Defining parameters
Level: | \( N \) | = | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 16 \) | ||
Newform subspaces: | \( 42 \) | ||
Sturm bound: | \(10368\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(189))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4068 | 3024 | 1044 |
Cusp forms | 3708 | 2864 | 844 |
Eisenstein series | 360 | 160 | 200 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(189))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(189))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(189)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 1}\)