Properties

Label 189.4.a.h
Level $189$
Weight $4$
Character orbit 189.a
Self dual yes
Analytic conductor $11.151$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(1,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{21}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 13 q^{4} - \beta q^{5} + 7 q^{7} - 5 \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + 13 q^{4} - \beta q^{5} + 7 q^{7} - 5 \beta q^{8} + 21 q^{10} - 5 \beta q^{11} + 44 q^{13} - 7 \beta q^{14} + q^{16} - 14 \beta q^{17} - 49 q^{19} - 13 \beta q^{20} + 105 q^{22} + 17 \beta q^{23} - 104 q^{25} - 44 \beta q^{26} + 91 q^{28} + 48 \beta q^{29} + 191 q^{31} + 39 \beta q^{32} + 294 q^{34} - 7 \beta q^{35} + 29 q^{37} + 49 \beta q^{38} + 105 q^{40} + 81 \beta q^{41} + 386 q^{43} - 65 \beta q^{44} - 357 q^{46} + 14 \beta q^{47} + 49 q^{49} + 104 \beta q^{50} + 572 q^{52} + 28 \beta q^{53} + 105 q^{55} - 35 \beta q^{56} - 1008 q^{58} + 154 \beta q^{59} + 128 q^{61} - 191 \beta q^{62} - 827 q^{64} - 44 \beta q^{65} - 988 q^{67} - 182 \beta q^{68} + 147 q^{70} + 177 \beta q^{71} + 266 q^{73} - 29 \beta q^{74} - 637 q^{76} - 35 \beta q^{77} + 146 q^{79} - \beta q^{80} - 1701 q^{82} - 312 \beta q^{83} + 294 q^{85} - 386 \beta q^{86} + 525 q^{88} - 175 \beta q^{89} + 308 q^{91} + 221 \beta q^{92} - 294 q^{94} + 49 \beta q^{95} + 152 q^{97} - 49 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 26 q^{4} + 14 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 26 q^{4} + 14 q^{7} + 42 q^{10} + 88 q^{13} + 2 q^{16} - 98 q^{19} + 210 q^{22} - 208 q^{25} + 182 q^{28} + 382 q^{31} + 588 q^{34} + 58 q^{37} + 210 q^{40} + 772 q^{43} - 714 q^{46} + 98 q^{49} + 1144 q^{52} + 210 q^{55} - 2016 q^{58} + 256 q^{61} - 1654 q^{64} - 1976 q^{67} + 294 q^{70} + 532 q^{73} - 1274 q^{76} + 292 q^{79} - 3402 q^{82} + 588 q^{85} + 1050 q^{88} + 616 q^{91} - 588 q^{94} + 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.79129
−1.79129
−4.58258 0 13.0000 −4.58258 0 7.00000 −22.9129 0 21.0000
1.2 4.58258 0 13.0000 4.58258 0 7.00000 22.9129 0 21.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.4.a.h 2
3.b odd 2 1 inner 189.4.a.h 2
7.b odd 2 1 1323.4.a.u 2
21.c even 2 1 1323.4.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.a.h 2 1.a even 1 1 trivial
189.4.a.h 2 3.b odd 2 1 inner
1323.4.a.u 2 7.b odd 2 1
1323.4.a.u 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(189))\):

\( T_{2}^{2} - 21 \) Copy content Toggle raw display
\( T_{5}^{2} - 21 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 21 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 21 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 525 \) Copy content Toggle raw display
$13$ \( (T - 44)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 4116 \) Copy content Toggle raw display
$19$ \( (T + 49)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6069 \) Copy content Toggle raw display
$29$ \( T^{2} - 48384 \) Copy content Toggle raw display
$31$ \( (T - 191)^{2} \) Copy content Toggle raw display
$37$ \( (T - 29)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 137781 \) Copy content Toggle raw display
$43$ \( (T - 386)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 4116 \) Copy content Toggle raw display
$53$ \( T^{2} - 16464 \) Copy content Toggle raw display
$59$ \( T^{2} - 498036 \) Copy content Toggle raw display
$61$ \( (T - 128)^{2} \) Copy content Toggle raw display
$67$ \( (T + 988)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 657909 \) Copy content Toggle raw display
$73$ \( (T - 266)^{2} \) Copy content Toggle raw display
$79$ \( (T - 146)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2044224 \) Copy content Toggle raw display
$89$ \( T^{2} - 643125 \) Copy content Toggle raw display
$97$ \( (T - 152)^{2} \) Copy content Toggle raw display
show more
show less