Properties

Label 189.4.a.e
Level $189$
Weight $4$
Character orbit 189.a
Self dual yes
Analytic conductor $11.151$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(1,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1513609911\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 3) q^{2} + ( - 6 \beta + 4) q^{4} + (4 \beta - 3) q^{5} + 7 q^{7} + (14 \beta - 6) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta - 3) q^{2} + ( - 6 \beta + 4) q^{4} + (4 \beta - 3) q^{5} + 7 q^{7} + (14 \beta - 6) q^{8} + ( - 15 \beta + 21) q^{10} + ( - 16 \beta - 24) q^{11} + (24 \beta + 26) q^{13} + (7 \beta - 21) q^{14} + 28 q^{16} + ( - 28 \beta - 15) q^{17} + ( - 60 \beta + 32) q^{19} + (34 \beta - 84) q^{20} + (24 \beta + 24) q^{22} + ( - 68 \beta - 30) q^{23} + ( - 24 \beta - 68) q^{25} + ( - 46 \beta - 6) q^{26} + ( - 42 \beta + 28) q^{28} + (36 \beta - 180) q^{29} + (72 \beta - 70) q^{31} + ( - 84 \beta - 36) q^{32} + (69 \beta - 39) q^{34} + (28 \beta - 21) q^{35} + (72 \beta - 115) q^{37} + (212 \beta - 276) q^{38} + ( - 66 \beta + 186) q^{40} + (204 \beta - 117) q^{41} + ( - 12 \beta - 469) q^{43} + (80 \beta + 192) q^{44} + (174 \beta - 114) q^{46} + ( - 176 \beta - 309) q^{47} + 49 q^{49} + (4 \beta + 132) q^{50} + ( - 60 \beta - 328) q^{52} + ( - 304 \beta + 210) q^{53} + ( - 48 \beta - 120) q^{55} + (98 \beta - 42) q^{56} + ( - 288 \beta + 648) q^{58} + (80 \beta - 141) q^{59} + (288 \beta - 16) q^{61} + ( - 286 \beta + 426) q^{62} + (216 \beta - 368) q^{64} + (32 \beta + 210) q^{65} + (216 \beta + 272) q^{67} + ( - 22 \beta + 444) q^{68} + ( - 105 \beta + 147) q^{70} + (120 \beta + 252) q^{71} + (300 \beta - 382) q^{73} + ( - 331 \beta + 561) q^{74} + ( - 432 \beta + 1208) q^{76} + ( - 112 \beta - 168) q^{77} + ( - 540 \beta + 119) q^{79} + (112 \beta - 84) q^{80} + ( - 729 \beta + 963) q^{82} + (432 \beta + 261) q^{83} + (24 \beta - 291) q^{85} + ( - 433 \beta + 1371) q^{86} + ( - 240 \beta - 528) q^{88} + (352 \beta - 354) q^{89} + (168 \beta + 182) q^{91} + ( - 92 \beta + 1104) q^{92} + (219 \beta + 399) q^{94} + (308 \beta - 816) q^{95} + ( - 228 \beta + 332) q^{97} + (49 \beta - 147) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} + 8 q^{4} - 6 q^{5} + 14 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{2} + 8 q^{4} - 6 q^{5} + 14 q^{7} - 12 q^{8} + 42 q^{10} - 48 q^{11} + 52 q^{13} - 42 q^{14} + 56 q^{16} - 30 q^{17} + 64 q^{19} - 168 q^{20} + 48 q^{22} - 60 q^{23} - 136 q^{25} - 12 q^{26} + 56 q^{28} - 360 q^{29} - 140 q^{31} - 72 q^{32} - 78 q^{34} - 42 q^{35} - 230 q^{37} - 552 q^{38} + 372 q^{40} - 234 q^{41} - 938 q^{43} + 384 q^{44} - 228 q^{46} - 618 q^{47} + 98 q^{49} + 264 q^{50} - 656 q^{52} + 420 q^{53} - 240 q^{55} - 84 q^{56} + 1296 q^{58} - 282 q^{59} - 32 q^{61} + 852 q^{62} - 736 q^{64} + 420 q^{65} + 544 q^{67} + 888 q^{68} + 294 q^{70} + 504 q^{71} - 764 q^{73} + 1122 q^{74} + 2416 q^{76} - 336 q^{77} + 238 q^{79} - 168 q^{80} + 1926 q^{82} + 522 q^{83} - 582 q^{85} + 2742 q^{86} - 1056 q^{88} - 708 q^{89} + 364 q^{91} + 2208 q^{92} + 798 q^{94} - 1632 q^{95} + 664 q^{97} - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−4.73205 0 14.3923 −9.92820 0 7.00000 −30.2487 0 46.9808
1.2 −1.26795 0 −6.39230 3.92820 0 7.00000 18.2487 0 −4.98076
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.4.a.e 2
3.b odd 2 1 189.4.a.i yes 2
7.b odd 2 1 1323.4.a.o 2
21.c even 2 1 1323.4.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.a.e 2 1.a even 1 1 trivial
189.4.a.i yes 2 3.b odd 2 1
1323.4.a.o 2 7.b odd 2 1
1323.4.a.x 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(189))\):

\( T_{2}^{2} + 6T_{2} + 6 \) Copy content Toggle raw display
\( T_{5}^{2} + 6T_{5} - 39 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 6T - 39 \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 48T - 192 \) Copy content Toggle raw display
$13$ \( T^{2} - 52T - 1052 \) Copy content Toggle raw display
$17$ \( T^{2} + 30T - 2127 \) Copy content Toggle raw display
$19$ \( T^{2} - 64T - 9776 \) Copy content Toggle raw display
$23$ \( T^{2} + 60T - 12972 \) Copy content Toggle raw display
$29$ \( T^{2} + 360T + 28512 \) Copy content Toggle raw display
$31$ \( T^{2} + 140T - 10652 \) Copy content Toggle raw display
$37$ \( T^{2} + 230T - 2327 \) Copy content Toggle raw display
$41$ \( T^{2} + 234T - 111159 \) Copy content Toggle raw display
$43$ \( T^{2} + 938T + 219529 \) Copy content Toggle raw display
$47$ \( T^{2} + 618T + 2553 \) Copy content Toggle raw display
$53$ \( T^{2} - 420T - 233148 \) Copy content Toggle raw display
$59$ \( T^{2} + 282T + 681 \) Copy content Toggle raw display
$61$ \( T^{2} + 32T - 248576 \) Copy content Toggle raw display
$67$ \( T^{2} - 544T - 65984 \) Copy content Toggle raw display
$71$ \( T^{2} - 504T + 20304 \) Copy content Toggle raw display
$73$ \( T^{2} + 764T - 124076 \) Copy content Toggle raw display
$79$ \( T^{2} - 238T - 860639 \) Copy content Toggle raw display
$83$ \( T^{2} - 522T - 491751 \) Copy content Toggle raw display
$89$ \( T^{2} + 708T - 246396 \) Copy content Toggle raw display
$97$ \( T^{2} - 664T - 45728 \) Copy content Toggle raw display
show more
show less