Properties

Label 189.4.a.a.1.1
Level $189$
Weight $4$
Character 189.1
Self dual yes
Analytic conductor $11.151$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(1,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 189.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{2} +1.00000 q^{4} +12.0000 q^{5} +7.00000 q^{7} +21.0000 q^{8} +O(q^{10})\) \(q-3.00000 q^{2} +1.00000 q^{4} +12.0000 q^{5} +7.00000 q^{7} +21.0000 q^{8} -36.0000 q^{10} -12.0000 q^{11} -61.0000 q^{13} -21.0000 q^{14} -71.0000 q^{16} +117.000 q^{17} +2.00000 q^{19} +12.0000 q^{20} +36.0000 q^{22} +75.0000 q^{23} +19.0000 q^{25} +183.000 q^{26} +7.00000 q^{28} -3.00000 q^{29} +263.000 q^{31} +45.0000 q^{32} -351.000 q^{34} +84.0000 q^{35} +218.000 q^{37} -6.00000 q^{38} +252.000 q^{40} +246.000 q^{41} +515.000 q^{43} -12.0000 q^{44} -225.000 q^{46} -318.000 q^{47} +49.0000 q^{49} -57.0000 q^{50} -61.0000 q^{52} +459.000 q^{53} -144.000 q^{55} +147.000 q^{56} +9.00000 q^{58} +255.000 q^{59} -862.000 q^{61} -789.000 q^{62} +433.000 q^{64} -732.000 q^{65} +479.000 q^{67} +117.000 q^{68} -252.000 q^{70} +117.000 q^{71} -430.000 q^{73} -654.000 q^{74} +2.00000 q^{76} -84.0000 q^{77} -646.000 q^{79} -852.000 q^{80} -738.000 q^{82} +348.000 q^{83} +1404.00 q^{85} -1545.00 q^{86} -252.000 q^{88} +585.000 q^{89} -427.000 q^{91} +75.0000 q^{92} +954.000 q^{94} +24.0000 q^{95} -376.000 q^{97} -147.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.00000 −1.06066 −0.530330 0.847791i \(-0.677932\pi\)
−0.530330 + 0.847791i \(0.677932\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) 12.0000 1.07331 0.536656 0.843801i \(-0.319687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 21.0000 0.928078
\(9\) 0 0
\(10\) −36.0000 −1.13842
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 0 0
\(13\) −61.0000 −1.30141 −0.650706 0.759330i \(-0.725527\pi\)
−0.650706 + 0.759330i \(0.725527\pi\)
\(14\) −21.0000 −0.400892
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) 117.000 1.66922 0.834608 0.550845i \(-0.185694\pi\)
0.834608 + 0.550845i \(0.185694\pi\)
\(18\) 0 0
\(19\) 2.00000 0.0241490 0.0120745 0.999927i \(-0.496156\pi\)
0.0120745 + 0.999927i \(0.496156\pi\)
\(20\) 12.0000 0.134164
\(21\) 0 0
\(22\) 36.0000 0.348874
\(23\) 75.0000 0.679938 0.339969 0.940437i \(-0.389583\pi\)
0.339969 + 0.940437i \(0.389583\pi\)
\(24\) 0 0
\(25\) 19.0000 0.152000
\(26\) 183.000 1.38036
\(27\) 0 0
\(28\) 7.00000 0.0472456
\(29\) −3.00000 −0.0192099 −0.00960493 0.999954i \(-0.503057\pi\)
−0.00960493 + 0.999954i \(0.503057\pi\)
\(30\) 0 0
\(31\) 263.000 1.52375 0.761874 0.647725i \(-0.224279\pi\)
0.761874 + 0.647725i \(0.224279\pi\)
\(32\) 45.0000 0.248592
\(33\) 0 0
\(34\) −351.000 −1.77047
\(35\) 84.0000 0.405674
\(36\) 0 0
\(37\) 218.000 0.968621 0.484311 0.874896i \(-0.339070\pi\)
0.484311 + 0.874896i \(0.339070\pi\)
\(38\) −6.00000 −0.0256139
\(39\) 0 0
\(40\) 252.000 0.996117
\(41\) 246.000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 515.000 1.82644 0.913218 0.407471i \(-0.133589\pi\)
0.913218 + 0.407471i \(0.133589\pi\)
\(44\) −12.0000 −0.0411152
\(45\) 0 0
\(46\) −225.000 −0.721183
\(47\) −318.000 −0.986916 −0.493458 0.869770i \(-0.664267\pi\)
−0.493458 + 0.869770i \(0.664267\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −57.0000 −0.161220
\(51\) 0 0
\(52\) −61.0000 −0.162676
\(53\) 459.000 1.18959 0.594797 0.803876i \(-0.297232\pi\)
0.594797 + 0.803876i \(0.297232\pi\)
\(54\) 0 0
\(55\) −144.000 −0.353036
\(56\) 147.000 0.350780
\(57\) 0 0
\(58\) 9.00000 0.0203751
\(59\) 255.000 0.562681 0.281340 0.959608i \(-0.409221\pi\)
0.281340 + 0.959608i \(0.409221\pi\)
\(60\) 0 0
\(61\) −862.000 −1.80931 −0.904654 0.426147i \(-0.859871\pi\)
−0.904654 + 0.426147i \(0.859871\pi\)
\(62\) −789.000 −1.61618
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) −732.000 −1.39682
\(66\) 0 0
\(67\) 479.000 0.873420 0.436710 0.899602i \(-0.356144\pi\)
0.436710 + 0.899602i \(0.356144\pi\)
\(68\) 117.000 0.208652
\(69\) 0 0
\(70\) −252.000 −0.430282
\(71\) 117.000 0.195568 0.0977841 0.995208i \(-0.468825\pi\)
0.0977841 + 0.995208i \(0.468825\pi\)
\(72\) 0 0
\(73\) −430.000 −0.689420 −0.344710 0.938709i \(-0.612023\pi\)
−0.344710 + 0.938709i \(0.612023\pi\)
\(74\) −654.000 −1.02738
\(75\) 0 0
\(76\) 2.00000 0.00301863
\(77\) −84.0000 −0.124321
\(78\) 0 0
\(79\) −646.000 −0.920009 −0.460004 0.887917i \(-0.652152\pi\)
−0.460004 + 0.887917i \(0.652152\pi\)
\(80\) −852.000 −1.19071
\(81\) 0 0
\(82\) −738.000 −0.993884
\(83\) 348.000 0.460216 0.230108 0.973165i \(-0.426092\pi\)
0.230108 + 0.973165i \(0.426092\pi\)
\(84\) 0 0
\(85\) 1404.00 1.79159
\(86\) −1545.00 −1.93723
\(87\) 0 0
\(88\) −252.000 −0.305265
\(89\) 585.000 0.696740 0.348370 0.937357i \(-0.386735\pi\)
0.348370 + 0.937357i \(0.386735\pi\)
\(90\) 0 0
\(91\) −427.000 −0.491888
\(92\) 75.0000 0.0849923
\(93\) 0 0
\(94\) 954.000 1.04678
\(95\) 24.0000 0.0259195
\(96\) 0 0
\(97\) −376.000 −0.393577 −0.196789 0.980446i \(-0.563051\pi\)
−0.196789 + 0.980446i \(0.563051\pi\)
\(98\) −147.000 −0.151523
\(99\) 0 0
\(100\) 19.0000 0.0190000
\(101\) 978.000 0.963511 0.481756 0.876306i \(-0.339999\pi\)
0.481756 + 0.876306i \(0.339999\pi\)
\(102\) 0 0
\(103\) −655.000 −0.626593 −0.313296 0.949655i \(-0.601433\pi\)
−0.313296 + 0.949655i \(0.601433\pi\)
\(104\) −1281.00 −1.20781
\(105\) 0 0
\(106\) −1377.00 −1.26176
\(107\) 108.000 0.0975771 0.0487886 0.998809i \(-0.484464\pi\)
0.0487886 + 0.998809i \(0.484464\pi\)
\(108\) 0 0
\(109\) 272.000 0.239017 0.119509 0.992833i \(-0.461868\pi\)
0.119509 + 0.992833i \(0.461868\pi\)
\(110\) 432.000 0.374451
\(111\) 0 0
\(112\) −497.000 −0.419304
\(113\) −2256.00 −1.87811 −0.939056 0.343765i \(-0.888298\pi\)
−0.939056 + 0.343765i \(0.888298\pi\)
\(114\) 0 0
\(115\) 900.000 0.729786
\(116\) −3.00000 −0.00240123
\(117\) 0 0
\(118\) −765.000 −0.596813
\(119\) 819.000 0.630904
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 2586.00 1.91906
\(123\) 0 0
\(124\) 263.000 0.190469
\(125\) −1272.00 −0.910169
\(126\) 0 0
\(127\) 1784.00 1.24649 0.623246 0.782026i \(-0.285814\pi\)
0.623246 + 0.782026i \(0.285814\pi\)
\(128\) −1659.00 −1.14560
\(129\) 0 0
\(130\) 2196.00 1.48155
\(131\) 1749.00 1.16649 0.583247 0.812295i \(-0.301782\pi\)
0.583247 + 0.812295i \(0.301782\pi\)
\(132\) 0 0
\(133\) 14.0000 0.00912747
\(134\) −1437.00 −0.926402
\(135\) 0 0
\(136\) 2457.00 1.54916
\(137\) 1374.00 0.856852 0.428426 0.903577i \(-0.359068\pi\)
0.428426 + 0.903577i \(0.359068\pi\)
\(138\) 0 0
\(139\) 2450.00 1.49501 0.747505 0.664257i \(-0.231252\pi\)
0.747505 + 0.664257i \(0.231252\pi\)
\(140\) 84.0000 0.0507093
\(141\) 0 0
\(142\) −351.000 −0.207431
\(143\) 732.000 0.428062
\(144\) 0 0
\(145\) −36.0000 −0.0206182
\(146\) 1290.00 0.731241
\(147\) 0 0
\(148\) 218.000 0.121078
\(149\) 921.000 0.506384 0.253192 0.967416i \(-0.418520\pi\)
0.253192 + 0.967416i \(0.418520\pi\)
\(150\) 0 0
\(151\) 650.000 0.350306 0.175153 0.984541i \(-0.443958\pi\)
0.175153 + 0.984541i \(0.443958\pi\)
\(152\) 42.0000 0.0224122
\(153\) 0 0
\(154\) 252.000 0.131862
\(155\) 3156.00 1.63546
\(156\) 0 0
\(157\) −871.000 −0.442760 −0.221380 0.975188i \(-0.571056\pi\)
−0.221380 + 0.975188i \(0.571056\pi\)
\(158\) 1938.00 0.975816
\(159\) 0 0
\(160\) 540.000 0.266817
\(161\) 525.000 0.256993
\(162\) 0 0
\(163\) −3697.00 −1.77651 −0.888256 0.459349i \(-0.848083\pi\)
−0.888256 + 0.459349i \(0.848083\pi\)
\(164\) 246.000 0.117130
\(165\) 0 0
\(166\) −1044.00 −0.488133
\(167\) −1824.00 −0.845182 −0.422591 0.906321i \(-0.638879\pi\)
−0.422591 + 0.906321i \(0.638879\pi\)
\(168\) 0 0
\(169\) 1524.00 0.693673
\(170\) −4212.00 −1.90027
\(171\) 0 0
\(172\) 515.000 0.228305
\(173\) 744.000 0.326967 0.163483 0.986546i \(-0.447727\pi\)
0.163483 + 0.986546i \(0.447727\pi\)
\(174\) 0 0
\(175\) 133.000 0.0574506
\(176\) 852.000 0.364897
\(177\) 0 0
\(178\) −1755.00 −0.739005
\(179\) 4572.00 1.90909 0.954546 0.298065i \(-0.0963412\pi\)
0.954546 + 0.298065i \(0.0963412\pi\)
\(180\) 0 0
\(181\) −3481.00 −1.42951 −0.714753 0.699377i \(-0.753461\pi\)
−0.714753 + 0.699377i \(0.753461\pi\)
\(182\) 1281.00 0.521725
\(183\) 0 0
\(184\) 1575.00 0.631036
\(185\) 2616.00 1.03963
\(186\) 0 0
\(187\) −1404.00 −0.549041
\(188\) −318.000 −0.123365
\(189\) 0 0
\(190\) −72.0000 −0.0274917
\(191\) −3756.00 −1.42290 −0.711452 0.702735i \(-0.751962\pi\)
−0.711452 + 0.702735i \(0.751962\pi\)
\(192\) 0 0
\(193\) −4867.00 −1.81520 −0.907602 0.419832i \(-0.862089\pi\)
−0.907602 + 0.419832i \(0.862089\pi\)
\(194\) 1128.00 0.417452
\(195\) 0 0
\(196\) 49.0000 0.0178571
\(197\) 18.0000 0.00650988 0.00325494 0.999995i \(-0.498964\pi\)
0.00325494 + 0.999995i \(0.498964\pi\)
\(198\) 0 0
\(199\) −1807.00 −0.643693 −0.321846 0.946792i \(-0.604303\pi\)
−0.321846 + 0.946792i \(0.604303\pi\)
\(200\) 399.000 0.141068
\(201\) 0 0
\(202\) −2934.00 −1.02196
\(203\) −21.0000 −0.00726065
\(204\) 0 0
\(205\) 2952.00 1.00574
\(206\) 1965.00 0.664602
\(207\) 0 0
\(208\) 4331.00 1.44375
\(209\) −24.0000 −0.00794313
\(210\) 0 0
\(211\) −4273.00 −1.39415 −0.697075 0.716999i \(-0.745515\pi\)
−0.697075 + 0.716999i \(0.745515\pi\)
\(212\) 459.000 0.148699
\(213\) 0 0
\(214\) −324.000 −0.103496
\(215\) 6180.00 1.96034
\(216\) 0 0
\(217\) 1841.00 0.575923
\(218\) −816.000 −0.253516
\(219\) 0 0
\(220\) −144.000 −0.0441294
\(221\) −7137.00 −2.17234
\(222\) 0 0
\(223\) 2648.00 0.795171 0.397586 0.917565i \(-0.369848\pi\)
0.397586 + 0.917565i \(0.369848\pi\)
\(224\) 315.000 0.0939590
\(225\) 0 0
\(226\) 6768.00 1.99204
\(227\) −5493.00 −1.60609 −0.803047 0.595916i \(-0.796789\pi\)
−0.803047 + 0.595916i \(0.796789\pi\)
\(228\) 0 0
\(229\) −790.000 −0.227968 −0.113984 0.993483i \(-0.536361\pi\)
−0.113984 + 0.993483i \(0.536361\pi\)
\(230\) −2700.00 −0.774055
\(231\) 0 0
\(232\) −63.0000 −0.0178282
\(233\) −6228.00 −1.75112 −0.875558 0.483114i \(-0.839506\pi\)
−0.875558 + 0.483114i \(0.839506\pi\)
\(234\) 0 0
\(235\) −3816.00 −1.05927
\(236\) 255.000 0.0703351
\(237\) 0 0
\(238\) −2457.00 −0.669175
\(239\) −4812.00 −1.30235 −0.651177 0.758926i \(-0.725724\pi\)
−0.651177 + 0.758926i \(0.725724\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) 3561.00 0.945908
\(243\) 0 0
\(244\) −862.000 −0.226164
\(245\) 588.000 0.153330
\(246\) 0 0
\(247\) −122.000 −0.0314278
\(248\) 5523.00 1.41416
\(249\) 0 0
\(250\) 3816.00 0.965380
\(251\) 2880.00 0.724239 0.362119 0.932132i \(-0.382053\pi\)
0.362119 + 0.932132i \(0.382053\pi\)
\(252\) 0 0
\(253\) −900.000 −0.223646
\(254\) −5352.00 −1.32210
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 2190.00 0.531550 0.265775 0.964035i \(-0.414372\pi\)
0.265775 + 0.964035i \(0.414372\pi\)
\(258\) 0 0
\(259\) 1526.00 0.366104
\(260\) −732.000 −0.174603
\(261\) 0 0
\(262\) −5247.00 −1.23725
\(263\) 1869.00 0.438203 0.219102 0.975702i \(-0.429687\pi\)
0.219102 + 0.975702i \(0.429687\pi\)
\(264\) 0 0
\(265\) 5508.00 1.27681
\(266\) −42.0000 −0.00968115
\(267\) 0 0
\(268\) 479.000 0.109178
\(269\) 2268.00 0.514061 0.257030 0.966403i \(-0.417256\pi\)
0.257030 + 0.966403i \(0.417256\pi\)
\(270\) 0 0
\(271\) 2027.00 0.454360 0.227180 0.973853i \(-0.427049\pi\)
0.227180 + 0.973853i \(0.427049\pi\)
\(272\) −8307.00 −1.85179
\(273\) 0 0
\(274\) −4122.00 −0.908829
\(275\) −228.000 −0.0499961
\(276\) 0 0
\(277\) 3944.00 0.855495 0.427747 0.903898i \(-0.359307\pi\)
0.427747 + 0.903898i \(0.359307\pi\)
\(278\) −7350.00 −1.58570
\(279\) 0 0
\(280\) 1764.00 0.376497
\(281\) −4602.00 −0.976983 −0.488492 0.872569i \(-0.662453\pi\)
−0.488492 + 0.872569i \(0.662453\pi\)
\(282\) 0 0
\(283\) −3220.00 −0.676357 −0.338179 0.941082i \(-0.609811\pi\)
−0.338179 + 0.941082i \(0.609811\pi\)
\(284\) 117.000 0.0244460
\(285\) 0 0
\(286\) −2196.00 −0.454029
\(287\) 1722.00 0.354169
\(288\) 0 0
\(289\) 8776.00 1.78628
\(290\) 108.000 0.0218689
\(291\) 0 0
\(292\) −430.000 −0.0861776
\(293\) −6810.00 −1.35783 −0.678915 0.734216i \(-0.737550\pi\)
−0.678915 + 0.734216i \(0.737550\pi\)
\(294\) 0 0
\(295\) 3060.00 0.603933
\(296\) 4578.00 0.898956
\(297\) 0 0
\(298\) −2763.00 −0.537102
\(299\) −4575.00 −0.884880
\(300\) 0 0
\(301\) 3605.00 0.690328
\(302\) −1950.00 −0.371556
\(303\) 0 0
\(304\) −142.000 −0.0267903
\(305\) −10344.0 −1.94195
\(306\) 0 0
\(307\) 758.000 0.140916 0.0704582 0.997515i \(-0.477554\pi\)
0.0704582 + 0.997515i \(0.477554\pi\)
\(308\) −84.0000 −0.0155401
\(309\) 0 0
\(310\) −9468.00 −1.73467
\(311\) 9480.00 1.72849 0.864247 0.503068i \(-0.167796\pi\)
0.864247 + 0.503068i \(0.167796\pi\)
\(312\) 0 0
\(313\) 3350.00 0.604962 0.302481 0.953155i \(-0.402185\pi\)
0.302481 + 0.953155i \(0.402185\pi\)
\(314\) 2613.00 0.469618
\(315\) 0 0
\(316\) −646.000 −0.115001
\(317\) −426.000 −0.0754781 −0.0377390 0.999288i \(-0.512016\pi\)
−0.0377390 + 0.999288i \(0.512016\pi\)
\(318\) 0 0
\(319\) 36.0000 0.00631854
\(320\) 5196.00 0.907704
\(321\) 0 0
\(322\) −1575.00 −0.272582
\(323\) 234.000 0.0403099
\(324\) 0 0
\(325\) −1159.00 −0.197815
\(326\) 11091.0 1.88428
\(327\) 0 0
\(328\) 5166.00 0.869648
\(329\) −2226.00 −0.373019
\(330\) 0 0
\(331\) −3103.00 −0.515276 −0.257638 0.966242i \(-0.582944\pi\)
−0.257638 + 0.966242i \(0.582944\pi\)
\(332\) 348.000 0.0575271
\(333\) 0 0
\(334\) 5472.00 0.896451
\(335\) 5748.00 0.937453
\(336\) 0 0
\(337\) −11725.0 −1.89526 −0.947628 0.319375i \(-0.896527\pi\)
−0.947628 + 0.319375i \(0.896527\pi\)
\(338\) −4572.00 −0.735752
\(339\) 0 0
\(340\) 1404.00 0.223949
\(341\) −3156.00 −0.501193
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 10815.0 1.69507
\(345\) 0 0
\(346\) −2232.00 −0.346801
\(347\) 1506.00 0.232987 0.116493 0.993191i \(-0.462835\pi\)
0.116493 + 0.993191i \(0.462835\pi\)
\(348\) 0 0
\(349\) 10289.0 1.57810 0.789051 0.614328i \(-0.210573\pi\)
0.789051 + 0.614328i \(0.210573\pi\)
\(350\) −399.000 −0.0609356
\(351\) 0 0
\(352\) −540.000 −0.0817673
\(353\) −12693.0 −1.91382 −0.956912 0.290376i \(-0.906219\pi\)
−0.956912 + 0.290376i \(0.906219\pi\)
\(354\) 0 0
\(355\) 1404.00 0.209906
\(356\) 585.000 0.0870925
\(357\) 0 0
\(358\) −13716.0 −2.02490
\(359\) −5031.00 −0.739627 −0.369813 0.929106i \(-0.620578\pi\)
−0.369813 + 0.929106i \(0.620578\pi\)
\(360\) 0 0
\(361\) −6855.00 −0.999417
\(362\) 10443.0 1.51622
\(363\) 0 0
\(364\) −427.000 −0.0614859
\(365\) −5160.00 −0.739964
\(366\) 0 0
\(367\) 9479.00 1.34823 0.674114 0.738627i \(-0.264526\pi\)
0.674114 + 0.738627i \(0.264526\pi\)
\(368\) −5325.00 −0.754307
\(369\) 0 0
\(370\) −7848.00 −1.10270
\(371\) 3213.00 0.449624
\(372\) 0 0
\(373\) −8566.00 −1.18909 −0.594545 0.804062i \(-0.702668\pi\)
−0.594545 + 0.804062i \(0.702668\pi\)
\(374\) 4212.00 0.582346
\(375\) 0 0
\(376\) −6678.00 −0.915935
\(377\) 183.000 0.0249999
\(378\) 0 0
\(379\) −2320.00 −0.314434 −0.157217 0.987564i \(-0.550252\pi\)
−0.157217 + 0.987564i \(0.550252\pi\)
\(380\) 24.0000 0.00323993
\(381\) 0 0
\(382\) 11268.0 1.50922
\(383\) 1092.00 0.145688 0.0728441 0.997343i \(-0.476792\pi\)
0.0728441 + 0.997343i \(0.476792\pi\)
\(384\) 0 0
\(385\) −1008.00 −0.133435
\(386\) 14601.0 1.92531
\(387\) 0 0
\(388\) −376.000 −0.0491972
\(389\) 12570.0 1.63837 0.819183 0.573532i \(-0.194427\pi\)
0.819183 + 0.573532i \(0.194427\pi\)
\(390\) 0 0
\(391\) 8775.00 1.13496
\(392\) 1029.00 0.132583
\(393\) 0 0
\(394\) −54.0000 −0.00690477
\(395\) −7752.00 −0.987457
\(396\) 0 0
\(397\) −6802.00 −0.859906 −0.429953 0.902851i \(-0.641470\pi\)
−0.429953 + 0.902851i \(0.641470\pi\)
\(398\) 5421.00 0.682739
\(399\) 0 0
\(400\) −1349.00 −0.168625
\(401\) 8526.00 1.06177 0.530883 0.847445i \(-0.321860\pi\)
0.530883 + 0.847445i \(0.321860\pi\)
\(402\) 0 0
\(403\) −16043.0 −1.98302
\(404\) 978.000 0.120439
\(405\) 0 0
\(406\) 63.0000 0.00770108
\(407\) −2616.00 −0.318600
\(408\) 0 0
\(409\) 13466.0 1.62800 0.813999 0.580867i \(-0.197286\pi\)
0.813999 + 0.580867i \(0.197286\pi\)
\(410\) −8856.00 −1.06675
\(411\) 0 0
\(412\) −655.000 −0.0783241
\(413\) 1785.00 0.212673
\(414\) 0 0
\(415\) 4176.00 0.493956
\(416\) −2745.00 −0.323521
\(417\) 0 0
\(418\) 72.0000 0.00842496
\(419\) 15339.0 1.78845 0.894223 0.447621i \(-0.147729\pi\)
0.894223 + 0.447621i \(0.147729\pi\)
\(420\) 0 0
\(421\) −4102.00 −0.474868 −0.237434 0.971404i \(-0.576306\pi\)
−0.237434 + 0.971404i \(0.576306\pi\)
\(422\) 12819.0 1.47872
\(423\) 0 0
\(424\) 9639.00 1.10404
\(425\) 2223.00 0.253721
\(426\) 0 0
\(427\) −6034.00 −0.683854
\(428\) 108.000 0.0121971
\(429\) 0 0
\(430\) −18540.0 −2.07925
\(431\) 2592.00 0.289680 0.144840 0.989455i \(-0.453733\pi\)
0.144840 + 0.989455i \(0.453733\pi\)
\(432\) 0 0
\(433\) −9448.00 −1.04860 −0.524298 0.851535i \(-0.675672\pi\)
−0.524298 + 0.851535i \(0.675672\pi\)
\(434\) −5523.00 −0.610858
\(435\) 0 0
\(436\) 272.000 0.0298772
\(437\) 150.000 0.0164198
\(438\) 0 0
\(439\) 11369.0 1.23602 0.618010 0.786170i \(-0.287939\pi\)
0.618010 + 0.786170i \(0.287939\pi\)
\(440\) −3024.00 −0.327644
\(441\) 0 0
\(442\) 21411.0 2.30411
\(443\) 10842.0 1.16280 0.581398 0.813619i \(-0.302506\pi\)
0.581398 + 0.813619i \(0.302506\pi\)
\(444\) 0 0
\(445\) 7020.00 0.747820
\(446\) −7944.00 −0.843407
\(447\) 0 0
\(448\) 3031.00 0.319646
\(449\) −13140.0 −1.38110 −0.690551 0.723284i \(-0.742632\pi\)
−0.690551 + 0.723284i \(0.742632\pi\)
\(450\) 0 0
\(451\) −2952.00 −0.308213
\(452\) −2256.00 −0.234764
\(453\) 0 0
\(454\) 16479.0 1.70352
\(455\) −5124.00 −0.527949
\(456\) 0 0
\(457\) 1379.00 0.141153 0.0705765 0.997506i \(-0.477516\pi\)
0.0705765 + 0.997506i \(0.477516\pi\)
\(458\) 2370.00 0.241797
\(459\) 0 0
\(460\) 900.000 0.0912233
\(461\) −678.000 −0.0684981 −0.0342490 0.999413i \(-0.510904\pi\)
−0.0342490 + 0.999413i \(0.510904\pi\)
\(462\) 0 0
\(463\) 15734.0 1.57931 0.789655 0.613550i \(-0.210259\pi\)
0.789655 + 0.613550i \(0.210259\pi\)
\(464\) 213.000 0.0213109
\(465\) 0 0
\(466\) 18684.0 1.85734
\(467\) 7416.00 0.734843 0.367421 0.930055i \(-0.380241\pi\)
0.367421 + 0.930055i \(0.380241\pi\)
\(468\) 0 0
\(469\) 3353.00 0.330122
\(470\) 11448.0 1.12353
\(471\) 0 0
\(472\) 5355.00 0.522212
\(473\) −6180.00 −0.600754
\(474\) 0 0
\(475\) 38.0000 0.00367065
\(476\) 819.000 0.0788630
\(477\) 0 0
\(478\) 14436.0 1.38135
\(479\) 1248.00 0.119045 0.0595225 0.998227i \(-0.481042\pi\)
0.0595225 + 0.998227i \(0.481042\pi\)
\(480\) 0 0
\(481\) −13298.0 −1.26058
\(482\) −4866.00 −0.459834
\(483\) 0 0
\(484\) −1187.00 −0.111476
\(485\) −4512.00 −0.422432
\(486\) 0 0
\(487\) −20950.0 −1.94935 −0.974677 0.223619i \(-0.928213\pi\)
−0.974677 + 0.223619i \(0.928213\pi\)
\(488\) −18102.0 −1.67918
\(489\) 0 0
\(490\) −1764.00 −0.162631
\(491\) 768.000 0.0705893 0.0352947 0.999377i \(-0.488763\pi\)
0.0352947 + 0.999377i \(0.488763\pi\)
\(492\) 0 0
\(493\) −351.000 −0.0320654
\(494\) 366.000 0.0333342
\(495\) 0 0
\(496\) −18673.0 −1.69041
\(497\) 819.000 0.0739178
\(498\) 0 0
\(499\) 4772.00 0.428104 0.214052 0.976822i \(-0.431334\pi\)
0.214052 + 0.976822i \(0.431334\pi\)
\(500\) −1272.00 −0.113771
\(501\) 0 0
\(502\) −8640.00 −0.768171
\(503\) −11088.0 −0.982882 −0.491441 0.870911i \(-0.663530\pi\)
−0.491441 + 0.870911i \(0.663530\pi\)
\(504\) 0 0
\(505\) 11736.0 1.03415
\(506\) 2700.00 0.237213
\(507\) 0 0
\(508\) 1784.00 0.155811
\(509\) −16854.0 −1.46766 −0.733831 0.679332i \(-0.762270\pi\)
−0.733831 + 0.679332i \(0.762270\pi\)
\(510\) 0 0
\(511\) −3010.00 −0.260576
\(512\) 8733.00 0.753804
\(513\) 0 0
\(514\) −6570.00 −0.563794
\(515\) −7860.00 −0.672530
\(516\) 0 0
\(517\) 3816.00 0.324618
\(518\) −4578.00 −0.388312
\(519\) 0 0
\(520\) −15372.0 −1.29636
\(521\) −3195.00 −0.268667 −0.134333 0.990936i \(-0.542889\pi\)
−0.134333 + 0.990936i \(0.542889\pi\)
\(522\) 0 0
\(523\) 920.000 0.0769193 0.0384596 0.999260i \(-0.487755\pi\)
0.0384596 + 0.999260i \(0.487755\pi\)
\(524\) 1749.00 0.145812
\(525\) 0 0
\(526\) −5607.00 −0.464785
\(527\) 30771.0 2.54346
\(528\) 0 0
\(529\) −6542.00 −0.537684
\(530\) −16524.0 −1.35426
\(531\) 0 0
\(532\) 14.0000 0.00114093
\(533\) −15006.0 −1.21948
\(534\) 0 0
\(535\) 1296.00 0.104731
\(536\) 10059.0 0.810602
\(537\) 0 0
\(538\) −6804.00 −0.545244
\(539\) −588.000 −0.0469888
\(540\) 0 0
\(541\) −7180.00 −0.570596 −0.285298 0.958439i \(-0.592093\pi\)
−0.285298 + 0.958439i \(0.592093\pi\)
\(542\) −6081.00 −0.481921
\(543\) 0 0
\(544\) 5265.00 0.414954
\(545\) 3264.00 0.256540
\(546\) 0 0
\(547\) 11612.0 0.907666 0.453833 0.891087i \(-0.350056\pi\)
0.453833 + 0.891087i \(0.350056\pi\)
\(548\) 1374.00 0.107107
\(549\) 0 0
\(550\) 684.000 0.0530288
\(551\) −6.00000 −0.000463899 0
\(552\) 0 0
\(553\) −4522.00 −0.347731
\(554\) −11832.0 −0.907389
\(555\) 0 0
\(556\) 2450.00 0.186876
\(557\) −9819.00 −0.746938 −0.373469 0.927643i \(-0.621832\pi\)
−0.373469 + 0.927643i \(0.621832\pi\)
\(558\) 0 0
\(559\) −31415.0 −2.37695
\(560\) −5964.00 −0.450045
\(561\) 0 0
\(562\) 13806.0 1.03625
\(563\) −15801.0 −1.18283 −0.591415 0.806368i \(-0.701430\pi\)
−0.591415 + 0.806368i \(0.701430\pi\)
\(564\) 0 0
\(565\) −27072.0 −2.01580
\(566\) 9660.00 0.717385
\(567\) 0 0
\(568\) 2457.00 0.181503
\(569\) 8340.00 0.614466 0.307233 0.951634i \(-0.400597\pi\)
0.307233 + 0.951634i \(0.400597\pi\)
\(570\) 0 0
\(571\) 1073.00 0.0786404 0.0393202 0.999227i \(-0.487481\pi\)
0.0393202 + 0.999227i \(0.487481\pi\)
\(572\) 732.000 0.0535078
\(573\) 0 0
\(574\) −5166.00 −0.375653
\(575\) 1425.00 0.103351
\(576\) 0 0
\(577\) 22466.0 1.62092 0.810461 0.585793i \(-0.199217\pi\)
0.810461 + 0.585793i \(0.199217\pi\)
\(578\) −26328.0 −1.89464
\(579\) 0 0
\(580\) −36.0000 −0.00257727
\(581\) 2436.00 0.173945
\(582\) 0 0
\(583\) −5508.00 −0.391283
\(584\) −9030.00 −0.639836
\(585\) 0 0
\(586\) 20430.0 1.44020
\(587\) 3219.00 0.226341 0.113171 0.993576i \(-0.463899\pi\)
0.113171 + 0.993576i \(0.463899\pi\)
\(588\) 0 0
\(589\) 526.000 0.0367970
\(590\) −9180.00 −0.640567
\(591\) 0 0
\(592\) −15478.0 −1.07456
\(593\) 9342.00 0.646931 0.323465 0.946240i \(-0.395152\pi\)
0.323465 + 0.946240i \(0.395152\pi\)
\(594\) 0 0
\(595\) 9828.00 0.677158
\(596\) 921.000 0.0632980
\(597\) 0 0
\(598\) 13725.0 0.938557
\(599\) −6927.00 −0.472503 −0.236252 0.971692i \(-0.575919\pi\)
−0.236252 + 0.971692i \(0.575919\pi\)
\(600\) 0 0
\(601\) −15172.0 −1.02975 −0.514874 0.857266i \(-0.672161\pi\)
−0.514874 + 0.857266i \(0.672161\pi\)
\(602\) −10815.0 −0.732203
\(603\) 0 0
\(604\) 650.000 0.0437883
\(605\) −14244.0 −0.957192
\(606\) 0 0
\(607\) −4921.00 −0.329056 −0.164528 0.986372i \(-0.552610\pi\)
−0.164528 + 0.986372i \(0.552610\pi\)
\(608\) 90.0000 0.00600326
\(609\) 0 0
\(610\) 31032.0 2.05975
\(611\) 19398.0 1.28438
\(612\) 0 0
\(613\) 218.000 0.0143637 0.00718184 0.999974i \(-0.497714\pi\)
0.00718184 + 0.999974i \(0.497714\pi\)
\(614\) −2274.00 −0.149464
\(615\) 0 0
\(616\) −1764.00 −0.115379
\(617\) 22350.0 1.45831 0.729155 0.684349i \(-0.239913\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(618\) 0 0
\(619\) 9290.00 0.603226 0.301613 0.953431i \(-0.402475\pi\)
0.301613 + 0.953431i \(0.402475\pi\)
\(620\) 3156.00 0.204432
\(621\) 0 0
\(622\) −28440.0 −1.83334
\(623\) 4095.00 0.263343
\(624\) 0 0
\(625\) −17639.0 −1.12890
\(626\) −10050.0 −0.641659
\(627\) 0 0
\(628\) −871.000 −0.0553450
\(629\) 25506.0 1.61684
\(630\) 0 0
\(631\) 13988.0 0.882494 0.441247 0.897386i \(-0.354536\pi\)
0.441247 + 0.897386i \(0.354536\pi\)
\(632\) −13566.0 −0.853839
\(633\) 0 0
\(634\) 1278.00 0.0800566
\(635\) 21408.0 1.33787
\(636\) 0 0
\(637\) −2989.00 −0.185916
\(638\) −108.000 −0.00670182
\(639\) 0 0
\(640\) −19908.0 −1.22958
\(641\) −11388.0 −0.701714 −0.350857 0.936429i \(-0.614110\pi\)
−0.350857 + 0.936429i \(0.614110\pi\)
\(642\) 0 0
\(643\) 9956.00 0.610616 0.305308 0.952254i \(-0.401241\pi\)
0.305308 + 0.952254i \(0.401241\pi\)
\(644\) 525.000 0.0321241
\(645\) 0 0
\(646\) −702.000 −0.0427551
\(647\) −7830.00 −0.475779 −0.237890 0.971292i \(-0.576456\pi\)
−0.237890 + 0.971292i \(0.576456\pi\)
\(648\) 0 0
\(649\) −3060.00 −0.185078
\(650\) 3477.00 0.209814
\(651\) 0 0
\(652\) −3697.00 −0.222064
\(653\) −3633.00 −0.217719 −0.108859 0.994057i \(-0.534720\pi\)
−0.108859 + 0.994057i \(0.534720\pi\)
\(654\) 0 0
\(655\) 20988.0 1.25201
\(656\) −17466.0 −1.03953
\(657\) 0 0
\(658\) 6678.00 0.395647
\(659\) 6036.00 0.356797 0.178398 0.983958i \(-0.442908\pi\)
0.178398 + 0.983958i \(0.442908\pi\)
\(660\) 0 0
\(661\) −5110.00 −0.300690 −0.150345 0.988634i \(-0.548038\pi\)
−0.150345 + 0.988634i \(0.548038\pi\)
\(662\) 9309.00 0.546533
\(663\) 0 0
\(664\) 7308.00 0.427117
\(665\) 168.000 0.00979663
\(666\) 0 0
\(667\) −225.000 −0.0130615
\(668\) −1824.00 −0.105648
\(669\) 0 0
\(670\) −17244.0 −0.994319
\(671\) 10344.0 0.595120
\(672\) 0 0
\(673\) −12553.0 −0.718993 −0.359497 0.933146i \(-0.617052\pi\)
−0.359497 + 0.933146i \(0.617052\pi\)
\(674\) 35175.0 2.01022
\(675\) 0 0
\(676\) 1524.00 0.0867091
\(677\) −22872.0 −1.29844 −0.649219 0.760602i \(-0.724904\pi\)
−0.649219 + 0.760602i \(0.724904\pi\)
\(678\) 0 0
\(679\) −2632.00 −0.148758
\(680\) 29484.0 1.66273
\(681\) 0 0
\(682\) 9468.00 0.531596
\(683\) 21672.0 1.21414 0.607069 0.794649i \(-0.292345\pi\)
0.607069 + 0.794649i \(0.292345\pi\)
\(684\) 0 0
\(685\) 16488.0 0.919670
\(686\) −1029.00 −0.0572703
\(687\) 0 0
\(688\) −36565.0 −2.02620
\(689\) −27999.0 −1.54815
\(690\) 0 0
\(691\) 17120.0 0.942512 0.471256 0.881997i \(-0.343801\pi\)
0.471256 + 0.881997i \(0.343801\pi\)
\(692\) 744.000 0.0408709
\(693\) 0 0
\(694\) −4518.00 −0.247120
\(695\) 29400.0 1.60461
\(696\) 0 0
\(697\) 28782.0 1.56413
\(698\) −30867.0 −1.67383
\(699\) 0 0
\(700\) 133.000 0.00718132
\(701\) −5562.00 −0.299677 −0.149839 0.988710i \(-0.547875\pi\)
−0.149839 + 0.988710i \(0.547875\pi\)
\(702\) 0 0
\(703\) 436.000 0.0233913
\(704\) −5196.00 −0.278170
\(705\) 0 0
\(706\) 38079.0 2.02992
\(707\) 6846.00 0.364173
\(708\) 0 0
\(709\) 16256.0 0.861082 0.430541 0.902571i \(-0.358323\pi\)
0.430541 + 0.902571i \(0.358323\pi\)
\(710\) −4212.00 −0.222639
\(711\) 0 0
\(712\) 12285.0 0.646629
\(713\) 19725.0 1.03605
\(714\) 0 0
\(715\) 8784.00 0.459445
\(716\) 4572.00 0.238636
\(717\) 0 0
\(718\) 15093.0 0.784493
\(719\) 20016.0 1.03821 0.519104 0.854711i \(-0.326266\pi\)
0.519104 + 0.854711i \(0.326266\pi\)
\(720\) 0 0
\(721\) −4585.00 −0.236830
\(722\) 20565.0 1.06004
\(723\) 0 0
\(724\) −3481.00 −0.178688
\(725\) −57.0000 −0.00291990
\(726\) 0 0
\(727\) 3539.00 0.180542 0.0902711 0.995917i \(-0.471227\pi\)
0.0902711 + 0.995917i \(0.471227\pi\)
\(728\) −8967.00 −0.456510
\(729\) 0 0
\(730\) 15480.0 0.784850
\(731\) 60255.0 3.04872
\(732\) 0 0
\(733\) −19663.0 −0.990818 −0.495409 0.868660i \(-0.664982\pi\)
−0.495409 + 0.868660i \(0.664982\pi\)
\(734\) −28437.0 −1.43001
\(735\) 0 0
\(736\) 3375.00 0.169027
\(737\) −5748.00 −0.287287
\(738\) 0 0
\(739\) −17116.0 −0.851992 −0.425996 0.904725i \(-0.640076\pi\)
−0.425996 + 0.904725i \(0.640076\pi\)
\(740\) 2616.00 0.129954
\(741\) 0 0
\(742\) −9639.00 −0.476899
\(743\) −31641.0 −1.56231 −0.781155 0.624338i \(-0.785369\pi\)
−0.781155 + 0.624338i \(0.785369\pi\)
\(744\) 0 0
\(745\) 11052.0 0.543509
\(746\) 25698.0 1.26122
\(747\) 0 0
\(748\) −1404.00 −0.0686301
\(749\) 756.000 0.0368807
\(750\) 0 0
\(751\) −17314.0 −0.841274 −0.420637 0.907229i \(-0.638193\pi\)
−0.420637 + 0.907229i \(0.638193\pi\)
\(752\) 22578.0 1.09486
\(753\) 0 0
\(754\) −549.000 −0.0265164
\(755\) 7800.00 0.375988
\(756\) 0 0
\(757\) 12476.0 0.599007 0.299503 0.954095i \(-0.403179\pi\)
0.299503 + 0.954095i \(0.403179\pi\)
\(758\) 6960.00 0.333507
\(759\) 0 0
\(760\) 504.000 0.0240553
\(761\) 21855.0 1.04106 0.520528 0.853845i \(-0.325735\pi\)
0.520528 + 0.853845i \(0.325735\pi\)
\(762\) 0 0
\(763\) 1904.00 0.0903400
\(764\) −3756.00 −0.177863
\(765\) 0 0
\(766\) −3276.00 −0.154526
\(767\) −15555.0 −0.732280
\(768\) 0 0
\(769\) −5812.00 −0.272544 −0.136272 0.990671i \(-0.543512\pi\)
−0.136272 + 0.990671i \(0.543512\pi\)
\(770\) 3024.00 0.141529
\(771\) 0 0
\(772\) −4867.00 −0.226900
\(773\) 252.000 0.0117255 0.00586275 0.999983i \(-0.498134\pi\)
0.00586275 + 0.999983i \(0.498134\pi\)
\(774\) 0 0
\(775\) 4997.00 0.231610
\(776\) −7896.00 −0.365270
\(777\) 0 0
\(778\) −37710.0 −1.73775
\(779\) 492.000 0.0226287
\(780\) 0 0
\(781\) −1404.00 −0.0643266
\(782\) −26325.0 −1.20381
\(783\) 0 0
\(784\) −3479.00 −0.158482
\(785\) −10452.0 −0.475220
\(786\) 0 0
\(787\) −12886.0 −0.583655 −0.291827 0.956471i \(-0.594263\pi\)
−0.291827 + 0.956471i \(0.594263\pi\)
\(788\) 18.0000 0.000813735 0
\(789\) 0 0
\(790\) 23256.0 1.04736
\(791\) −15792.0 −0.709860
\(792\) 0 0
\(793\) 52582.0 2.35466
\(794\) 20406.0 0.912068
\(795\) 0 0
\(796\) −1807.00 −0.0804616
\(797\) 39342.0 1.74851 0.874257 0.485464i \(-0.161349\pi\)
0.874257 + 0.485464i \(0.161349\pi\)
\(798\) 0 0
\(799\) −37206.0 −1.64738
\(800\) 855.000 0.0377860
\(801\) 0 0
\(802\) −25578.0 −1.12617
\(803\) 5160.00 0.226765
\(804\) 0 0
\(805\) 6300.00 0.275833
\(806\) 48129.0 2.10331
\(807\) 0 0
\(808\) 20538.0 0.894213
\(809\) −33264.0 −1.44561 −0.722806 0.691051i \(-0.757148\pi\)
−0.722806 + 0.691051i \(0.757148\pi\)
\(810\) 0 0
\(811\) −10258.0 −0.444152 −0.222076 0.975029i \(-0.571283\pi\)
−0.222076 + 0.975029i \(0.571283\pi\)
\(812\) −21.0000 −0.000907581 0
\(813\) 0 0
\(814\) 7848.00 0.337927
\(815\) −44364.0 −1.90675
\(816\) 0 0
\(817\) 1030.00 0.0441067
\(818\) −40398.0 −1.72675
\(819\) 0 0
\(820\) 2952.00 0.125717
\(821\) 33063.0 1.40549 0.702745 0.711442i \(-0.251958\pi\)
0.702745 + 0.711442i \(0.251958\pi\)
\(822\) 0 0
\(823\) −13102.0 −0.554930 −0.277465 0.960736i \(-0.589494\pi\)
−0.277465 + 0.960736i \(0.589494\pi\)
\(824\) −13755.0 −0.581527
\(825\) 0 0
\(826\) −5355.00 −0.225574
\(827\) −25182.0 −1.05884 −0.529422 0.848359i \(-0.677591\pi\)
−0.529422 + 0.848359i \(0.677591\pi\)
\(828\) 0 0
\(829\) −17170.0 −0.719347 −0.359674 0.933078i \(-0.617112\pi\)
−0.359674 + 0.933078i \(0.617112\pi\)
\(830\) −12528.0 −0.523920
\(831\) 0 0
\(832\) −26413.0 −1.10061
\(833\) 5733.00 0.238459
\(834\) 0 0
\(835\) −21888.0 −0.907144
\(836\) −24.0000 −0.000992892 0
\(837\) 0 0
\(838\) −46017.0 −1.89693
\(839\) −4458.00 −0.183441 −0.0917207 0.995785i \(-0.529237\pi\)
−0.0917207 + 0.995785i \(0.529237\pi\)
\(840\) 0 0
\(841\) −24380.0 −0.999631
\(842\) 12306.0 0.503673
\(843\) 0 0
\(844\) −4273.00 −0.174269
\(845\) 18288.0 0.744528
\(846\) 0 0
\(847\) −8309.00 −0.337073
\(848\) −32589.0 −1.31971
\(849\) 0 0
\(850\) −6669.00 −0.269112
\(851\) 16350.0 0.658603
\(852\) 0 0
\(853\) 39773.0 1.59648 0.798242 0.602336i \(-0.205763\pi\)
0.798242 + 0.602336i \(0.205763\pi\)
\(854\) 18102.0 0.725337
\(855\) 0 0
\(856\) 2268.00 0.0905592
\(857\) 4191.00 0.167050 0.0835250 0.996506i \(-0.473382\pi\)
0.0835250 + 0.996506i \(0.473382\pi\)
\(858\) 0 0
\(859\) 19946.0 0.792257 0.396128 0.918195i \(-0.370353\pi\)
0.396128 + 0.918195i \(0.370353\pi\)
\(860\) 6180.00 0.245042
\(861\) 0 0
\(862\) −7776.00 −0.307252
\(863\) −41067.0 −1.61986 −0.809929 0.586528i \(-0.800494\pi\)
−0.809929 + 0.586528i \(0.800494\pi\)
\(864\) 0 0
\(865\) 8928.00 0.350938
\(866\) 28344.0 1.11220
\(867\) 0 0
\(868\) 1841.00 0.0719903
\(869\) 7752.00 0.302611
\(870\) 0 0
\(871\) −29219.0 −1.13668
\(872\) 5712.00 0.221827
\(873\) 0 0
\(874\) −450.000 −0.0174159
\(875\) −8904.00 −0.344012
\(876\) 0 0
\(877\) −32056.0 −1.23427 −0.617135 0.786858i \(-0.711707\pi\)
−0.617135 + 0.786858i \(0.711707\pi\)
\(878\) −34107.0 −1.31100
\(879\) 0 0
\(880\) 10224.0 0.391649
\(881\) 1899.00 0.0726208 0.0363104 0.999341i \(-0.488439\pi\)
0.0363104 + 0.999341i \(0.488439\pi\)
\(882\) 0 0
\(883\) 8021.00 0.305694 0.152847 0.988250i \(-0.451156\pi\)
0.152847 + 0.988250i \(0.451156\pi\)
\(884\) −7137.00 −0.271542
\(885\) 0 0
\(886\) −32526.0 −1.23333
\(887\) −6540.00 −0.247567 −0.123783 0.992309i \(-0.539503\pi\)
−0.123783 + 0.992309i \(0.539503\pi\)
\(888\) 0 0
\(889\) 12488.0 0.471129
\(890\) −21060.0 −0.793183
\(891\) 0 0
\(892\) 2648.00 0.0993964
\(893\) −636.000 −0.0238331
\(894\) 0 0
\(895\) 54864.0 2.04905
\(896\) −11613.0 −0.432995
\(897\) 0 0
\(898\) 39420.0 1.46488
\(899\) −789.000 −0.0292710
\(900\) 0 0
\(901\) 53703.0 1.98569
\(902\) 8856.00 0.326910
\(903\) 0 0
\(904\) −47376.0 −1.74303
\(905\) −41772.0 −1.53431
\(906\) 0 0
\(907\) 5780.00 0.211601 0.105800 0.994387i \(-0.466260\pi\)
0.105800 + 0.994387i \(0.466260\pi\)
\(908\) −5493.00 −0.200762
\(909\) 0 0
\(910\) 15372.0 0.559975
\(911\) −27480.0 −0.999400 −0.499700 0.866199i \(-0.666556\pi\)
−0.499700 + 0.866199i \(0.666556\pi\)
\(912\) 0 0
\(913\) −4176.00 −0.151375
\(914\) −4137.00 −0.149715
\(915\) 0 0
\(916\) −790.000 −0.0284960
\(917\) 12243.0 0.440894
\(918\) 0 0
\(919\) −7450.00 −0.267413 −0.133707 0.991021i \(-0.542688\pi\)
−0.133707 + 0.991021i \(0.542688\pi\)
\(920\) 18900.0 0.677298
\(921\) 0 0
\(922\) 2034.00 0.0726532
\(923\) −7137.00 −0.254515
\(924\) 0 0
\(925\) 4142.00 0.147230
\(926\) −47202.0 −1.67511
\(927\) 0 0
\(928\) −135.000 −0.00477542
\(929\) 7602.00 0.268475 0.134238 0.990949i \(-0.457141\pi\)
0.134238 + 0.990949i \(0.457141\pi\)
\(930\) 0 0
\(931\) 98.0000 0.00344986
\(932\) −6228.00 −0.218889
\(933\) 0 0
\(934\) −22248.0 −0.779418
\(935\) −16848.0 −0.589293
\(936\) 0 0
\(937\) −6316.00 −0.220208 −0.110104 0.993920i \(-0.535118\pi\)
−0.110104 + 0.993920i \(0.535118\pi\)
\(938\) −10059.0 −0.350147
\(939\) 0 0
\(940\) −3816.00 −0.132409
\(941\) −25170.0 −0.871964 −0.435982 0.899955i \(-0.643599\pi\)
−0.435982 + 0.899955i \(0.643599\pi\)
\(942\) 0 0
\(943\) 18450.0 0.637131
\(944\) −18105.0 −0.624224
\(945\) 0 0
\(946\) 18540.0 0.637196
\(947\) −20874.0 −0.716277 −0.358138 0.933669i \(-0.616588\pi\)
−0.358138 + 0.933669i \(0.616588\pi\)
\(948\) 0 0
\(949\) 26230.0 0.897220
\(950\) −114.000 −0.00389331
\(951\) 0 0
\(952\) 17199.0 0.585528
\(953\) 31824.0 1.08172 0.540861 0.841112i \(-0.318099\pi\)
0.540861 + 0.841112i \(0.318099\pi\)
\(954\) 0 0
\(955\) −45072.0 −1.52722
\(956\) −4812.00 −0.162794
\(957\) 0 0
\(958\) −3744.00 −0.126266
\(959\) 9618.00 0.323860
\(960\) 0 0
\(961\) 39378.0 1.32181
\(962\) 39894.0 1.33704
\(963\) 0 0
\(964\) 1622.00 0.0541920
\(965\) −58404.0 −1.94828
\(966\) 0 0
\(967\) 7040.00 0.234117 0.117058 0.993125i \(-0.462653\pi\)
0.117058 + 0.993125i \(0.462653\pi\)
\(968\) −24927.0 −0.827670
\(969\) 0 0
\(970\) 13536.0 0.448056
\(971\) 27189.0 0.898596 0.449298 0.893382i \(-0.351674\pi\)
0.449298 + 0.893382i \(0.351674\pi\)
\(972\) 0 0
\(973\) 17150.0 0.565060
\(974\) 62850.0 2.06760
\(975\) 0 0
\(976\) 61202.0 2.00720
\(977\) 33438.0 1.09496 0.547480 0.836819i \(-0.315587\pi\)
0.547480 + 0.836819i \(0.315587\pi\)
\(978\) 0 0
\(979\) −7020.00 −0.229173
\(980\) 588.000 0.0191663
\(981\) 0 0
\(982\) −2304.00 −0.0748713
\(983\) −16212.0 −0.526025 −0.263012 0.964792i \(-0.584716\pi\)
−0.263012 + 0.964792i \(0.584716\pi\)
\(984\) 0 0
\(985\) 216.000 0.00698714
\(986\) 1053.00 0.0340105
\(987\) 0 0
\(988\) −122.000 −0.00392848
\(989\) 38625.0 1.24186
\(990\) 0 0
\(991\) 24194.0 0.775527 0.387764 0.921759i \(-0.373248\pi\)
0.387764 + 0.921759i \(0.373248\pi\)
\(992\) 11835.0 0.378792
\(993\) 0 0
\(994\) −2457.00 −0.0784017
\(995\) −21684.0 −0.690883
\(996\) 0 0
\(997\) −27565.0 −0.875619 −0.437810 0.899068i \(-0.644246\pi\)
−0.437810 + 0.899068i \(0.644246\pi\)
\(998\) −14316.0 −0.454073
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.4.a.a.1.1 1
3.2 odd 2 189.4.a.d.1.1 yes 1
7.6 odd 2 1323.4.a.a.1.1 1
21.20 even 2 1323.4.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.a.a.1.1 1 1.1 even 1 trivial
189.4.a.d.1.1 yes 1 3.2 odd 2
1323.4.a.a.1.1 1 7.6 odd 2
1323.4.a.n.1.1 1 21.20 even 2