Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(189, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 36 | 72 |
Cusp forms | 84 | 28 | 56 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
189.3.j.a | $6$ | $5.150$ | 6.0.63369648.1 | None | \(0\) | \(0\) | \(15\) | \(-2\) | \(q+(-1-\beta _{4}-\beta _{5})q^{2}+(-4-\beta _{1})q^{4}+\cdots\) |
189.3.j.b | $22$ | $5.150$ | None | \(0\) | \(0\) | \(-12\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)