Properties

Label 189.3.d.c
Level $189$
Weight $3$
Character orbit 189.d
Analytic conductor $5.150$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.14987699641\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} -3 q^{4} + ( 1 - 2 \zeta_{6} ) q^{5} -7 \zeta_{6} q^{7} -7 q^{8} +O(q^{10})\) \( q + q^{2} -3 q^{4} + ( 1 - 2 \zeta_{6} ) q^{5} -7 \zeta_{6} q^{7} -7 q^{8} + ( 1 - 2 \zeta_{6} ) q^{10} -17 q^{11} + ( -10 + 20 \zeta_{6} ) q^{13} -7 \zeta_{6} q^{14} + 5 q^{16} + ( 18 - 36 \zeta_{6} ) q^{17} + ( 12 - 24 \zeta_{6} ) q^{19} + ( -3 + 6 \zeta_{6} ) q^{20} -17 q^{22} -32 q^{23} + 22 q^{25} + ( -10 + 20 \zeta_{6} ) q^{26} + 21 \zeta_{6} q^{28} -2 q^{29} + ( -13 + 26 \zeta_{6} ) q^{31} + 33 q^{32} + ( 18 - 36 \zeta_{6} ) q^{34} + ( -14 + 7 \zeta_{6} ) q^{35} + 8 q^{37} + ( 12 - 24 \zeta_{6} ) q^{38} + ( -7 + 14 \zeta_{6} ) q^{40} + ( -8 + 16 \zeta_{6} ) q^{41} + 26 q^{43} + 51 q^{44} -32 q^{46} + ( -22 + 44 \zeta_{6} ) q^{47} + ( -49 + 49 \zeta_{6} ) q^{49} + 22 q^{50} + ( 30 - 60 \zeta_{6} ) q^{52} + q^{53} + ( -17 + 34 \zeta_{6} ) q^{55} + 49 \zeta_{6} q^{56} -2 q^{58} + ( 52 - 104 \zeta_{6} ) q^{59} + ( 40 - 80 \zeta_{6} ) q^{61} + ( -13 + 26 \zeta_{6} ) q^{62} + 13 q^{64} + 30 q^{65} -34 q^{67} + ( -54 + 108 \zeta_{6} ) q^{68} + ( -14 + 7 \zeta_{6} ) q^{70} + 10 q^{71} + ( 33 - 66 \zeta_{6} ) q^{73} + 8 q^{74} + ( -36 + 72 \zeta_{6} ) q^{76} + 119 \zeta_{6} q^{77} -46 q^{79} + ( 5 - 10 \zeta_{6} ) q^{80} + ( -8 + 16 \zeta_{6} ) q^{82} + ( 59 - 118 \zeta_{6} ) q^{83} -54 q^{85} + 26 q^{86} + 119 q^{88} + ( -30 + 60 \zeta_{6} ) q^{89} + ( 140 - 70 \zeta_{6} ) q^{91} + 96 q^{92} + ( -22 + 44 \zeta_{6} ) q^{94} -36 q^{95} + ( -53 + 106 \zeta_{6} ) q^{97} + ( -49 + 49 \zeta_{6} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 6q^{4} - 7q^{7} - 14q^{8} + O(q^{10}) \) \( 2q + 2q^{2} - 6q^{4} - 7q^{7} - 14q^{8} - 34q^{11} - 7q^{14} + 10q^{16} - 34q^{22} - 64q^{23} + 44q^{25} + 21q^{28} - 4q^{29} + 66q^{32} - 21q^{35} + 16q^{37} + 52q^{43} + 102q^{44} - 64q^{46} - 49q^{49} + 44q^{50} + 2q^{53} + 49q^{56} - 4q^{58} + 26q^{64} + 60q^{65} - 68q^{67} - 21q^{70} + 20q^{71} + 16q^{74} + 119q^{77} - 92q^{79} - 108q^{85} + 52q^{86} + 238q^{88} + 210q^{91} + 192q^{92} - 72q^{95} - 49q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 0 −3.00000 1.73205i 0 −3.50000 6.06218i −7.00000 0 1.73205i
55.2 1.00000 0 −3.00000 1.73205i 0 −3.50000 + 6.06218i −7.00000 0 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.3.d.c yes 2
3.b odd 2 1 189.3.d.a 2
7.b odd 2 1 inner 189.3.d.c yes 2
21.c even 2 1 189.3.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.3.d.a 2 3.b odd 2 1
189.3.d.a 2 21.c even 2 1
189.3.d.c yes 2 1.a even 1 1 trivial
189.3.d.c yes 2 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{3}^{\mathrm{new}}(189, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{2} \)
$3$ \( T^{2} \)
$5$ \( 3 + T^{2} \)
$7$ \( 49 + 7 T + T^{2} \)
$11$ \( ( 17 + T )^{2} \)
$13$ \( 300 + T^{2} \)
$17$ \( 972 + T^{2} \)
$19$ \( 432 + T^{2} \)
$23$ \( ( 32 + T )^{2} \)
$29$ \( ( 2 + T )^{2} \)
$31$ \( 507 + T^{2} \)
$37$ \( ( -8 + T )^{2} \)
$41$ \( 192 + T^{2} \)
$43$ \( ( -26 + T )^{2} \)
$47$ \( 1452 + T^{2} \)
$53$ \( ( -1 + T )^{2} \)
$59$ \( 8112 + T^{2} \)
$61$ \( 4800 + T^{2} \)
$67$ \( ( 34 + T )^{2} \)
$71$ \( ( -10 + T )^{2} \)
$73$ \( 3267 + T^{2} \)
$79$ \( ( 46 + T )^{2} \)
$83$ \( 10443 + T^{2} \)
$89$ \( 2700 + T^{2} \)
$97$ \( 8427 + T^{2} \)
show more
show less