Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(189))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 24 | 54 |
Cusp forms | 66 | 24 | 42 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(14\) | |
Minus space | \(-\) | \(10\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(189))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(189))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(189)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)