Properties

Label 189.4.e
Level $189$
Weight $4$
Character orbit 189.e
Rep. character $\chi_{189}(109,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $8$
Sturm bound $96$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(96\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(2\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(189, [\chi])\).

Total New Old
Modular forms 156 64 92
Cusp forms 132 64 68
Eisenstein series 24 0 24

Trace form

\( 64 q - 128 q^{4} - 20 q^{7} + O(q^{10}) \) \( 64 q - 128 q^{4} - 20 q^{7} - 12 q^{10} - 172 q^{13} - 272 q^{16} - 178 q^{19} + 156 q^{22} - 710 q^{25} + 454 q^{28} - 244 q^{31} - 744 q^{34} + 38 q^{37} + 390 q^{40} + 1460 q^{43} - 894 q^{46} + 1432 q^{49} + 686 q^{52} - 120 q^{55} - 3780 q^{58} + 392 q^{61} + 940 q^{64} + 2156 q^{67} - 9018 q^{70} + 2558 q^{73} + 11168 q^{76} + 2216 q^{79} + 4326 q^{82} - 3456 q^{85} - 3312 q^{88} + 932 q^{91} - 5118 q^{94} - 5116 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
189.4.e.a 189.e 7.c $2$ $11.151$ \(\Q(\sqrt{-3}) \) None 189.4.e.a \(-3\) \(0\) \(6\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q-3\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+6\zeta_{6}q^{5}+\cdots\)
189.4.e.b 189.e 7.c $2$ $11.151$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 189.4.e.b \(0\) \(0\) \(0\) \(20\) $\mathrm{U}(1)[D_{3}]$ \(q+(8-8\zeta_{6})q^{4}+(19-18\zeta_{6})q^{7}-19q^{13}+\cdots\)
189.4.e.c 189.e 7.c $2$ $11.151$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 189.4.e.c \(0\) \(0\) \(0\) \(20\) $\mathrm{U}(1)[D_{3}]$ \(q+(8-8\zeta_{6})q^{4}+(1+18\zeta_{6})q^{7}+89q^{13}+\cdots\)
189.4.e.d 189.e 7.c $2$ $11.151$ \(\Q(\sqrt{-3}) \) None 189.4.e.a \(3\) \(0\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+3\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-6\zeta_{6}q^{5}+\cdots\)
189.4.e.e 189.e 7.c $12$ $11.151$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 189.4.e.e \(0\) \(0\) \(0\) \(-26\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{2}+(-6-6\beta _{2}+\beta _{4}+\beta _{7}-\beta _{11})q^{4}+\cdots\)
189.4.e.f 189.e 7.c $14$ $11.151$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 189.4.e.f \(-1\) \(0\) \(1\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-4\beta _{5}+\beta _{9})q^{4}+\cdots\)
189.4.e.g 189.e 7.c $14$ $11.151$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 189.4.e.f \(1\) \(0\) \(-1\) \(20\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-4\beta _{5}+\beta _{9})q^{4}+\cdots\)
189.4.e.h 189.e 7.c $16$ $11.151$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 189.4.e.h \(0\) \(0\) \(0\) \(-60\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}-\beta _{5})q^{2}+(6\beta _{1}-\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(189, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)