Properties

Label 189.3.j
Level $189$
Weight $3$
Character orbit 189.j
Rep. character $\chi_{189}(44,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(189, [\chi])\).

Total New Old
Modular forms 108 36 72
Cusp forms 84 28 56
Eisenstein series 24 8 16

Trace form

\( 28 q - 50 q^{4} + 3 q^{5} - 2 q^{7} + 6 q^{10} - 15 q^{11} - 7 q^{13} + 84 q^{14} + 70 q^{16} - 27 q^{17} - 16 q^{19} - 6 q^{20} + 6 q^{22} - 96 q^{23} + 31 q^{25} - 84 q^{26} - 8 q^{28} + 114 q^{29} - 34 q^{31}+ \cdots + 123 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
189.3.j.a 189.j 63.j $6$ $5.150$ 6.0.63369648.1 None 63.3.j.a \(0\) \(0\) \(15\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{4}-\beta _{5})q^{2}+(-4-\beta _{1})q^{4}+\cdots\)
189.3.j.b 189.j 63.j $22$ $5.150$ None 63.3.j.b \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(189, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)