Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(189, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 22 | 32 |
Cusp forms | 42 | 22 | 20 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
189.3.d.a | $2$ | $5.150$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(0\) | \(0\) | \(-7\) | \(q-q^{2}-3q^{4}+(1-2\zeta_{6})q^{5}+(-7+7\zeta_{6})q^{7}+\cdots\) |
189.3.d.b | $2$ | $5.150$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(13\) | \(q-4 q^{4}+(\beta+6)q^{7}+(10\beta-5)q^{13}+\cdots\) |
189.3.d.c | $2$ | $5.150$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(0\) | \(0\) | \(-7\) | \(q+q^{2}-3q^{4}+(1-2\zeta_{6})q^{5}-7\zeta_{6}q^{7}+\cdots\) |
189.3.d.d | $8$ | $5.150$ | 8.0.\(\cdots\).6 | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q-\beta _{2}q^{2}+(3+\beta _{5})q^{4}-\beta _{3}q^{5}+(-2+\cdots)q^{7}+\cdots\) |
189.3.d.e | $8$ | $5.150$ | 8.0.\(\cdots\).14 | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q-\beta _{4}q^{2}+(5-\beta _{1})q^{4}+\beta _{2}q^{5}+(2+\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)