930i −0.899834 0.436233i \(-0.856312\pi\)
0.827706 + 0.561162i \(0.189646\pi\)
\(264\) 0 0
\(265\) −4508.34 −1.04508
\(266\) −2426.00 3439.16i −0.559200 0.792738i
\(267\) 0 0
\(268\) −1143.80 1981.12i −0.260705 0.451553i
\(269\) 396.981 687.591i 0.0899790 0.155848i −0.817523 0.575896i \(-0.804653\pi\)
0.907502 + 0.420048i \(0.137987\pi\)
\(270\) 0 0
\(271\) −1882.47 3260.54i −0.421964 0.730862i 0.574168 0.818738i \(-0.305326\pi\)
−0.996131 + 0.0878752i \(0.971992\pi\)
\(272\) −1272.62 −0.283690
\(273\) 0 0
\(274\) −2744.62 −0.605141
\(275\) 1272.39 + 2203.85i 0.279011 + 0.483262i
\(276\) 0 0
\(277\) 1598.27 2768.29i 0.346682 0.600471i −0.638976 0.769227i \(-0.720642\pi\)
0.985658 + 0.168756i \(0.0539750\pi\)
\(278\) −418.909 725.571i −0.0903758 0.156535i
\(279\) 0 0
\(280\) −6478.15 + 589.478i −1.38265 + 0.125814i
\(281\) −6225.15 −1.32157 −0.660785 0.750575i \(-0.729777\pi\)
−0.660785 + 0.750575i \(0.729777\pi\)
\(282\) 0 0
\(283\) 1858.75 3219.45i 0.390429 0.676242i −0.602077 0.798438i \(-0.705660\pi\)
0.992506 + 0.122195i \(0.0389935\pi\)
\(284\) 1834.99 3178.30i 0.383404 0.664075i
\(285\) 0 0
\(286\) −818.423 −0.169211
\(287\) −2156.26 + 4666.43i −0.443485 + 0.959758i
\(288\) 0 0
\(289\) 390.347 + 676.100i 0.0794518 + 0.137615i
\(290\) −1659.42 + 2874.20i −0.336015 + 0.581996i
\(291\) 0 0
\(292\) 490.835 + 850.151i 0.0983696 + 0.170381i
\(293\) −6392.56 −1.27460 −0.637299 0.770616i \(-0.719948\pi\)
−0.637299 + 0.770616i \(0.719948\pi\)
\(294\) 0 0
\(295\) 10472.3 2.06685
\(296\) 865.983 + 1499.93i 0.170048 + 0.294532i
\(297\) 0 0
\(298\) −448.448 + 776.735i −0.0871742 + 0.150990i
\(299\) −128.957 223.361i −0.0249425 0.0432016i
\(300\) 0 0
\(301\) 1386.86 3001.34i 0.265572 0.574732i
\(302\) 4047.33 0.771183
\(303\) 0 0
\(304\) −1092.30 + 1891.92i −0.206078 + 0.356938i
\(305\) 4808.61 8328.76i 0.902755 1.56362i
\(306\) 0 0
\(307\) 939.255 0.174613 0.0873063 0.996182i \(-0.472174\pi\)
0.0873063 + 0.996182i \(0.472174\pi\)
\(308\) 2066.75 188.063i 0.382350 0.0347919i
\(309\) 0 0
\(310\) −2881.44 4990.80i −0.527918 0.914381i
\(311\) 1375.81 2382.97i 0.250851 0.434487i −0.712909 0.701257i \(-0.752623\pi\)
0.963760 + 0.266769i \(0.0859561\pi\)
\(312\) 0 0
\(313\) 318.550 + 551.744i 0.0575255 + 0.0996372i 0.893354 0.449353i \(-0.148346\pi\)
−0.835829 + 0.548991i \(0.815012\pi\)
\(314\) −1712.32 −0.307744
\(315\) 0 0
\(316\) −4646.75 −0.827216
\(317\) 1436.10 + 2487.39i 0.254445 + 0.440712i 0.964745 0.263187i \(-0.0847738\pi\)
−0.710299 + 0.703900i \(0.751440\pi\)
\(318\) 0 0
\(319\) 1656.10 2868.45i 0.290670 0.503456i
\(320\) 3432.93 + 5946.02i 0.599709 + 1.03873i
\(321\) 0 0
\(322\) −425.306 602.925i −0.0736068 0.104347i
\(323\) −7093.60 −1.22198
\(324\) 0 0
\(325\) 569.065 985.650i 0.0971263 0.168228i
\(326\) −1211.03 + 2097.56i −0.205744 + 0.356359i
\(327\) 0 0
\(328\) 6721.47 1.13150
\(329\) 9809.92 892.651i 1.64389 0.149585i
\(330\) 0 0
\(331\) 3196.80 + 5537.02i 0.530852 + 0.919463i 0.999352 + 0.0359995i \(0.0114615\pi\)
−0.468499 + 0.883464i \(0.655205\pi\)
\(332\) 2303.90 3990.47i 0.380852 0.659656i
\(333\) 0 0
\(334\) 1723.98 + 2986.01i 0.282430 + 0.489184i
\(335\) 8826.59 1.43955
\(336\) 0 0
\(337\) −12107.6 −1.95710 −0.978549 0.206016i \(-0.933950\pi\)
−0.978549 + 0.206016i \(0.933950\pi\)
\(338\) −2079.19 3601.26i −0.334594 0.579534i
\(339\) 0 0
\(340\) −1752.41 + 3035.26i −0.279522 + 0.484147i
\(341\) 2875.68 + 4980.82i 0.456676 + 0.790986i
\(342\) 0 0
\(343\) 6118.50 1708.08i 0.963172 0.268884i
\(344\) −4323.10 −0.677575
\(345\) 0 0
\(346\) 1475.45 2555.55i 0.229250 0.397073i
\(347\) −1355.07 + 2347.05i −0.209636 + 0.363101i −0.951600 0.307339i \(-0.900561\pi\)
0.741964 + 0.670440i \(0.233895\pi\)
\(348\) 0 0
\(349\) −1175.22 −0.180252 −0.0901261 0.995930i \(-0.528727\pi\)
−0.0901261 + 0.995930i \(0.528727\pi\)
\(350\) 1365.75 2955.65i 0.208578 0.451390i
\(351\) 0 0
\(352\) −2279.81 3948.74i −0.345211 0.597923i
\(353\) −2638.20 + 4569.50i −0.397783 + 0.688980i −0.993452 0.114250i \(-0.963554\pi\)
0.595669 + 0.803230i \(0.296887\pi\)
\(354\) 0 0
\(355\) 7080.21 + 12263.3i 1.05853 + 1.83343i
\(356\) 2977.10 0.443219
\(357\) 0 0
\(358\) 2459.96 0.363165
\(359\) 5643.27 + 9774.43i 0.829639 + 1.43698i 0.898322 + 0.439338i \(0.144787\pi\)
−0.0686829 + 0.997639i \(0.521880\pi\)
\(360\) 0 0
\(361\) −2659.01 + 4605.55i −0.387668 + 0.671460i
\(362\) 763.428 + 1322.30i 0.110842 + 0.191984i
\(363\) 0 0
\(364\) −535.008 758.441i −0.0770385 0.109212i
\(365\) −3787.72 −0.543173
\(366\) 0 0
\(367\) −3783.80 + 6553.73i −0.538181 + 0.932158i 0.460821 + 0.887493i \(0.347555\pi\)
−0.999002 + 0.0446643i \(0.985778\pi\)
\(368\) −191.493 + 331.676i −0.0271258 + 0.0469832i
\(369\) 0 0
\(370\) −2136.28 −0.300162
\(371\) −3318.29 4704.09i −0.464358 0.658286i
\(372\) 0 0
\(373\) 3251.99 + 5632.61i 0.451425 + 0.781891i 0.998475 0.0552092i \(-0.0175826\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(374\) −1973.11 + 3417.52i −0.272799 + 0.472502i
\(375\) 0 0
\(376\) −6439.95 11154.3i −0.883285 1.52989i
\(377\) −1481.35 −0.202370
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730097 0.683344i \(-0.239475\pi\)
0.730097 + 0.683344i \(0.239475\pi\)
\(380\) 3008.22 + 5210.39i 0.406101 + 0.703388i
\(381\) 0 0
\(382\) −4019.85 + 6962.58i −0.538412 + 0.932557i
\(383\) 3183.06 + 5513.23i 0.424666 + 0.735542i 0.996389 0.0849039i \(-0.0270583\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(384\) 0 0
\(385\) −3358.80 + 7268.87i −0.444624 + 0.962223i
\(386\) −3647.64 −0.480985
\(387\) 0 0
\(388\) −1757.83 + 3044.66i −0.230001 + 0.398374i
\(389\) 2951.72 5112.53i 0.384725 0.666363i −0.607006 0.794697i \(-0.707630\pi\)
0.991731 + 0.128334i \(0.0409629\pi\)
\(390\) 0 0
\(391\) −1243.59 −0.160847
\(392\) −5383.20 6325.56i −0.693604 0.815022i
\(393\) 0 0
\(394\) 855.010 + 1480.92i 0.109327 + 0.189360i
\(395\) 8964.62 15527.2i 1.14192 1.97786i
\(396\) 0 0
\(397\) −1883.39 3262.13i −0.238097 0.412397i 0.722071 0.691819i \(-0.243190\pi\)
−0.960168 + 0.279422i \(0.909857\pi\)
\(398\) −2188.08 −0.275574
\(399\) 0 0
\(400\) −1690.05 −0.211256
\(401\) −3626.00 6280.42i −0.451556 0.782118i 0.546927 0.837180i \(-0.315798\pi\)
−0.998483 + 0.0550625i \(0.982464\pi\)
\(402\) 0 0
\(403\) 1286.12 2227.62i 0.158973 0.275349i
\(404\) −832.573 1442.06i −0.102530 0.177587i
\(405\) 0 0
\(406\) −4220.39 + 384.033i −0.515897 + 0.0469440i
\(407\) 2132.01 0.259655
\(408\) 0 0
\(409\) −6273.70 + 10866.4i −0.758471 + 1.31371i 0.185159 + 0.982709i \(0.440720\pi\)
−0.943630 + 0.331002i \(0.892613\pi\)
\(410\) −4145.27 + 7179.82i −0.499318 + 0.864844i
\(411\) 0 0
\(412\) 2629.08 0.314383
\(413\) 7707.95 + 10927.0i 0.918362 + 1.30190i
\(414\) 0 0
\(415\) 8889.47 + 15397.0i 1.05149 + 1.82123i
\(416\) −1019.62 + 1766.04i −0.120171 + 0.208142i
\(417\) 0 0
\(418\) 3387.07 + 5866.58i 0.396333 + 0.686469i
\(419\) −12631.5 −1.47276 −0.736381 0.676567i \(-0.763467\pi\)
−0.736381 + 0.676567i \(0.763467\pi\)
\(420\) 0 0
\(421\) −3495.94 −0.404707 −0.202354 0.979312i \(-0.564859\pi\)
−0.202354 + 0.979312i \(0.564859\pi\)
\(422\) −3962.89 6863.92i −0.457134 0.791779i
\(423\) 0 0
\(424\) −3763.57 + 6518.69i −0.431073 + 0.746640i
\(425\) −2743.88 4752.53i −0.313171 0.542427i
\(426\) 0 0
\(427\) 12229.7 1112.84i 1.38603 0.126122i
\(428\) −7184.23 −0.811362
\(429\) 0 0
\(430\) 2666.14 4617.89i 0.299006 0.517894i
\(431\) 1172.59 2030.99i 0.131048 0.226982i −0.793033 0.609179i \(-0.791499\pi\)
0.924081 + 0.382197i \(0.124832\pi\)
\(432\) 0 0
\(433\) 3250.63 0.360774 0.180387 0.983596i \(-0.442265\pi\)
0.180387 + 0.983596i \(0.442265\pi\)
\(434\) 3086.67 6679.94i 0.341393 0.738819i
\(435\) 0 0
\(436\) −3893.28 6743.36i −0.427648 0.740708i
\(437\) −1067.39 + 1848.77i −0.116842 + 0.202377i
\(438\) 0 0
\(439\) −8120.24 14064.7i −0.882820 1.52909i −0.848192 0.529689i \(-0.822308\pi\)
−0.0346287 0.999400i \(-0.511025\pi\)
\(440\) 10470.0 1.13440
\(441\) 0 0
\(442\) 1764.91 0.189928
\(443\) −2424.52 4199.39i −0.260028 0.450382i 0.706221 0.707991i \(-0.250398\pi\)
−0.966249 + 0.257610i \(0.917065\pi\)
\(444\) 0 0
\(445\) −5743.49 + 9948.01i −0.611837 + 1.05973i
\(446\) 5645.47 + 9778.23i 0.599373 + 1.03815i
\(447\) 0 0
\(448\) −3677.44 + 7958.46i −0.387819 + 0.839290i
\(449\) 4139.93 0.435134 0.217567 0.976045i \(-0.430188\pi\)
0.217567 + 0.976045i \(0.430188\pi\)
\(450\) 0 0
\(451\) 4136.98 7165.46i 0.431935 0.748134i
\(452\) −4347.99 + 7530.94i −0.452461 + 0.783685i
\(453\) 0 0
\(454\) −813.110 −0.0840553
\(455\) 3566.49 324.532i 0.367471 0.0334380i
\(456\) 0 0
\(457\) −4616.24 7995.56i −0.472513 0.818417i 0.526992 0.849870i \(-0.323320\pi\)
−0.999505 + 0.0314531i \(0.989987\pi\)
\(458\) −3937.04 + 6819.16i −0.401672 + 0.695717i
\(459\) 0 0
\(460\) 527.377 + 913.443i 0.0534545 + 0.0925859i
\(461\) −1274.90 −0.128803 −0.0644013 0.997924i \(-0.520514\pi\)
−0.0644013 + 0.997924i \(0.520514\pi\)
\(462\) 0 0
\(463\) 2061.80 0.206955 0.103477 0.994632i \(-0.467003\pi\)
0.103477 + 0.994632i \(0.467003\pi\)
\(464\) 1099.86 + 1905.01i 0.110042 + 0.190599i
\(465\) 0 0
\(466\) −2612.85 + 4525.59i −0.259738 + 0.449879i
\(467\) −484.021 838.348i −0.0479610 0.0830710i 0.841048 0.540960i \(-0.181939\pi\)
−0.889009 + 0.457889i \(0.848606\pi\)
\(468\) 0 0
\(469\) 6496.66 + 9209.84i 0.639633 + 0.906761i
\(470\) 15886.6 1.55914
\(471\) 0 0
\(472\) 8742.29 15142.1i 0.852535 1.47663i
\(473\) −2660.81 + 4608.66i −0.258656 + 0.448005i
\(474\) 0 0
\(475\) −9420.39 −0.909973
\(476\) −4456.88 + 405.553i −0.429161 + 0.0390515i
\(477\) 0 0
\(478\) 5528.15 + 9575.03i 0.528978 + 0.916217i
\(479\) 3100.02 5369.40i 0.295707 0.512180i −0.679442 0.733729i \(-0.737778\pi\)
0.975149 + 0.221549i \(0.0711114\pi\)
\(480\) 0 0
\(481\) −476.760 825.772i −0.0451941 0.0782785i
\(482\) −4341.17 −0.410238
\(483\) 0 0
\(484\) 1663.01 0.156181
\(485\) −6782.50 11747.6i −0.635005 1.09986i
\(486\) 0 0
\(487\) 4914.83 8512.74i 0.457315 0.792092i −0.541503 0.840699i \(-0.682145\pi\)
0.998818 + 0.0486063i \(0.0154780\pi\)
\(488\) −8028.47 13905.7i −0.744738 1.28992i
\(489\) 0 0
\(490\) 10076.8 1849.19i 0.929030 0.170485i
\(491\) 5053.57 0.464489 0.232245 0.972657i \(-0.425393\pi\)
0.232245 + 0.972657i \(0.425393\pi\)
\(492\) 0 0
\(493\) −3571.33 + 6185.73i −0.326257 + 0.565094i
\(494\) 1514.84 2623.77i 0.137967 0.238966i
\(495\) 0 0
\(496\) −3819.61 −0.345777
\(497\) −7584.49 + 16413.8i −0.684529 + 1.48141i
\(498\) 0 0
\(499\) −7030.82 12177.7i −0.630747 1.09249i −0.987399 0.158249i \(-0.949415\pi\)
0.356652 0.934237i \(-0.383918\pi\)
\(500\) 1080.38 1871.28i 0.0966325 0.167372i
\(501\) 0 0
\(502\) −5887.64 10197.7i −0.523463 0.906664i
\(503\) −8001.67 −0.709298 −0.354649 0.934999i \(-0.615400\pi\)
−0.354649 + 0.934999i \(0.615400\pi\)
\(504\) 0 0
\(505\) 6424.87 0.566144
\(506\) 593.794 + 1028.48i 0.0521687 + 0.0903589i
\(507\) 0 0
\(508\) −2476.27 + 4289.02i −0.216273 + 0.374596i
\(509\) −5456.91 9451.65i −0.475193 0.823059i 0.524403 0.851470i \(-0.324288\pi\)
−0.999596 + 0.0284114i \(0.990955\pi\)
\(510\) 0 0
\(511\) −2787.88 3952.18i −0.241348 0.342141i
\(512\) 6863.42 0.592428
\(513\) 0 0
\(514\) 5135.49 8894.93i 0.440694 0.763304i
\(515\) −5072.08 + 8785.11i −0.433986 + 0.751686i
\(516\) 0 0
\(517\) −15854.8 −1.34873
\(518\) −1572.37 2229.04i −0.133371 0.189070i
\(519\) 0 0
\(520\) −2341.31 4055.26i −0.197448 0.341990i
\(521\) −7901.70 + 13686.1i −0.664452 + 1.15087i 0.314981 + 0.949098i \(0.398002\pi\)
−0.979433 + 0.201767i \(0.935332\pi\)
\(522\) 0 0
\(523\) 323.047 + 559.534i 0.0270093 + 0.0467815i 0.879214 0.476427i \(-0.158068\pi\)
−0.852205 + 0.523208i \(0.824735\pi\)
\(524\) 1724.81 0.143795
\(525\) 0 0
\(526\) −1267.07 −0.105032
\(527\) −6201.31 10741.0i −0.512587 0.887827i
\(528\) 0 0
\(529\) 5896.37 10212.8i 0.484620 0.839387i
\(530\) −4642.14 8040.41i −0.380456 0.658968i
\(531\) 0 0
\(532\) −3222.48 + 6973.86i −0.262617 + 0.568337i
\(533\) −3700.45 −0.300721
\(534\) 0 0
\(535\) 13860.0 24006.2i 1.12004 1.93996i
\(536\) 7368.45 12762.5i 0.593785 1.02847i
\(537\) 0 0
\(538\) 1635.05 0.131026
\(539\) −10056.7 + 1845.49i −0.803658 + 0.147479i
\(540\) 0 0
\(541\) −5123.33 8873.86i −0.407152 0.705207i 0.587418 0.809284i \(-0.300145\pi\)
−0.994569 + 0.104077i \(0.966811\pi\)
\(542\) 3876.68 6714.61i 0.307228 0.532135i
\(543\) 0 0
\(544\) 4916.34 + 8515.36i 0.387475 + 0.671127i
\(545\) 30044.0 2.36137
\(546\) 0 0
\(547\) 4368.98 0.341506 0.170753 0.985314i \(-0.445380\pi\)
0.170753 + 0.985314i \(0.445380\pi\)
\(548\) 2504.95 + 4338.70i 0.195267 + 0.338212i
\(549\) 0 0
\(550\) −2620.31 + 4538.50i −0.203146 + 0.351859i
\(551\) 6130.63 + 10618.6i 0.473999 + 0.820990i
\(552\) 0 0
\(553\) 22799.6 2074.65i 1.75323 0.159535i
\(554\) 6582.82 0.504833
\(555\) 0 0
\(556\) −764.656 + 1324.42i −0.0583249 + 0.101022i
\(557\) −4198.21 + 7271.52i −0.319361 + 0.553149i −0.980355 0.197242i \(-0.936802\pi\)
0.660994 + 0.750391i \(0.270135\pi\)
\(558\) 0 0
\(559\) 2380.04 0.180081
\(560\) −3065.35 4345.52i −0.231312 0.327914i
\(561\) 0 0
\(562\) −6409.90 11102.3i −0.481113 0.833312i
\(563\) 6071.13 10515.5i 0.454472 0.787169i −0.544186 0.838965i \(-0.683161\pi\)
0.998658 + 0.0517962i \(0.0164946\pi\)
\(564\) 0 0
\(565\) −16776.5 29057.7i −1.24919 2.16366i
\(566\) 7655.66 0.568536
\(567\) 0 0
\(568\) 23642.3 1.74649
\(569\) 5598.06 + 9696.12i 0.412448 + 0.714381i 0.995157 0.0983003i \(-0.0313406\pi\)
−0.582709 + 0.812681i \(0.698007\pi\)
\(570\) 0 0
\(571\) −9829.79 + 17025.7i −0.720427 + 1.24782i 0.240402 + 0.970674i \(0.422721\pi\)
−0.960829 + 0.277143i \(0.910612\pi\)
\(572\) 746.955 + 1293.76i 0.0546010 + 0.0945717i
\(573\) 0 0
\(574\) −10542.6 + 959.324i −0.766621 + 0.0697586i
\(575\) −1651.51 −0.119778
\(576\) 0 0
\(577\) −4258.23 + 7375.46i −0.307231 + 0.532140i −0.977756 0.209748i \(-0.932736\pi\)
0.670525 + 0.741887i \(0.266069\pi\)
\(578\) −803.863 + 1392.33i −0.0578482 + 0.100196i
\(579\) 0 0
\(580\) 6058.05 0.433702
\(581\) −9522.62 + 20608.2i −0.679974 + 1.47155i
\(582\) 0 0
\(583\) 4632.85 + 8024.33i 0.329113 + 0.570041i
\(584\) −3161.99 + 5476.73i −0.224048 + 0.388063i
\(585\) 0 0
\(586\) −6582.28 11400.8i −0.464013 0.803694i
\(587\) 7115.53 0.500323 0.250161 0.968204i \(-0.419516\pi\)
0.250161 + 0.968204i \(0.419516\pi\)
\(588\) 0 0
\(589\) −21290.6 −1.48941
\(590\) 10783.1 + 18676.9i 0.752428 + 1.30324i
\(591\) 0 0
\(592\) −707.958 + 1226.22i −0.0491502 + 0.0851306i
\(593\) 3072.24 + 5321.28i 0.212752 + 0.368497i 0.952575 0.304305i \(-0.0984241\pi\)
−0.739823 + 0.672802i \(0.765091\pi\)
\(594\) 0 0
\(595\) 7243.15 15675.1i 0.499059 1.08003i
\(596\) 1637.15 0.112517
\(597\) 0 0
\(598\) 265.569 459.979i 0.0181604 0.0314547i
\(599\) 4789.20 8295.13i 0.326680 0.565826i −0.655171 0.755481i \(-0.727403\pi\)
0.981851 + 0.189654i \(0.0607368\pi\)
\(600\) 0 0
\(601\) −19113.8 −1.29728 −0.648642 0.761094i \(-0.724663\pi\)
−0.648642 + 0.761094i \(0.724663\pi\)
\(602\) 6780.77 617.015i 0.459076 0.0417735i
\(603\) 0 0
\(604\) −3693.90 6398.02i −0.248845 0.431013i
\(605\) −3208.32 + 5556.98i −0.215598 + 0.373427i
\(606\) 0 0
\(607\) −10221.3 17703.9i −0.683477 1.18382i −0.973913 0.226923i \(-0.927134\pi\)
0.290435 0.956895i \(-0.406200\pi\)
\(608\) 16879.0 1.12588
\(609\) 0 0
\(610\) 19805.3 1.31458
\(611\) 3545.46 + 6140.92i 0.234753 + 0.406604i
\(612\) 0 0
\(613\) −8711.37 + 15088.5i −0.573978 + 0.994160i 0.422173 + 0.906515i \(0.361267\pi\)
−0.996152 + 0.0876447i \(0.972066\pi\)
\(614\) 967.130 + 1675.12i 0.0635671 + 0.110101i
\(615\) 0 0
\(616\) 7706.27 + 10924.6i 0.504049 + 0.714554i
\(617\) 1805.17 0.117785 0.0588926 0.998264i \(-0.481243\pi\)
0.0588926 + 0.998264i \(0.481243\pi\)
\(618\) 0 0
\(619\) −4071.12 + 7051.38i −0.264349 + 0.457866i −0.967393 0.253281i \(-0.918490\pi\)
0.703044 + 0.711146i \(0.251824\pi\)
\(620\) −5259.64 + 9109.97i −0.340697 + 0.590105i
\(621\) 0 0
\(622\) 5666.55 0.365286
\(623\) −14607.4 + 1329.19i −0.939376 + 0.0854783i
\(624\) 0 0
\(625\) 9504.14 + 16461.7i 0.608265 + 1.05355i
\(626\) −656.007 + 1136.24i −0.0418839 + 0.0725451i
\(627\) 0 0
\(628\) 1562.79 + 2706.84i 0.0993029 + 0.171998i
\(629\) −4597.61 −0.291445
\(630\) 0 0
\(631\) 3630.07 0.229019 0.114509 0.993422i \(-0.463470\pi\)
0.114509 + 0.993422i \(0.463470\pi\)
\(632\) −14967.4 25924.2i −0.942040 1.63166i
\(633\) 0 0
\(634\) −2957.43 + 5122.42i −0.185260 + 0.320879i
\(635\) −9554.54 16548.9i −0.597103 1.03421i
\(636\) 0 0
\(637\) 2963.68 + 3482.48i 0.184341 + 0.216611i
\(638\) 6821.00 0.423270
\(639\) 0 0
\(640\) 1804.51 3125.50i 0.111452 0.193041i
\(641\) 11111.8 19246.2i 0.684696 1.18593i −0.288836 0.957379i \(-0.593268\pi\)
0.973532 0.228550i \(-0.0733984\pi\)
\(642\) 0 0
\(643\) −5013.00 −0.307455 −0.153727 0.988113i \(-0.549128\pi\)
−0.153727 + 0.988113i \(0.549128\pi\)
\(644\) −564.939 + 1222.60i −0.0345679 + 0.0748093i
\(645\) 0 0
\(646\) −7304.13 12651.1i −0.444856 0.770514i
\(647\) 3858.08 6682.39i 0.234431 0.406046i −0.724676 0.689090i \(-0.758011\pi\)
0.959107 + 0.283043i \(0.0913440\pi\)
\(648\) 0 0
\(649\) −10761.5 18639.5i −0.650889 1.12737i
\(650\) 2343.82 0.141434
\(651\) 0 0
\(652\) 4421.10 0.265558
\(653\) −2822.20 4888.20i −0.169129 0.292940i 0.768985 0.639267i \(-0.220762\pi\)
−0.938114 + 0.346327i \(0.887429\pi\)
\(654\) 0 0
\(655\) −3327.54 + 5763.46i −0.198500 + 0.343812i
\(656\) 2747.47 + 4758.75i 0.163522 + 0.283229i
\(657\) 0 0
\(658\) 11693.1 + 16576.4i 0.692770 + 0.982090i
\(659\) −8812.27 −0.520906 −0.260453 0.965487i \(-0.583872\pi\)
−0.260453 + 0.965487i \(0.583872\pi\)
\(660\) 0 0
\(661\) 3095.51 5361.58i 0.182150 0.315493i −0.760462 0.649382i \(-0.775028\pi\)
0.942613 + 0.333889i \(0.108361\pi\)
\(662\) −6583.35 + 11402.7i −0.386510 + 0.669454i
\(663\) 0 0
\(664\) 29683.8 1.73487
\(665\) −17086.3 24222.1i −0.996360 1.41247i
\(666\) 0 0
\(667\) 1074.77 + 1861.56i 0.0623918 + 0.108066i
\(668\) 3146.86 5450.53i 0.182269 0.315699i
\(669\) 0 0
\(670\) 9088.54 + 15741.8i 0.524061 + 0.907701i
\(671\) −19765.7 −1.13718
\(672\) 0 0
\(673\) 29580.7 1.69428 0.847141 0.531368i \(-0.178322\pi\)
0.847141 + 0.531368i \(0.178322\pi\)
\(674\) −12466.9 21593.3i −0.712474 1.23404i
\(675\) 0 0
\(676\) −3795.25 + 6573.57i −0.215934 + 0.374008i
\(677\) 13145.0 + 22767.8i 0.746239 + 1.29252i 0.949613 + 0.313423i \(0.101476\pi\)
−0.203374 + 0.979101i \(0.565191\pi\)
\(678\) 0 0
\(679\) 7265.58 15723.6i 0.410644 0.888686i
\(680\) −22578.3 −1.27329
\(681\) 0 0
\(682\) −5922.04 + 10257.3i −0.332502 + 0.575911i
\(683\) −405.342 + 702.073i −0.0227086 + 0.0393325i −0.877156 0.480205i \(-0.840562\pi\)
0.854448 + 0.519537i \(0.173896\pi\)
\(684\) 0 0
\(685\) −19330.4 −1.07821
\(686\) 9346.36 + 9153.31i 0.520183 + 0.509439i
\(687\) 0 0
\(688\) −1767.11 3060.72i −0.0979220 0.169606i
\(689\) 2072.00 3588.81i 0.114567 0.198436i
\(690\) 0 0
\(691\) −585.690 1014.45i −0.0322442 0.0558485i 0.849453 0.527664i \(-0.176932\pi\)
−0.881697 + 0.471816i \(0.843599\pi\)
\(692\) −5386.42 −0.295897
\(693\) 0 0
\(694\) −5581.14 −0.305269
\(695\) −2950.38 5110.21i −0.161028 0.278908i
\(696\) 0 0
\(697\) −8921.28 + 15452.1i −0.484817 + 0.839728i
\(698\) −1210.10 2095.95i −0.0656201 0.113657i
\(699\) 0 0
\(700\) −5918.79 + 538.579i −0.319585 + 0.0290805i
\(701\) 1057.70 0.0569885 0.0284943 0.999594i \(-0.490929\pi\)
0.0284943 + 0.999594i \(0.490929\pi\)
\(702\) 0 0
\(703\) −3946.18 + 6834.98i −0.211711 + 0.366694i
\(704\) 7055.49 12220.5i 0.377719 0.654228i
\(705\) 0 0
\(706\) −10866.0 −0.579245
\(707\) 4728.92 + 6703.84i 0.251555 + 0.356611i
\(708\) 0 0
\(709\) 14621.9 + 25325.8i 0.774521 + 1.34151i 0.935063 + 0.354481i \(0.115343\pi\)
−0.160542 + 0.987029i \(0.551324\pi\)
\(710\) −14580.7 + 25254.5i −0.770708 + 1.33491i
\(711\) 0 0
\(712\) 9589.34 + 16609.2i 0.504741 + 0.874238i
\(713\) −3732.50 −0.196049
\(714\) 0 0
\(715\) −5764.17 −0.301493
\(716\) −2245.15 3888.72i −0.117186 0.202972i
\(717\) 0 0
\(718\) −11621.5 + 20129.0i −0.604054 + 1.04625i
\(719\) 12278.9 + 21267.6i 0.636890 + 1.10313i 0.986111 + 0.166086i \(0.0531128\pi\)
−0.349221 + 0.937040i \(0.613554\pi\)
\(720\) 0 0
\(721\) −12899.8 + 1173.81i −0.666315 + 0.0606312i
\(722\) −10951.7 −0.564516
\(723\) 0 0
\(724\) 1393.53 2413.66i 0.0715331 0.123899i
\(725\) −4742.77 + 8214.72i −0.242955 + 0.420810i
\(726\) 0 0
\(727\) −23444.2 −1.19601 −0.598003 0.801494i \(-0.704039\pi\)
−0.598003 + 0.801494i \(0.704039\pi\)
\(728\) 2508.06 5427.77i 0.127685 0.276328i
\(729\) 0 0
\(730\) −3900.13 6755.22i −0.197740 0.342496i
\(731\) 5737.96 9938.44i 0.290323 0.502854i
\(732\) 0 0
\(733\) 17985.6 + 31152.0i 0.906296 + 1.56975i 0.819168 + 0.573553i \(0.194436\pi\)
0.0871278 + 0.996197i \(0.472231\pi\)
\(734\) −15584.4 −0.783692
\(735\) 0 0
\(736\) 2959.09 0.148198
\(737\) −9070.37 15710.3i −0.453340 0.785207i
\(738\) 0 0
\(739\) −6034.31 + 10451.7i −0.300373 + 0.520261i −0.976220 0.216780i \(-0.930444\pi\)
0.675848 + 0.737041i \(0.263778\pi\)
\(740\) 1949.73 + 3377.03i 0.0968561 + 0.167760i
\(741\) 0 0
\(742\) 4972.77 10761.7i 0.246032 0.532446i
\(743\) 5475.09 0.270339 0.135169 0.990823i \(-0.456842\pi\)
0.135169 + 0.990823i \(0.456842\pi\)
\(744\) 0 0
\(745\) −3158.43 + 5470.56i −0.155323 + 0.269028i
\(746\) −6697.00 + 11599.5i −0.328679 + 0.569289i
\(747\) 0 0
\(748\) 7203.23 0.352107
\(749\) 35250.0 3207.56i 1.71963 0.156478i
\(750\) 0 0
\(751\) −12637.3 21888.4i −0.614036 1.06354i −0.990553 0.137132i \(-0.956212\pi\)
0.376517 0.926410i \(-0.377122\pi\)
\(752\) 5264.79 9118.88i 0.255302 0.442196i
\(753\) 0 0
\(754\) −1525.31 2641.92i −0.0736720 0.127604i
\(755\) 28505.4 1.37406
\(756\) 0 0
\(757\) −23583.7 −1.13232 −0.566159 0.824296i \(-0.691571\pi\)
−0.566159 + 0.824296i \(0.691571\pi\)
\(758\) 11093.6 + 19214.6i 0.531578 + 0.920720i
\(759\) 0 0
\(760\) −19379.2 + 33565.7i −0.924942 + 1.60205i
\(761\) −8101.35 14032.0i −0.385905 0.668407i 0.605989 0.795473i \(-0.292777\pi\)
−0.991894 + 0.127066i \(0.959444\pi\)
\(762\) 0 0
\(763\) 22113.4 + 31348.5i 1.04922 + 1.48741i
\(764\) 14675.3 0.694939
\(765\) 0 0
\(766\) −6555.06 + 11353.7i −0.309196 + 0.535543i
\(767\) −4812.99 + 8336.34i −0.226580 + 0.392448i
\(768\) 0 0
\(769\) −18603.1 −0.872362 −0.436181 0.899859i \(-0.643669\pi\)
−0.436181 + 0.899859i \(0.643669\pi\)
\(770\) −16422.2 + 1494.33i −0.768590 + 0.0699377i
\(771\) 0 0
\(772\) 3329.12 + 5766.20i 0.155204 + 0.268821i
\(773\) 13640.7 23626.3i 0.634697 1.09933i −0.351883 0.936044i \(-0.614458\pi\)
0.986579 0.163283i \(-0.0522083\pi\)
\(774\) 0 0
\(775\) −8235.42 14264.2i −0.381709 0.661140i
\(776\) −22648.2 −1.04771
\(777\) 0 0
\(778\) 12157.3 0.560231
\(779\) 15314.5 + 26525.4i 0.704361 + 1.21999i
\(780\) 0