Properties

Label 189.4.a.d
Level $189$
Weight $4$
Character orbit 189.a
Self dual yes
Analytic conductor $11.151$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(1,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1513609911\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + q^{4} - 12 q^{5} + 7 q^{7} - 21 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} + q^{4} - 12 q^{5} + 7 q^{7} - 21 q^{8} - 36 q^{10} + 12 q^{11} - 61 q^{13} + 21 q^{14} - 71 q^{16} - 117 q^{17} + 2 q^{19} - 12 q^{20} + 36 q^{22} - 75 q^{23} + 19 q^{25} - 183 q^{26} + 7 q^{28} + 3 q^{29} + 263 q^{31} - 45 q^{32} - 351 q^{34} - 84 q^{35} + 218 q^{37} + 6 q^{38} + 252 q^{40} - 246 q^{41} + 515 q^{43} + 12 q^{44} - 225 q^{46} + 318 q^{47} + 49 q^{49} + 57 q^{50} - 61 q^{52} - 459 q^{53} - 144 q^{55} - 147 q^{56} + 9 q^{58} - 255 q^{59} - 862 q^{61} + 789 q^{62} + 433 q^{64} + 732 q^{65} + 479 q^{67} - 117 q^{68} - 252 q^{70} - 117 q^{71} - 430 q^{73} + 654 q^{74} + 2 q^{76} + 84 q^{77} - 646 q^{79} + 852 q^{80} - 738 q^{82} - 348 q^{83} + 1404 q^{85} + 1545 q^{86} - 252 q^{88} - 585 q^{89} - 427 q^{91} - 75 q^{92} + 954 q^{94} - 24 q^{95} - 376 q^{97} + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 0 1.00000 −12.0000 0 7.00000 −21.0000 0 −36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.4.a.d yes 1
3.b odd 2 1 189.4.a.a 1
7.b odd 2 1 1323.4.a.n 1
21.c even 2 1 1323.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.4.a.a 1 3.b odd 2 1
189.4.a.d yes 1 1.a even 1 1 trivial
1323.4.a.a 1 21.c even 2 1
1323.4.a.n 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(189))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{5} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 12 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T + 61 \) Copy content Toggle raw display
$17$ \( T + 117 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T + 75 \) Copy content Toggle raw display
$29$ \( T - 3 \) Copy content Toggle raw display
$31$ \( T - 263 \) Copy content Toggle raw display
$37$ \( T - 218 \) Copy content Toggle raw display
$41$ \( T + 246 \) Copy content Toggle raw display
$43$ \( T - 515 \) Copy content Toggle raw display
$47$ \( T - 318 \) Copy content Toggle raw display
$53$ \( T + 459 \) Copy content Toggle raw display
$59$ \( T + 255 \) Copy content Toggle raw display
$61$ \( T + 862 \) Copy content Toggle raw display
$67$ \( T - 479 \) Copy content Toggle raw display
$71$ \( T + 117 \) Copy content Toggle raw display
$73$ \( T + 430 \) Copy content Toggle raw display
$79$ \( T + 646 \) Copy content Toggle raw display
$83$ \( T + 348 \) Copy content Toggle raw display
$89$ \( T + 585 \) Copy content Toggle raw display
$97$ \( T + 376 \) Copy content Toggle raw display
show more
show less