Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,3,Mod(44,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.44");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.j (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.14987699641\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
44.1 | − | 3.69072i | 0 | −9.62138 | −5.05096 | + | 2.91617i | 0 | 3.74467 | + | 5.91417i | 20.7469i | 0 | 10.7628 | + | 18.6416i | |||||||||||
44.2 | − | 3.22356i | 0 | −6.39137 | 4.79167 | − | 2.76647i | 0 | −6.99696 | − | 0.206413i | 7.70873i | 0 | −8.91790 | − | 15.4463i | |||||||||||
44.3 | − | 2.41355i | 0 | −1.82523 | −5.93347 | + | 3.42569i | 0 | −6.55070 | + | 2.46747i | − | 5.24892i | 0 | 8.26808 | + | 14.3207i | ||||||||||
44.4 | − | 1.46555i | 0 | 1.85217 | −0.998268 | + | 0.576350i | 0 | −4.05935 | − | 5.70277i | − | 8.57663i | 0 | 0.844669 | + | 1.46301i | ||||||||||
44.5 | − | 1.29088i | 0 | 2.33363 | −4.18841 | + | 2.41818i | 0 | 6.74202 | + | 1.88284i | − | 8.17595i | 0 | 3.12158 | + | 5.40673i | ||||||||||
44.6 | − | 0.513687i | 0 | 3.73613 | 6.08350 | − | 3.51231i | 0 | 1.23968 | + | 6.88935i | − | 3.97395i | 0 | −1.80423 | − | 3.12502i | ||||||||||
44.7 | 0.0767494i | 0 | 3.99411 | 3.53076 | − | 2.03848i | 0 | 2.97142 | − | 6.33803i | 0.613543i | 0 | 0.156452 | + | 0.270983i | ||||||||||||
44.8 | 1.28539i | 0 | 2.34778 | −6.82011 | + | 3.93759i | 0 | −6.26023 | − | 3.13201i | 8.15936i | 0 | −5.06133 | − | 8.76649i | ||||||||||||
44.9 | 2.15495i | 0 | −0.643801 | −1.62693 | + | 0.939308i | 0 | 6.99124 | − | 0.350157i | 7.23243i | 0 | −2.02416 | − | 3.50595i | ||||||||||||
44.10 | 2.74500i | 0 | −3.53503 | −2.32531 | + | 1.34252i | 0 | 0.122457 | + | 6.99893i | 1.27635i | 0 | −3.68521 | − | 6.38297i | ||||||||||||
44.11 | 2.87176i | 0 | −4.24700 | 6.53753 | − | 3.77444i | 0 | 2.05575 | − | 6.69133i | − | 0.709334i | 0 | 10.8393 | + | 18.7742i | |||||||||||
116.1 | − | 2.87176i | 0 | −4.24700 | 6.53753 | + | 3.77444i | 0 | 2.05575 | + | 6.69133i | 0.709334i | 0 | 10.8393 | − | 18.7742i | |||||||||||
116.2 | − | 2.74500i | 0 | −3.53503 | −2.32531 | − | 1.34252i | 0 | 0.122457 | − | 6.99893i | − | 1.27635i | 0 | −3.68521 | + | 6.38297i | ||||||||||
116.3 | − | 2.15495i | 0 | −0.643801 | −1.62693 | − | 0.939308i | 0 | 6.99124 | + | 0.350157i | − | 7.23243i | 0 | −2.02416 | + | 3.50595i | ||||||||||
116.4 | − | 1.28539i | 0 | 2.34778 | −6.82011 | − | 3.93759i | 0 | −6.26023 | + | 3.13201i | − | 8.15936i | 0 | −5.06133 | + | 8.76649i | ||||||||||
116.5 | − | 0.0767494i | 0 | 3.99411 | 3.53076 | + | 2.03848i | 0 | 2.97142 | + | 6.33803i | − | 0.613543i | 0 | 0.156452 | − | 0.270983i | ||||||||||
116.6 | 0.513687i | 0 | 3.73613 | 6.08350 | + | 3.51231i | 0 | 1.23968 | − | 6.88935i | 3.97395i | 0 | −1.80423 | + | 3.12502i | ||||||||||||
116.7 | 1.29088i | 0 | 2.33363 | −4.18841 | − | 2.41818i | 0 | 6.74202 | − | 1.88284i | 8.17595i | 0 | 3.12158 | − | 5.40673i | ||||||||||||
116.8 | 1.46555i | 0 | 1.85217 | −0.998268 | − | 0.576350i | 0 | −4.05935 | + | 5.70277i | 8.57663i | 0 | 0.844669 | − | 1.46301i | ||||||||||||
116.9 | 2.41355i | 0 | −1.82523 | −5.93347 | − | 3.42569i | 0 | −6.55070 | − | 2.46747i | 5.24892i | 0 | 8.26808 | − | 14.3207i | ||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.j | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.3.j.b | 22 | |
3.b | odd | 2 | 1 | 63.3.j.b | ✓ | 22 | |
7.c | even | 3 | 1 | 189.3.n.b | 22 | ||
9.c | even | 3 | 1 | 63.3.n.b | yes | 22 | |
9.d | odd | 6 | 1 | 189.3.n.b | 22 | ||
21.c | even | 2 | 1 | 441.3.j.f | 22 | ||
21.g | even | 6 | 1 | 441.3.n.f | 22 | ||
21.g | even | 6 | 1 | 441.3.r.f | 22 | ||
21.h | odd | 6 | 1 | 63.3.n.b | yes | 22 | |
21.h | odd | 6 | 1 | 441.3.r.g | 22 | ||
63.g | even | 3 | 1 | 441.3.r.g | 22 | ||
63.h | even | 3 | 1 | 63.3.j.b | ✓ | 22 | |
63.j | odd | 6 | 1 | inner | 189.3.j.b | 22 | |
63.k | odd | 6 | 1 | 441.3.r.f | 22 | ||
63.l | odd | 6 | 1 | 441.3.n.f | 22 | ||
63.t | odd | 6 | 1 | 441.3.j.f | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.j.b | ✓ | 22 | 3.b | odd | 2 | 1 | |
63.3.j.b | ✓ | 22 | 63.h | even | 3 | 1 | |
63.3.n.b | yes | 22 | 9.c | even | 3 | 1 | |
63.3.n.b | yes | 22 | 21.h | odd | 6 | 1 | |
189.3.j.b | 22 | 1.a | even | 1 | 1 | trivial | |
189.3.j.b | 22 | 63.j | odd | 6 | 1 | inner | |
189.3.n.b | 22 | 7.c | even | 3 | 1 | ||
189.3.n.b | 22 | 9.d | odd | 6 | 1 | ||
441.3.j.f | 22 | 21.c | even | 2 | 1 | ||
441.3.j.f | 22 | 63.t | odd | 6 | 1 | ||
441.3.n.f | 22 | 21.g | even | 6 | 1 | ||
441.3.n.f | 22 | 63.l | odd | 6 | 1 | ||
441.3.r.f | 22 | 21.g | even | 6 | 1 | ||
441.3.r.f | 22 | 63.k | odd | 6 | 1 | ||
441.3.r.g | 22 | 21.h | odd | 6 | 1 | ||
441.3.r.g | 22 | 63.g | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{22} + 56 T_{2}^{20} + 1326 T_{2}^{18} + 17369 T_{2}^{16} + 138193 T_{2}^{14} + 690216 T_{2}^{12} + \cdots + 2187 \)
acting on \(S_{3}^{\mathrm{new}}(189, [\chi])\).