Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,3,Mod(73,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.73");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.t (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.14987699641\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 | −3.35577 | 0 | 7.26121 | 7.37564 | + | 4.25833i | 0 | 6.88370 | − | 1.27067i | −10.9439 | 0 | −24.7510 | − | 14.2900i | ||||||||||||
73.2 | −3.35512 | 0 | 7.25684 | 0.769575 | + | 0.444314i | 0 | −3.70266 | + | 5.94056i | −10.9271 | 0 | −2.58202 | − | 1.49073i | ||||||||||||
73.3 | −2.65681 | 0 | 3.05866 | −7.97090 | − | 4.60200i | 0 | −2.88812 | − | 6.37642i | 2.50096 | 0 | 21.1772 | + | 12.2267i | ||||||||||||
73.4 | −2.24050 | 0 | 1.01982 | 1.67528 | + | 0.967222i | 0 | −6.98642 | − | 0.435817i | 6.67708 | 0 | −3.75345 | − | 2.16706i | ||||||||||||
73.5 | −1.68199 | 0 | −1.17091 | −2.03050 | − | 1.17231i | 0 | 6.98121 | + | 0.512524i | 8.69742 | 0 | 3.41529 | + | 1.97182i | ||||||||||||
73.6 | −0.455152 | 0 | −3.79284 | 3.78523 | + | 2.18540i | 0 | 1.42833 | − | 6.85273i | 3.54692 | 0 | −1.72285 | − | 0.994690i | ||||||||||||
73.7 | −0.357823 | 0 | −3.87196 | −3.97509 | − | 2.29502i | 0 | 6.10412 | + | 3.42632i | 2.81677 | 0 | 1.42238 | + | 0.821210i | ||||||||||||
73.8 | 0.396136 | 0 | −3.84308 | 2.57417 | + | 1.48620i | 0 | −6.97569 | + | 0.582933i | −3.10693 | 0 | 1.01972 | + | 0.588737i | ||||||||||||
73.9 | 1.32480 | 0 | −2.24491 | 6.26581 | + | 3.61757i | 0 | −3.07531 | + | 6.28828i | −8.27324 | 0 | 8.30093 | + | 4.79254i | ||||||||||||
73.10 | 1.65335 | 0 | −1.26644 | −6.81496 | − | 3.93462i | 0 | −0.460386 | + | 6.98484i | −8.70726 | 0 | −11.2675 | − | 6.50529i | ||||||||||||
73.11 | 1.80456 | 0 | −0.743548 | −4.98393 | − | 2.87747i | 0 | −0.851442 | − | 6.94802i | −8.56004 | 0 | −8.99383 | − | 5.19259i | ||||||||||||
73.12 | 2.83394 | 0 | 4.03122 | 2.07720 | + | 1.19927i | 0 | 6.05681 | − | 3.50928i | 0.0884848 | 0 | 5.88667 | + | 3.39867i | ||||||||||||
73.13 | 3.25435 | 0 | 6.59082 | 2.94001 | + | 1.69741i | 0 | 2.50562 | + | 6.53620i | 8.43145 | 0 | 9.56782 | + | 5.52398i | ||||||||||||
73.14 | 3.83603 | 0 | 10.7151 | −0.187534 | − | 0.108273i | 0 | −5.01978 | − | 4.87871i | 25.7594 | 0 | −0.719386 | − | 0.415338i | ||||||||||||
145.1 | −3.35577 | 0 | 7.26121 | 7.37564 | − | 4.25833i | 0 | 6.88370 | + | 1.27067i | −10.9439 | 0 | −24.7510 | + | 14.2900i | ||||||||||||
145.2 | −3.35512 | 0 | 7.25684 | 0.769575 | − | 0.444314i | 0 | −3.70266 | − | 5.94056i | −10.9271 | 0 | −2.58202 | + | 1.49073i | ||||||||||||
145.3 | −2.65681 | 0 | 3.05866 | −7.97090 | + | 4.60200i | 0 | −2.88812 | + | 6.37642i | 2.50096 | 0 | 21.1772 | − | 12.2267i | ||||||||||||
145.4 | −2.24050 | 0 | 1.01982 | 1.67528 | − | 0.967222i | 0 | −6.98642 | + | 0.435817i | 6.67708 | 0 | −3.75345 | + | 2.16706i | ||||||||||||
145.5 | −1.68199 | 0 | −1.17091 | −2.03050 | + | 1.17231i | 0 | 6.98121 | − | 0.512524i | 8.69742 | 0 | 3.41529 | − | 1.97182i | ||||||||||||
145.6 | −0.455152 | 0 | −3.79284 | 3.78523 | − | 2.18540i | 0 | 1.42833 | + | 6.85273i | 3.54692 | 0 | −1.72285 | + | 0.994690i | ||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.t | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.3.t.a | 28 | |
3.b | odd | 2 | 1 | 63.3.t.a | yes | 28 | |
7.d | odd | 6 | 1 | 189.3.k.a | 28 | ||
9.c | even | 3 | 1 | 189.3.k.a | 28 | ||
9.d | odd | 6 | 1 | 63.3.k.a | ✓ | 28 | |
21.c | even | 2 | 1 | 441.3.t.a | 28 | ||
21.g | even | 6 | 1 | 63.3.k.a | ✓ | 28 | |
21.g | even | 6 | 1 | 441.3.l.a | 28 | ||
21.h | odd | 6 | 1 | 441.3.k.b | 28 | ||
21.h | odd | 6 | 1 | 441.3.l.b | 28 | ||
63.i | even | 6 | 1 | 63.3.t.a | yes | 28 | |
63.j | odd | 6 | 1 | 441.3.t.a | 28 | ||
63.n | odd | 6 | 1 | 441.3.l.a | 28 | ||
63.o | even | 6 | 1 | 441.3.k.b | 28 | ||
63.s | even | 6 | 1 | 441.3.l.b | 28 | ||
63.t | odd | 6 | 1 | inner | 189.3.t.a | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.k.a | ✓ | 28 | 9.d | odd | 6 | 1 | |
63.3.k.a | ✓ | 28 | 21.g | even | 6 | 1 | |
63.3.t.a | yes | 28 | 3.b | odd | 2 | 1 | |
63.3.t.a | yes | 28 | 63.i | even | 6 | 1 | |
189.3.k.a | 28 | 7.d | odd | 6 | 1 | ||
189.3.k.a | 28 | 9.c | even | 3 | 1 | ||
189.3.t.a | 28 | 1.a | even | 1 | 1 | trivial | |
189.3.t.a | 28 | 63.t | odd | 6 | 1 | inner | |
441.3.k.b | 28 | 21.h | odd | 6 | 1 | ||
441.3.k.b | 28 | 63.o | even | 6 | 1 | ||
441.3.l.a | 28 | 21.g | even | 6 | 1 | ||
441.3.l.a | 28 | 63.n | odd | 6 | 1 | ||
441.3.l.b | 28 | 21.h | odd | 6 | 1 | ||
441.3.l.b | 28 | 63.s | even | 6 | 1 | ||
441.3.t.a | 28 | 21.c | even | 2 | 1 | ||
441.3.t.a | 28 | 63.j | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(189, [\chi])\).