Properties

Label 189.4.e.c
Level $189$
Weight $4$
Character orbit 189.e
Analytic conductor $11.151$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 8 \zeta_{6} + 8) q^{4} + (18 \zeta_{6} + 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 8 \zeta_{6} + 8) q^{4} + (18 \zeta_{6} + 1) q^{7} + 89 q^{13} - 64 \zeta_{6} q^{16} - 56 \zeta_{6} q^{19} + ( - 125 \zeta_{6} + 125) q^{25} + ( - 8 \zeta_{6} + 152) q^{28} + ( - 289 \zeta_{6} + 289) q^{31} + 433 \zeta_{6} q^{37} + 71 q^{43} + (360 \zeta_{6} - 323) q^{49} + ( - 712 \zeta_{6} + 712) q^{52} - 719 \zeta_{6} q^{61} - 512 q^{64} + (1007 \zeta_{6} - 1007) q^{67} + (1190 \zeta_{6} - 1190) q^{73} - 448 q^{76} - 503 \zeta_{6} q^{79} + (1602 \zeta_{6} + 89) q^{91} - 523 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{4} + 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{4} + 20 q^{7} + 178 q^{13} - 64 q^{16} - 56 q^{19} + 125 q^{25} + 296 q^{28} + 289 q^{31} + 433 q^{37} + 142 q^{43} - 286 q^{49} + 712 q^{52} - 719 q^{61} - 1024 q^{64} - 1007 q^{67} - 1190 q^{73} - 896 q^{76} - 503 q^{79} + 1780 q^{91} - 1046 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 4.00000 6.92820i 0 0 10.0000 + 15.5885i 0 0 0
163.1 0 0 4.00000 + 6.92820i 0 0 10.0000 15.5885i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.4.e.c 2
3.b odd 2 1 CM 189.4.e.c 2
7.c even 3 1 inner 189.4.e.c 2
7.c even 3 1 1323.4.a.i 1
7.d odd 6 1 1323.4.a.f 1
21.g even 6 1 1323.4.a.f 1
21.h odd 6 1 inner 189.4.e.c 2
21.h odd 6 1 1323.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.e.c 2 1.a even 1 1 trivial
189.4.e.c 2 3.b odd 2 1 CM
189.4.e.c 2 7.c even 3 1 inner
189.4.e.c 2 21.h odd 6 1 inner
1323.4.a.f 1 7.d odd 6 1
1323.4.a.f 1 21.g even 6 1
1323.4.a.i 1 7.c even 3 1
1323.4.a.i 1 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(189, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13} - 89 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 89)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 56T + 3136 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 289T + 83521 \) Copy content Toggle raw display
$37$ \( T^{2} - 433T + 187489 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 71)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 719T + 516961 \) Copy content Toggle raw display
$67$ \( T^{2} + 1007 T + 1014049 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1190 T + 1416100 \) Copy content Toggle raw display
$79$ \( T^{2} + 503T + 253009 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T + 523)^{2} \) Copy content Toggle raw display
show more
show less