Properties

Label 189.3.b.c.134.1
Level $189$
Weight $3$
Character 189.134
Analytic conductor $5.150$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [189,3,Mod(134,189)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("189.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(189, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14987699641\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1997017344.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 53x^{4} + 56x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 134.1
Root \(1.92812i\) of defining polynomial
Character \(\chi\) \(=\) 189.134
Dual form 189.3.b.c.134.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.92812i q^{2} -11.4301 q^{4} -7.06404i q^{5} -2.64575 q^{7} +29.1863i q^{8} -27.7484 q^{10} -4.96808i q^{11} +5.02234 q^{13} +10.3928i q^{14} +68.9268 q^{16} +5.51380i q^{17} -18.2779 q^{19} +80.7427i q^{20} -19.5152 q^{22} +10.6882i q^{23} -24.9006 q^{25} -19.7284i q^{26} +30.2412 q^{28} -39.9307i q^{29} -2.71654 q^{31} -154.007i q^{32} +21.6589 q^{34} +18.6897i q^{35} -13.0417 q^{37} +71.7976i q^{38} +206.173 q^{40} -33.1988i q^{41} -61.4003 q^{43} +56.7856i q^{44} +41.9845 q^{46} -73.8862i q^{47} +7.00000 q^{49} +97.8125i q^{50} -57.4059 q^{52} +5.94700i q^{53} -35.0947 q^{55} -77.2197i q^{56} -156.852 q^{58} +44.6314i q^{59} -13.3171 q^{61} +10.6709i q^{62} -329.252 q^{64} -35.4780i q^{65} -105.774 q^{67} -63.0233i q^{68} +73.4153 q^{70} -10.1978i q^{71} +133.727 q^{73} +51.2294i q^{74} +208.918 q^{76} +13.1443i q^{77} +50.4748 q^{79} -486.902i q^{80} -130.409 q^{82} -41.5651i q^{83} +38.9497 q^{85} +241.188i q^{86} +145.000 q^{88} +53.3482i q^{89} -13.2879 q^{91} -122.167i q^{92} -290.234 q^{94} +129.115i q^{95} +97.8506 q^{97} -27.4968i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} - 52 q^{10} + 36 q^{13} + 132 q^{16} + 12 q^{19} - 136 q^{22} - 108 q^{25} + 56 q^{28} - 28 q^{31} - 12 q^{34} - 4 q^{37} + 336 q^{40} - 152 q^{43} + 108 q^{46} + 56 q^{49} - 272 q^{52} + 196 q^{55}+ \cdots - 364 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.92812i − 1.96406i −0.188729 0.982029i \(-0.560437\pi\)
0.188729 0.982029i \(-0.439563\pi\)
\(3\) 0 0
\(4\) −11.4301 −2.85753
\(5\) − 7.06404i − 1.41281i −0.707809 0.706404i \(-0.750316\pi\)
0.707809 0.706404i \(-0.249684\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 29.1863i 3.64829i
\(9\) 0 0
\(10\) −27.7484 −2.77484
\(11\) − 4.96808i − 0.451643i −0.974169 0.225822i \(-0.927493\pi\)
0.974169 0.225822i \(-0.0725067\pi\)
\(12\) 0 0
\(13\) 5.02234 0.386334 0.193167 0.981166i \(-0.438124\pi\)
0.193167 + 0.981166i \(0.438124\pi\)
\(14\) 10.3928i 0.742344i
\(15\) 0 0
\(16\) 68.9268 4.30793
\(17\) 5.51380i 0.324341i 0.986763 + 0.162171i \(0.0518495\pi\)
−0.986763 + 0.162171i \(0.948150\pi\)
\(18\) 0 0
\(19\) −18.2779 −0.961992 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(20\) 80.7427i 4.03713i
\(21\) 0 0
\(22\) −19.5152 −0.887054
\(23\) 10.6882i 0.464704i 0.972632 + 0.232352i \(0.0746422\pi\)
−0.972632 + 0.232352i \(0.925358\pi\)
\(24\) 0 0
\(25\) −24.9006 −0.996024
\(26\) − 19.7284i − 0.758783i
\(27\) 0 0
\(28\) 30.2412 1.08004
\(29\) − 39.9307i − 1.37692i −0.725274 0.688460i \(-0.758287\pi\)
0.725274 0.688460i \(-0.241713\pi\)
\(30\) 0 0
\(31\) −2.71654 −0.0876302 −0.0438151 0.999040i \(-0.513951\pi\)
−0.0438151 + 0.999040i \(0.513951\pi\)
\(32\) − 154.007i − 4.81273i
\(33\) 0 0
\(34\) 21.6589 0.637025
\(35\) 18.6897i 0.533991i
\(36\) 0 0
\(37\) −13.0417 −0.352479 −0.176239 0.984347i \(-0.556393\pi\)
−0.176239 + 0.984347i \(0.556393\pi\)
\(38\) 71.7976i 1.88941i
\(39\) 0 0
\(40\) 206.173 5.15433
\(41\) − 33.1988i − 0.809726i −0.914377 0.404863i \(-0.867319\pi\)
0.914377 0.404863i \(-0.132681\pi\)
\(42\) 0 0
\(43\) −61.4003 −1.42791 −0.713957 0.700190i \(-0.753099\pi\)
−0.713957 + 0.700190i \(0.753099\pi\)
\(44\) 56.7856i 1.29058i
\(45\) 0 0
\(46\) 41.9845 0.912706
\(47\) − 73.8862i − 1.57205i −0.618196 0.786024i \(-0.712136\pi\)
0.618196 0.786024i \(-0.287864\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 97.8125i 1.95625i
\(51\) 0 0
\(52\) −57.4059 −1.10396
\(53\) 5.94700i 0.112208i 0.998425 + 0.0561038i \(0.0178678\pi\)
−0.998425 + 0.0561038i \(0.982132\pi\)
\(54\) 0 0
\(55\) −35.0947 −0.638085
\(56\) − 77.2197i − 1.37892i
\(57\) 0 0
\(58\) −156.852 −2.70435
\(59\) 44.6314i 0.756465i 0.925711 + 0.378232i \(0.123468\pi\)
−0.925711 + 0.378232i \(0.876532\pi\)
\(60\) 0 0
\(61\) −13.3171 −0.218312 −0.109156 0.994025i \(-0.534815\pi\)
−0.109156 + 0.994025i \(0.534815\pi\)
\(62\) 10.6709i 0.172111i
\(63\) 0 0
\(64\) −329.252 −5.14456
\(65\) − 35.4780i − 0.545816i
\(66\) 0 0
\(67\) −105.774 −1.57872 −0.789362 0.613928i \(-0.789588\pi\)
−0.789362 + 0.613928i \(0.789588\pi\)
\(68\) − 63.0233i − 0.926813i
\(69\) 0 0
\(70\) 73.4153 1.04879
\(71\) − 10.1978i − 0.143631i −0.997418 0.0718157i \(-0.977121\pi\)
0.997418 0.0718157i \(-0.0228793\pi\)
\(72\) 0 0
\(73\) 133.727 1.83187 0.915937 0.401322i \(-0.131449\pi\)
0.915937 + 0.401322i \(0.131449\pi\)
\(74\) 51.2294i 0.692289i
\(75\) 0 0
\(76\) 208.918 2.74892
\(77\) 13.1443i 0.170705i
\(78\) 0 0
\(79\) 50.4748 0.638921 0.319461 0.947600i \(-0.396498\pi\)
0.319461 + 0.947600i \(0.396498\pi\)
\(80\) − 486.902i − 6.08627i
\(81\) 0 0
\(82\) −130.409 −1.59035
\(83\) − 41.5651i − 0.500784i −0.968144 0.250392i \(-0.919440\pi\)
0.968144 0.250392i \(-0.0805596\pi\)
\(84\) 0 0
\(85\) 38.9497 0.458232
\(86\) 241.188i 2.80451i
\(87\) 0 0
\(88\) 145.000 1.64773
\(89\) 53.3482i 0.599418i 0.954031 + 0.299709i \(0.0968895\pi\)
−0.954031 + 0.299709i \(0.903110\pi\)
\(90\) 0 0
\(91\) −13.2879 −0.146021
\(92\) − 122.167i − 1.32790i
\(93\) 0 0
\(94\) −290.234 −3.08759
\(95\) 129.115i 1.35911i
\(96\) 0 0
\(97\) 97.8506 1.00877 0.504384 0.863479i \(-0.331719\pi\)
0.504384 + 0.863479i \(0.331719\pi\)
\(98\) − 27.4968i − 0.280580i
\(99\) 0 0
\(100\) 284.616 2.84616
\(101\) − 122.551i − 1.21338i −0.794940 0.606688i \(-0.792498\pi\)
0.794940 0.606688i \(-0.207502\pi\)
\(102\) 0 0
\(103\) 134.540 1.30621 0.653106 0.757267i \(-0.273466\pi\)
0.653106 + 0.757267i \(0.273466\pi\)
\(104\) 146.584i 1.40946i
\(105\) 0 0
\(106\) 23.3605 0.220382
\(107\) − 77.5589i − 0.724850i −0.932013 0.362425i \(-0.881949\pi\)
0.932013 0.362425i \(-0.118051\pi\)
\(108\) 0 0
\(109\) −79.8733 −0.732783 −0.366391 0.930461i \(-0.619407\pi\)
−0.366391 + 0.930461i \(0.619407\pi\)
\(110\) 137.856i 1.25324i
\(111\) 0 0
\(112\) −182.363 −1.62824
\(113\) − 130.734i − 1.15693i −0.815706 0.578467i \(-0.803651\pi\)
0.815706 0.578467i \(-0.196349\pi\)
\(114\) 0 0
\(115\) 75.5018 0.656538
\(116\) 456.412i 3.93459i
\(117\) 0 0
\(118\) 175.317 1.48574
\(119\) − 14.5881i − 0.122589i
\(120\) 0 0
\(121\) 96.3182 0.796018
\(122\) 52.3110i 0.428778i
\(123\) 0 0
\(124\) 31.0503 0.250406
\(125\) − 0.702126i − 0.00561701i
\(126\) 0 0
\(127\) 194.848 1.53424 0.767119 0.641505i \(-0.221689\pi\)
0.767119 + 0.641505i \(0.221689\pi\)
\(128\) 677.309i 5.29148i
\(129\) 0 0
\(130\) −139.362 −1.07201
\(131\) 135.214i 1.03217i 0.856537 + 0.516085i \(0.172611\pi\)
−0.856537 + 0.516085i \(0.827389\pi\)
\(132\) 0 0
\(133\) 48.3587 0.363599
\(134\) 415.495i 3.10071i
\(135\) 0 0
\(136\) −160.928 −1.18329
\(137\) − 204.990i − 1.49628i −0.663542 0.748139i \(-0.730948\pi\)
0.663542 0.748139i \(-0.269052\pi\)
\(138\) 0 0
\(139\) 190.556 1.37091 0.685455 0.728115i \(-0.259604\pi\)
0.685455 + 0.728115i \(0.259604\pi\)
\(140\) − 213.625i − 1.52589i
\(141\) 0 0
\(142\) −40.0583 −0.282101
\(143\) − 24.9514i − 0.174485i
\(144\) 0 0
\(145\) −282.072 −1.94532
\(146\) − 525.295i − 3.59791i
\(147\) 0 0
\(148\) 149.068 1.00722
\(149\) − 109.036i − 0.731784i −0.930657 0.365892i \(-0.880764\pi\)
0.930657 0.365892i \(-0.119236\pi\)
\(150\) 0 0
\(151\) −171.846 −1.13805 −0.569027 0.822319i \(-0.692680\pi\)
−0.569027 + 0.822319i \(0.692680\pi\)
\(152\) − 533.463i − 3.50963i
\(153\) 0 0
\(154\) 51.6323 0.335275
\(155\) 19.1897i 0.123805i
\(156\) 0 0
\(157\) 250.791 1.59740 0.798699 0.601731i \(-0.205522\pi\)
0.798699 + 0.601731i \(0.205522\pi\)
\(158\) − 198.271i − 1.25488i
\(159\) 0 0
\(160\) −1087.91 −6.79946
\(161\) − 28.2783i − 0.175642i
\(162\) 0 0
\(163\) −182.763 −1.12124 −0.560622 0.828072i \(-0.689438\pi\)
−0.560622 + 0.828072i \(0.689438\pi\)
\(164\) 379.465i 2.31381i
\(165\) 0 0
\(166\) −163.273 −0.983570
\(167\) 195.611i 1.17133i 0.810555 + 0.585663i \(0.199166\pi\)
−0.810555 + 0.585663i \(0.800834\pi\)
\(168\) 0 0
\(169\) −143.776 −0.850746
\(170\) − 152.999i − 0.899994i
\(171\) 0 0
\(172\) 701.812 4.08030
\(173\) 240.704i 1.39135i 0.718355 + 0.695677i \(0.244895\pi\)
−0.718355 + 0.695677i \(0.755105\pi\)
\(174\) 0 0
\(175\) 65.8808 0.376462
\(176\) − 342.434i − 1.94565i
\(177\) 0 0
\(178\) 209.558 1.17729
\(179\) − 105.930i − 0.591787i −0.955221 0.295894i \(-0.904383\pi\)
0.955221 0.295894i \(-0.0956174\pi\)
\(180\) 0 0
\(181\) −135.031 −0.746027 −0.373013 0.927826i \(-0.621675\pi\)
−0.373013 + 0.927826i \(0.621675\pi\)
\(182\) 52.1963i 0.286793i
\(183\) 0 0
\(184\) −311.949 −1.69538
\(185\) 92.1271i 0.497985i
\(186\) 0 0
\(187\) 27.3930 0.146487
\(188\) 844.527i 4.49217i
\(189\) 0 0
\(190\) 507.180 2.66937
\(191\) 182.449i 0.955231i 0.878569 + 0.477616i \(0.158499\pi\)
−0.878569 + 0.477616i \(0.841501\pi\)
\(192\) 0 0
\(193\) −63.3343 −0.328157 −0.164078 0.986447i \(-0.552465\pi\)
−0.164078 + 0.986447i \(0.552465\pi\)
\(194\) − 384.369i − 1.98128i
\(195\) 0 0
\(196\) −80.0107 −0.408218
\(197\) − 0.838016i − 0.00425389i −0.999998 0.00212695i \(-0.999323\pi\)
0.999998 0.00212695i \(-0.000677028\pi\)
\(198\) 0 0
\(199\) 142.365 0.715403 0.357701 0.933836i \(-0.383561\pi\)
0.357701 + 0.933836i \(0.383561\pi\)
\(200\) − 726.757i − 3.63378i
\(201\) 0 0
\(202\) −481.395 −2.38314
\(203\) 105.647i 0.520427i
\(204\) 0 0
\(205\) −234.517 −1.14399
\(206\) − 528.488i − 2.56548i
\(207\) 0 0
\(208\) 346.174 1.66430
\(209\) 90.8058i 0.434478i
\(210\) 0 0
\(211\) 50.9828 0.241625 0.120812 0.992675i \(-0.461450\pi\)
0.120812 + 0.992675i \(0.461450\pi\)
\(212\) − 67.9748i − 0.320636i
\(213\) 0 0
\(214\) −304.661 −1.42365
\(215\) 433.734i 2.01737i
\(216\) 0 0
\(217\) 7.18728 0.0331211
\(218\) 313.752i 1.43923i
\(219\) 0 0
\(220\) 401.136 1.82334
\(221\) 27.6922i 0.125304i
\(222\) 0 0
\(223\) 348.849 1.56435 0.782174 0.623061i \(-0.214111\pi\)
0.782174 + 0.623061i \(0.214111\pi\)
\(224\) 407.465i 1.81904i
\(225\) 0 0
\(226\) −513.537 −2.27229
\(227\) 22.8796i 0.100791i 0.998729 + 0.0503957i \(0.0160482\pi\)
−0.998729 + 0.0503957i \(0.983952\pi\)
\(228\) 0 0
\(229\) −212.433 −0.927653 −0.463827 0.885926i \(-0.653524\pi\)
−0.463827 + 0.885926i \(0.653524\pi\)
\(230\) − 296.580i − 1.28948i
\(231\) 0 0
\(232\) 1165.43 5.02340
\(233\) − 108.142i − 0.464129i −0.972700 0.232064i \(-0.925452\pi\)
0.972700 0.232064i \(-0.0745480\pi\)
\(234\) 0 0
\(235\) −521.935 −2.22100
\(236\) − 510.142i − 2.16162i
\(237\) 0 0
\(238\) −57.3040 −0.240773
\(239\) − 11.1464i − 0.0466377i −0.999728 0.0233189i \(-0.992577\pi\)
0.999728 0.0233189i \(-0.00742330\pi\)
\(240\) 0 0
\(241\) −156.224 −0.648231 −0.324116 0.946018i \(-0.605067\pi\)
−0.324116 + 0.946018i \(0.605067\pi\)
\(242\) − 378.349i − 1.56343i
\(243\) 0 0
\(244\) 152.215 0.623833
\(245\) − 49.4483i − 0.201830i
\(246\) 0 0
\(247\) −91.7977 −0.371651
\(248\) − 79.2857i − 0.319700i
\(249\) 0 0
\(250\) −2.75803 −0.0110321
\(251\) 203.128i 0.809276i 0.914477 + 0.404638i \(0.132602\pi\)
−0.914477 + 0.404638i \(0.867398\pi\)
\(252\) 0 0
\(253\) 53.0998 0.209881
\(254\) − 765.387i − 3.01333i
\(255\) 0 0
\(256\) 1343.54 5.24822
\(257\) − 373.487i − 1.45326i −0.687031 0.726628i \(-0.741086\pi\)
0.687031 0.726628i \(-0.258914\pi\)
\(258\) 0 0
\(259\) 34.5051 0.133224
\(260\) 405.517i 1.55968i
\(261\) 0 0
\(262\) 531.138 2.02724
\(263\) − 4.29255i − 0.0163215i −0.999967 0.00816075i \(-0.997402\pi\)
0.999967 0.00816075i \(-0.00259768\pi\)
\(264\) 0 0
\(265\) 42.0098 0.158528
\(266\) − 189.958i − 0.714130i
\(267\) 0 0
\(268\) 1209.01 4.51124
\(269\) − 100.201i − 0.372494i −0.982503 0.186247i \(-0.940368\pi\)
0.982503 0.186247i \(-0.0596324\pi\)
\(270\) 0 0
\(271\) 11.4367 0.0422020 0.0211010 0.999777i \(-0.493283\pi\)
0.0211010 + 0.999777i \(0.493283\pi\)
\(272\) 380.049i 1.39724i
\(273\) 0 0
\(274\) −805.225 −2.93878
\(275\) 123.708i 0.449848i
\(276\) 0 0
\(277\) −48.4806 −0.175020 −0.0875102 0.996164i \(-0.527891\pi\)
−0.0875102 + 0.996164i \(0.527891\pi\)
\(278\) − 748.528i − 2.69255i
\(279\) 0 0
\(280\) −545.483 −1.94815
\(281\) − 78.0377i − 0.277714i −0.990312 0.138857i \(-0.955657\pi\)
0.990312 0.138857i \(-0.0443429\pi\)
\(282\) 0 0
\(283\) −225.740 −0.797669 −0.398835 0.917023i \(-0.630585\pi\)
−0.398835 + 0.917023i \(0.630585\pi\)
\(284\) 116.562i 0.410430i
\(285\) 0 0
\(286\) −98.0120 −0.342699
\(287\) 87.8357i 0.306048i
\(288\) 0 0
\(289\) 258.598 0.894803
\(290\) 1108.01i 3.82073i
\(291\) 0 0
\(292\) −1528.51 −5.23463
\(293\) − 344.740i − 1.17659i −0.808647 0.588294i \(-0.799800\pi\)
0.808647 0.588294i \(-0.200200\pi\)
\(294\) 0 0
\(295\) 315.278 1.06874
\(296\) − 380.640i − 1.28594i
\(297\) 0 0
\(298\) −428.305 −1.43727
\(299\) 53.6798i 0.179531i
\(300\) 0 0
\(301\) 162.450 0.539701
\(302\) 675.032i 2.23521i
\(303\) 0 0
\(304\) −1259.83 −4.14419
\(305\) 94.0722i 0.308433i
\(306\) 0 0
\(307\) 40.5120 0.131961 0.0659804 0.997821i \(-0.478983\pi\)
0.0659804 + 0.997821i \(0.478983\pi\)
\(308\) − 150.241i − 0.487794i
\(309\) 0 0
\(310\) 75.3794 0.243160
\(311\) 237.140i 0.762507i 0.924471 + 0.381253i \(0.124507\pi\)
−0.924471 + 0.381253i \(0.875493\pi\)
\(312\) 0 0
\(313\) −603.792 −1.92905 −0.964523 0.263998i \(-0.914959\pi\)
−0.964523 + 0.263998i \(0.914959\pi\)
\(314\) − 985.138i − 3.13738i
\(315\) 0 0
\(316\) −576.932 −1.82573
\(317\) 423.396i 1.33563i 0.744326 + 0.667817i \(0.232771\pi\)
−0.744326 + 0.667817i \(0.767229\pi\)
\(318\) 0 0
\(319\) −198.379 −0.621877
\(320\) 2325.85i 7.26827i
\(321\) 0 0
\(322\) −111.081 −0.344971
\(323\) − 100.780i − 0.312014i
\(324\) 0 0
\(325\) −125.059 −0.384798
\(326\) 717.913i 2.20219i
\(327\) 0 0
\(328\) 968.950 2.95412
\(329\) 195.485i 0.594178i
\(330\) 0 0
\(331\) −395.632 −1.19526 −0.597631 0.801771i \(-0.703891\pi\)
−0.597631 + 0.801771i \(0.703891\pi\)
\(332\) 475.093i 1.43100i
\(333\) 0 0
\(334\) 768.384 2.30055
\(335\) 747.195i 2.23043i
\(336\) 0 0
\(337\) 441.604 1.31040 0.655199 0.755456i \(-0.272585\pi\)
0.655199 + 0.755456i \(0.272585\pi\)
\(338\) 564.769i 1.67091i
\(339\) 0 0
\(340\) −445.199 −1.30941
\(341\) 13.4960i 0.0395776i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) − 1792.05i − 5.20944i
\(345\) 0 0
\(346\) 945.514 2.73270
\(347\) 98.7133i 0.284476i 0.989832 + 0.142238i \(0.0454299\pi\)
−0.989832 + 0.142238i \(0.954570\pi\)
\(348\) 0 0
\(349\) 118.678 0.340051 0.170025 0.985440i \(-0.445615\pi\)
0.170025 + 0.985440i \(0.445615\pi\)
\(350\) − 258.788i − 0.739393i
\(351\) 0 0
\(352\) −765.121 −2.17364
\(353\) − 567.205i − 1.60681i −0.595431 0.803406i \(-0.703019\pi\)
0.595431 0.803406i \(-0.296981\pi\)
\(354\) 0 0
\(355\) −72.0379 −0.202924
\(356\) − 609.775i − 1.71285i
\(357\) 0 0
\(358\) −416.105 −1.16230
\(359\) 200.744i 0.559175i 0.960120 + 0.279587i \(0.0901977\pi\)
−0.960120 + 0.279587i \(0.909802\pi\)
\(360\) 0 0
\(361\) −26.9200 −0.0745707
\(362\) 530.417i 1.46524i
\(363\) 0 0
\(364\) 151.882 0.417258
\(365\) − 944.651i − 2.58809i
\(366\) 0 0
\(367\) 37.5360 0.102278 0.0511389 0.998692i \(-0.483715\pi\)
0.0511389 + 0.998692i \(0.483715\pi\)
\(368\) 736.704i 2.00191i
\(369\) 0 0
\(370\) 361.886 0.978071
\(371\) − 15.7343i − 0.0424105i
\(372\) 0 0
\(373\) 164.448 0.440880 0.220440 0.975401i \(-0.429251\pi\)
0.220440 + 0.975401i \(0.429251\pi\)
\(374\) − 107.603i − 0.287708i
\(375\) 0 0
\(376\) 2156.47 5.73528
\(377\) − 200.546i − 0.531951i
\(378\) 0 0
\(379\) −60.7949 −0.160409 −0.0802044 0.996778i \(-0.525557\pi\)
−0.0802044 + 0.996778i \(0.525557\pi\)
\(380\) − 1475.80i − 3.88369i
\(381\) 0 0
\(382\) 716.681 1.87613
\(383\) − 492.378i − 1.28558i −0.766042 0.642791i \(-0.777776\pi\)
0.766042 0.642791i \(-0.222224\pi\)
\(384\) 0 0
\(385\) 92.8518 0.241174
\(386\) 248.784i 0.644519i
\(387\) 0 0
\(388\) −1118.44 −2.88258
\(389\) 336.545i 0.865155i 0.901597 + 0.432578i \(0.142396\pi\)
−0.901597 + 0.432578i \(0.857604\pi\)
\(390\) 0 0
\(391\) −58.9326 −0.150723
\(392\) 204.304i 0.521184i
\(393\) 0 0
\(394\) −3.29183 −0.00835489
\(395\) − 356.556i − 0.902673i
\(396\) 0 0
\(397\) 216.470 0.545265 0.272632 0.962118i \(-0.412106\pi\)
0.272632 + 0.962118i \(0.412106\pi\)
\(398\) − 559.227i − 1.40509i
\(399\) 0 0
\(400\) −1716.32 −4.29080
\(401\) 585.530i 1.46017i 0.683354 + 0.730087i \(0.260521\pi\)
−0.683354 + 0.730087i \(0.739479\pi\)
\(402\) 0 0
\(403\) −13.6434 −0.0338546
\(404\) 1400.77i 3.46725i
\(405\) 0 0
\(406\) 414.993 1.02215
\(407\) 64.7923i 0.159195i
\(408\) 0 0
\(409\) 298.365 0.729500 0.364750 0.931106i \(-0.381155\pi\)
0.364750 + 0.931106i \(0.381155\pi\)
\(410\) 921.212i 2.24686i
\(411\) 0 0
\(412\) −1537.80 −3.73253
\(413\) − 118.084i − 0.285917i
\(414\) 0 0
\(415\) −293.617 −0.707512
\(416\) − 773.478i − 1.85932i
\(417\) 0 0
\(418\) 356.696 0.853339
\(419\) − 452.293i − 1.07946i −0.841839 0.539729i \(-0.818527\pi\)
0.841839 0.539729i \(-0.181473\pi\)
\(420\) 0 0
\(421\) 41.2249 0.0979215 0.0489607 0.998801i \(-0.484409\pi\)
0.0489607 + 0.998801i \(0.484409\pi\)
\(422\) − 200.266i − 0.474565i
\(423\) 0 0
\(424\) −173.571 −0.409366
\(425\) − 137.297i − 0.323052i
\(426\) 0 0
\(427\) 35.2336 0.0825144
\(428\) 886.507i 2.07128i
\(429\) 0 0
\(430\) 1703.76 3.96223
\(431\) − 415.390i − 0.963781i −0.876231 0.481891i \(-0.839950\pi\)
0.876231 0.481891i \(-0.160050\pi\)
\(432\) 0 0
\(433\) 758.050 1.75069 0.875346 0.483497i \(-0.160633\pi\)
0.875346 + 0.483497i \(0.160633\pi\)
\(434\) − 28.2325i − 0.0650518i
\(435\) 0 0
\(436\) 912.960 2.09395
\(437\) − 195.357i − 0.447042i
\(438\) 0 0
\(439\) 449.621 1.02419 0.512097 0.858928i \(-0.328869\pi\)
0.512097 + 0.858928i \(0.328869\pi\)
\(440\) − 1024.28i − 2.32792i
\(441\) 0 0
\(442\) 108.778 0.246105
\(443\) 432.433i 0.976146i 0.872803 + 0.488073i \(0.162300\pi\)
−0.872803 + 0.488073i \(0.837700\pi\)
\(444\) 0 0
\(445\) 376.853 0.846862
\(446\) − 1370.32i − 3.07247i
\(447\) 0 0
\(448\) 871.118 1.94446
\(449\) − 218.358i − 0.486320i −0.969986 0.243160i \(-0.921816\pi\)
0.969986 0.243160i \(-0.0781840\pi\)
\(450\) 0 0
\(451\) −164.934 −0.365708
\(452\) 1494.30i 3.30597i
\(453\) 0 0
\(454\) 89.8739 0.197960
\(455\) 93.8660i 0.206299i
\(456\) 0 0
\(457\) −89.4367 −0.195704 −0.0978519 0.995201i \(-0.531197\pi\)
−0.0978519 + 0.995201i \(0.531197\pi\)
\(458\) 834.460i 1.82196i
\(459\) 0 0
\(460\) −862.994 −1.87607
\(461\) 277.872i 0.602760i 0.953504 + 0.301380i \(0.0974473\pi\)
−0.953504 + 0.301380i \(0.902553\pi\)
\(462\) 0 0
\(463\) 85.2627 0.184153 0.0920763 0.995752i \(-0.470650\pi\)
0.0920763 + 0.995752i \(0.470650\pi\)
\(464\) − 2752.30i − 5.93167i
\(465\) 0 0
\(466\) −424.795 −0.911576
\(467\) 384.319i 0.822952i 0.911421 + 0.411476i \(0.134987\pi\)
−0.911421 + 0.411476i \(0.865013\pi\)
\(468\) 0 0
\(469\) 279.853 0.596702
\(470\) 2050.22i 4.36217i
\(471\) 0 0
\(472\) −1302.63 −2.75980
\(473\) 305.041i 0.644908i
\(474\) 0 0
\(475\) 455.130 0.958168
\(476\) 166.744i 0.350303i
\(477\) 0 0
\(478\) −43.7844 −0.0915992
\(479\) 335.146i 0.699678i 0.936810 + 0.349839i \(0.113764\pi\)
−0.936810 + 0.349839i \(0.886236\pi\)
\(480\) 0 0
\(481\) −65.5000 −0.136175
\(482\) 613.665i 1.27316i
\(483\) 0 0
\(484\) −1100.93 −2.27464
\(485\) − 691.220i − 1.42520i
\(486\) 0 0
\(487\) 99.6350 0.204589 0.102295 0.994754i \(-0.467382\pi\)
0.102295 + 0.994754i \(0.467382\pi\)
\(488\) − 388.676i − 0.796467i
\(489\) 0 0
\(490\) −194.239 −0.396405
\(491\) − 522.971i − 1.06511i −0.846394 0.532557i \(-0.821231\pi\)
0.846394 0.532557i \(-0.178769\pi\)
\(492\) 0 0
\(493\) 220.170 0.446592
\(494\) 360.592i 0.729943i
\(495\) 0 0
\(496\) −187.242 −0.377505
\(497\) 26.9809i 0.0542876i
\(498\) 0 0
\(499\) 84.1197 0.168576 0.0842882 0.996441i \(-0.473138\pi\)
0.0842882 + 0.996441i \(0.473138\pi\)
\(500\) 8.02537i 0.0160507i
\(501\) 0 0
\(502\) 797.911 1.58946
\(503\) 675.278i 1.34250i 0.741231 + 0.671250i \(0.234242\pi\)
−0.741231 + 0.671250i \(0.765758\pi\)
\(504\) 0 0
\(505\) −865.705 −1.71427
\(506\) − 208.582i − 0.412218i
\(507\) 0 0
\(508\) −2227.14 −4.38413
\(509\) 57.3769i 0.112725i 0.998410 + 0.0563623i \(0.0179502\pi\)
−0.998410 + 0.0563623i \(0.982050\pi\)
\(510\) 0 0
\(511\) −353.808 −0.692383
\(512\) − 2568.36i − 5.01633i
\(513\) 0 0
\(514\) −1467.10 −2.85428
\(515\) − 950.394i − 1.84543i
\(516\) 0 0
\(517\) −367.073 −0.710005
\(518\) − 135.540i − 0.261661i
\(519\) 0 0
\(520\) 1035.47 1.99129
\(521\) − 193.458i − 0.371321i −0.982614 0.185660i \(-0.940558\pi\)
0.982614 0.185660i \(-0.0594424\pi\)
\(522\) 0 0
\(523\) 818.858 1.56569 0.782847 0.622214i \(-0.213766\pi\)
0.782847 + 0.622214i \(0.213766\pi\)
\(524\) − 1545.51i − 2.94945i
\(525\) 0 0
\(526\) −16.8617 −0.0320564
\(527\) − 14.9784i − 0.0284221i
\(528\) 0 0
\(529\) 414.762 0.784050
\(530\) − 165.020i − 0.311358i
\(531\) 0 0
\(532\) −552.744 −1.03899
\(533\) − 166.736i − 0.312825i
\(534\) 0 0
\(535\) −547.879 −1.02407
\(536\) − 3087.17i − 5.75964i
\(537\) 0 0
\(538\) −393.600 −0.731599
\(539\) − 34.7765i − 0.0645205i
\(540\) 0 0
\(541\) 930.468 1.71990 0.859952 0.510375i \(-0.170494\pi\)
0.859952 + 0.510375i \(0.170494\pi\)
\(542\) − 44.9249i − 0.0828872i
\(543\) 0 0
\(544\) 849.166 1.56097
\(545\) 564.228i 1.03528i
\(546\) 0 0
\(547\) 854.384 1.56195 0.780973 0.624565i \(-0.214724\pi\)
0.780973 + 0.624565i \(0.214724\pi\)
\(548\) 2343.06i 4.27565i
\(549\) 0 0
\(550\) 485.940 0.883527
\(551\) 729.847i 1.32459i
\(552\) 0 0
\(553\) −133.544 −0.241490
\(554\) 190.438i 0.343750i
\(555\) 0 0
\(556\) −2178.08 −3.91741
\(557\) − 734.064i − 1.31789i −0.752192 0.658945i \(-0.771003\pi\)
0.752192 0.658945i \(-0.228997\pi\)
\(558\) 0 0
\(559\) −308.373 −0.551652
\(560\) 1288.22i 2.30039i
\(561\) 0 0
\(562\) −306.541 −0.545447
\(563\) − 254.910i − 0.452771i −0.974038 0.226385i \(-0.927309\pi\)
0.974038 0.226385i \(-0.0726909\pi\)
\(564\) 0 0
\(565\) −923.507 −1.63452
\(566\) 886.734i 1.56667i
\(567\) 0 0
\(568\) 297.637 0.524009
\(569\) − 218.544i − 0.384084i −0.981387 0.192042i \(-0.938489\pi\)
0.981387 0.192042i \(-0.0615110\pi\)
\(570\) 0 0
\(571\) −215.722 −0.377797 −0.188899 0.981997i \(-0.560492\pi\)
−0.188899 + 0.981997i \(0.560492\pi\)
\(572\) 285.197i 0.498596i
\(573\) 0 0
\(574\) 345.029 0.601096
\(575\) − 266.143i − 0.462857i
\(576\) 0 0
\(577\) 825.876 1.43133 0.715664 0.698445i \(-0.246124\pi\)
0.715664 + 0.698445i \(0.246124\pi\)
\(578\) − 1015.80i − 1.75744i
\(579\) 0 0
\(580\) 3224.11 5.55881
\(581\) 109.971i 0.189279i
\(582\) 0 0
\(583\) 29.5452 0.0506778
\(584\) 3902.99i 6.68321i
\(585\) 0 0
\(586\) −1354.18 −2.31089
\(587\) − 503.828i − 0.858311i −0.903231 0.429155i \(-0.858811\pi\)
0.903231 0.429155i \(-0.141189\pi\)
\(588\) 0 0
\(589\) 49.6525 0.0842996
\(590\) − 1238.45i − 2.09907i
\(591\) 0 0
\(592\) −898.924 −1.51845
\(593\) 771.173i 1.30046i 0.759737 + 0.650230i \(0.225327\pi\)
−0.759737 + 0.650230i \(0.774673\pi\)
\(594\) 0 0
\(595\) −103.051 −0.173195
\(596\) 1246.29i 2.09109i
\(597\) 0 0
\(598\) 210.861 0.352610
\(599\) 377.218i 0.629746i 0.949134 + 0.314873i \(0.101962\pi\)
−0.949134 + 0.314873i \(0.898038\pi\)
\(600\) 0 0
\(601\) −731.960 −1.21790 −0.608952 0.793207i \(-0.708410\pi\)
−0.608952 + 0.793207i \(0.708410\pi\)
\(602\) − 638.122i − 1.06000i
\(603\) 0 0
\(604\) 1964.22 3.25202
\(605\) − 680.395i − 1.12462i
\(606\) 0 0
\(607\) −209.500 −0.345140 −0.172570 0.984997i \(-0.555207\pi\)
−0.172570 + 0.984997i \(0.555207\pi\)
\(608\) 2814.92i 4.62981i
\(609\) 0 0
\(610\) 369.527 0.605781
\(611\) − 371.082i − 0.607336i
\(612\) 0 0
\(613\) −334.191 −0.545173 −0.272587 0.962131i \(-0.587879\pi\)
−0.272587 + 0.962131i \(0.587879\pi\)
\(614\) − 159.136i − 0.259179i
\(615\) 0 0
\(616\) −383.634 −0.622782
\(617\) − 103.652i − 0.167993i −0.996466 0.0839966i \(-0.973232\pi\)
0.996466 0.0839966i \(-0.0267685\pi\)
\(618\) 0 0
\(619\) −30.9836 −0.0500543 −0.0250272 0.999687i \(-0.507967\pi\)
−0.0250272 + 0.999687i \(0.507967\pi\)
\(620\) − 219.340i − 0.353775i
\(621\) 0 0
\(622\) 931.512 1.49761
\(623\) − 141.146i − 0.226559i
\(624\) 0 0
\(625\) −627.475 −1.00396
\(626\) 2371.76i 3.78876i
\(627\) 0 0
\(628\) −2866.57 −4.56461
\(629\) − 71.9094i − 0.114323i
\(630\) 0 0
\(631\) −1063.05 −1.68471 −0.842353 0.538926i \(-0.818830\pi\)
−0.842353 + 0.538926i \(0.818830\pi\)
\(632\) 1473.17i 2.33097i
\(633\) 0 0
\(634\) 1663.15 2.62326
\(635\) − 1376.42i − 2.16758i
\(636\) 0 0
\(637\) 35.1564 0.0551906
\(638\) 779.255i 1.22140i
\(639\) 0 0
\(640\) 4784.54 7.47584
\(641\) − 633.821i − 0.988801i −0.869234 0.494400i \(-0.835388\pi\)
0.869234 0.494400i \(-0.164612\pi\)
\(642\) 0 0
\(643\) −796.623 −1.23892 −0.619458 0.785030i \(-0.712648\pi\)
−0.619458 + 0.785030i \(0.712648\pi\)
\(644\) 323.224i 0.501901i
\(645\) 0 0
\(646\) −395.877 −0.612813
\(647\) − 88.2332i − 0.136373i −0.997673 0.0681864i \(-0.978279\pi\)
0.997673 0.0681864i \(-0.0217213\pi\)
\(648\) 0 0
\(649\) 221.732 0.341652
\(650\) 491.248i 0.755766i
\(651\) 0 0
\(652\) 2089.00 3.20398
\(653\) 703.447i 1.07725i 0.842544 + 0.538627i \(0.181057\pi\)
−0.842544 + 0.538627i \(0.818943\pi\)
\(654\) 0 0
\(655\) 955.159 1.45826
\(656\) − 2288.29i − 3.48824i
\(657\) 0 0
\(658\) 767.886 1.16700
\(659\) 547.027i 0.830086i 0.909802 + 0.415043i \(0.136233\pi\)
−0.909802 + 0.415043i \(0.863767\pi\)
\(660\) 0 0
\(661\) −981.778 −1.48529 −0.742646 0.669684i \(-0.766429\pi\)
−0.742646 + 0.669684i \(0.766429\pi\)
\(662\) 1554.09i 2.34756i
\(663\) 0 0
\(664\) 1213.13 1.82701
\(665\) − 341.607i − 0.513695i
\(666\) 0 0
\(667\) 426.787 0.639861
\(668\) − 2235.86i − 3.34709i
\(669\) 0 0
\(670\) 2935.07 4.38070
\(671\) 66.1602i 0.0985994i
\(672\) 0 0
\(673\) −906.243 −1.34657 −0.673286 0.739382i \(-0.735118\pi\)
−0.673286 + 0.739382i \(0.735118\pi\)
\(674\) − 1734.67i − 2.57370i
\(675\) 0 0
\(676\) 1643.38 2.43103
\(677\) 944.531i 1.39517i 0.716501 + 0.697586i \(0.245742\pi\)
−0.716501 + 0.697586i \(0.754258\pi\)
\(678\) 0 0
\(679\) −258.888 −0.381279
\(680\) 1136.80i 1.67176i
\(681\) 0 0
\(682\) 53.0137 0.0777328
\(683\) − 1111.31i − 1.62710i −0.581492 0.813552i \(-0.697531\pi\)
0.581492 0.813552i \(-0.302469\pi\)
\(684\) 0 0
\(685\) −1448.06 −2.11395
\(686\) 72.7497i 0.106049i
\(687\) 0 0
\(688\) −4232.13 −6.15135
\(689\) 29.8679i 0.0433496i
\(690\) 0 0
\(691\) 199.562 0.288802 0.144401 0.989519i \(-0.453875\pi\)
0.144401 + 0.989519i \(0.453875\pi\)
\(692\) − 2751.27i − 3.97583i
\(693\) 0 0
\(694\) 387.757 0.558728
\(695\) − 1346.10i − 1.93683i
\(696\) 0 0
\(697\) 183.052 0.262628
\(698\) − 466.180i − 0.667880i
\(699\) 0 0
\(700\) −753.024 −1.07575
\(701\) 989.769i 1.41194i 0.708243 + 0.705969i \(0.249488\pi\)
−0.708243 + 0.705969i \(0.750512\pi\)
\(702\) 0 0
\(703\) 238.375 0.339082
\(704\) 1635.75i 2.32351i
\(705\) 0 0
\(706\) −2228.05 −3.15587
\(707\) 324.240i 0.458613i
\(708\) 0 0
\(709\) −56.0482 −0.0790524 −0.0395262 0.999219i \(-0.512585\pi\)
−0.0395262 + 0.999219i \(0.512585\pi\)
\(710\) 282.973i 0.398554i
\(711\) 0 0
\(712\) −1557.04 −2.18685
\(713\) − 29.0349i − 0.0407221i
\(714\) 0 0
\(715\) −176.258 −0.246514
\(716\) 1210.79i 1.69105i
\(717\) 0 0
\(718\) 788.545 1.09825
\(719\) 1020.35i 1.41912i 0.704644 + 0.709561i \(0.251107\pi\)
−0.704644 + 0.709561i \(0.748893\pi\)
\(720\) 0 0
\(721\) −355.959 −0.493702
\(722\) 105.745i 0.146461i
\(723\) 0 0
\(724\) 1543.42 2.13179
\(725\) 994.299i 1.37145i
\(726\) 0 0
\(727\) −72.2895 −0.0994353 −0.0497176 0.998763i \(-0.515832\pi\)
−0.0497176 + 0.998763i \(0.515832\pi\)
\(728\) − 387.824i − 0.532725i
\(729\) 0 0
\(730\) −3710.70 −5.08315
\(731\) − 338.549i − 0.463131i
\(732\) 0 0
\(733\) 1004.66 1.37061 0.685304 0.728257i \(-0.259669\pi\)
0.685304 + 0.728257i \(0.259669\pi\)
\(734\) − 147.446i − 0.200880i
\(735\) 0 0
\(736\) 1646.06 2.23650
\(737\) 525.496i 0.713020i
\(738\) 0 0
\(739\) −22.3057 −0.0301836 −0.0150918 0.999886i \(-0.504804\pi\)
−0.0150918 + 0.999886i \(0.504804\pi\)
\(740\) − 1053.02i − 1.42300i
\(741\) 0 0
\(742\) −61.8061 −0.0832966
\(743\) 112.997i 0.152083i 0.997105 + 0.0760414i \(0.0242281\pi\)
−0.997105 + 0.0760414i \(0.975772\pi\)
\(744\) 0 0
\(745\) −770.233 −1.03387
\(746\) − 645.972i − 0.865914i
\(747\) 0 0
\(748\) −313.105 −0.418589
\(749\) 205.202i 0.273968i
\(750\) 0 0
\(751\) −665.342 −0.885941 −0.442971 0.896536i \(-0.646075\pi\)
−0.442971 + 0.896536i \(0.646075\pi\)
\(752\) − 5092.74i − 6.77226i
\(753\) 0 0
\(754\) −787.767 −1.04478
\(755\) 1213.93i 1.60785i
\(756\) 0 0
\(757\) −206.225 −0.272425 −0.136212 0.990680i \(-0.543493\pi\)
−0.136212 + 0.990680i \(0.543493\pi\)
\(758\) 238.810i 0.315052i
\(759\) 0 0
\(760\) −3768.40 −4.95842
\(761\) 490.229i 0.644191i 0.946707 + 0.322095i \(0.104387\pi\)
−0.946707 + 0.322095i \(0.895613\pi\)
\(762\) 0 0
\(763\) 211.325 0.276966
\(764\) − 2085.41i − 2.72960i
\(765\) 0 0
\(766\) −1934.12 −2.52496
\(767\) 224.154i 0.292248i
\(768\) 0 0
\(769\) 769.195 1.00025 0.500127 0.865952i \(-0.333287\pi\)
0.500127 + 0.865952i \(0.333287\pi\)
\(770\) − 364.733i − 0.473679i
\(771\) 0 0
\(772\) 723.917 0.937716
\(773\) − 346.226i − 0.447899i −0.974601 0.223950i \(-0.928105\pi\)
0.974601 0.223950i \(-0.0718951\pi\)
\(774\) 0 0
\(775\) 67.6434 0.0872818
\(776\) 2855.90i 3.68028i
\(777\) 0 0
\(778\) 1321.99 1.69922
\(779\) 606.803i 0.778951i
\(780\) 0 0
\(781\) −50.6636 −0.0648702
\(782\) 231.494i 0.296028i
\(783\) 0 0
\(784\) 482.488 0.615418
\(785\) − 1771.60i − 2.25682i
\(786\) 0 0
\(787\) 676.003 0.858962 0.429481 0.903076i \(-0.358697\pi\)
0.429481 + 0.903076i \(0.358697\pi\)
\(788\) 9.57861i 0.0121556i
\(789\) 0 0
\(790\) −1400.59 −1.77290
\(791\) 345.888i 0.437280i
\(792\) 0 0
\(793\) −66.8829 −0.0843416
\(794\) − 850.320i − 1.07093i
\(795\) 0 0
\(796\) −1627.25 −2.04428
\(797\) − 277.024i − 0.347583i −0.984782 0.173792i \(-0.944398\pi\)
0.984782 0.173792i \(-0.0556020\pi\)
\(798\) 0 0
\(799\) 407.394 0.509880
\(800\) 3834.88i 4.79360i
\(801\) 0 0
\(802\) 2300.03 2.86787
\(803\) − 664.365i − 0.827354i
\(804\) 0 0
\(805\) −199.759 −0.248148
\(806\) 53.5928i 0.0664923i
\(807\) 0 0
\(808\) 3576.81 4.42675
\(809\) 1413.32i 1.74699i 0.486830 + 0.873496i \(0.338153\pi\)
−0.486830 + 0.873496i \(0.661847\pi\)
\(810\) 0 0
\(811\) −129.077 −0.159158 −0.0795792 0.996829i \(-0.525358\pi\)
−0.0795792 + 0.996829i \(0.525358\pi\)
\(812\) − 1207.55i − 1.48713i
\(813\) 0 0
\(814\) 254.512 0.312668
\(815\) 1291.04i 1.58410i
\(816\) 0 0
\(817\) 1122.27 1.37364
\(818\) − 1172.01i − 1.43278i
\(819\) 0 0
\(820\) 2680.56 3.26897
\(821\) − 368.471i − 0.448808i −0.974496 0.224404i \(-0.927957\pi\)
0.974496 0.224404i \(-0.0720435\pi\)
\(822\) 0 0
\(823\) 21.6229 0.0262732 0.0131366 0.999914i \(-0.495818\pi\)
0.0131366 + 0.999914i \(0.495818\pi\)
\(824\) 3926.72i 4.76544i
\(825\) 0 0
\(826\) −463.846 −0.561557
\(827\) − 1159.12i − 1.40160i −0.713359 0.700799i \(-0.752827\pi\)
0.713359 0.700799i \(-0.247173\pi\)
\(828\) 0 0
\(829\) 314.303 0.379135 0.189567 0.981868i \(-0.439291\pi\)
0.189567 + 0.981868i \(0.439291\pi\)
\(830\) 1153.36i 1.38959i
\(831\) 0 0
\(832\) −1653.62 −1.98752
\(833\) 38.5966i 0.0463345i
\(834\) 0 0
\(835\) 1381.81 1.65486
\(836\) − 1037.92i − 1.24153i
\(837\) 0 0
\(838\) −1776.66 −2.12012
\(839\) − 457.069i − 0.544779i −0.962187 0.272389i \(-0.912186\pi\)
0.962187 0.272389i \(-0.0878138\pi\)
\(840\) 0 0
\(841\) −753.461 −0.895910
\(842\) − 161.936i − 0.192324i
\(843\) 0 0
\(844\) −582.739 −0.690449
\(845\) 1015.64i 1.20194i
\(846\) 0 0
\(847\) −254.834 −0.300867
\(848\) 409.908i 0.483382i
\(849\) 0 0
\(850\) −539.319 −0.634493
\(851\) − 139.392i − 0.163798i
\(852\) 0 0
\(853\) −521.286 −0.611120 −0.305560 0.952173i \(-0.598844\pi\)
−0.305560 + 0.952173i \(0.598844\pi\)
\(854\) − 138.402i − 0.162063i
\(855\) 0 0
\(856\) 2263.66 2.64446
\(857\) − 91.5255i − 0.106798i −0.998573 0.0533988i \(-0.982995\pi\)
0.998573 0.0533988i \(-0.0170054\pi\)
\(858\) 0 0
\(859\) −513.844 −0.598189 −0.299094 0.954224i \(-0.596685\pi\)
−0.299094 + 0.954224i \(0.596685\pi\)
\(860\) − 4957.62i − 5.76468i
\(861\) 0 0
\(862\) −1631.70 −1.89292
\(863\) 1131.40i 1.31100i 0.755194 + 0.655501i \(0.227543\pi\)
−0.755194 + 0.655501i \(0.772457\pi\)
\(864\) 0 0
\(865\) 1700.34 1.96571
\(866\) − 2977.71i − 3.43846i
\(867\) 0 0
\(868\) −82.1514 −0.0946444
\(869\) − 250.763i − 0.288565i
\(870\) 0 0
\(871\) −531.236 −0.609915
\(872\) − 2331.21i − 2.67340i
\(873\) 0 0
\(874\) −767.387 −0.878017
\(875\) 1.85765i 0.00212303i
\(876\) 0 0
\(877\) 1253.65 1.42947 0.714735 0.699395i \(-0.246547\pi\)
0.714735 + 0.699395i \(0.246547\pi\)
\(878\) − 1766.16i − 2.01158i
\(879\) 0 0
\(880\) −2418.96 −2.74882
\(881\) − 852.645i − 0.967816i −0.875119 0.483908i \(-0.839217\pi\)
0.875119 0.483908i \(-0.160783\pi\)
\(882\) 0 0
\(883\) 329.935 0.373653 0.186826 0.982393i \(-0.440180\pi\)
0.186826 + 0.982393i \(0.440180\pi\)
\(884\) − 316.525i − 0.358060i
\(885\) 0 0
\(886\) 1698.65 1.91721
\(887\) − 1524.20i − 1.71838i −0.511657 0.859190i \(-0.670968\pi\)
0.511657 0.859190i \(-0.329032\pi\)
\(888\) 0 0
\(889\) −515.520 −0.579888
\(890\) − 1480.32i − 1.66329i
\(891\) 0 0
\(892\) −3987.38 −4.47016
\(893\) 1350.48i 1.51230i
\(894\) 0 0
\(895\) −748.293 −0.836081
\(896\) − 1791.99i − 1.99999i
\(897\) 0 0
\(898\) −857.734 −0.955160
\(899\) 108.473i 0.120660i
\(900\) 0 0
\(901\) −32.7906 −0.0363935
\(902\) 647.881i 0.718271i
\(903\) 0 0
\(904\) 3815.63 4.22083
\(905\) 953.863i 1.05399i
\(906\) 0 0
\(907\) 1301.37 1.43481 0.717404 0.696657i \(-0.245330\pi\)
0.717404 + 0.696657i \(0.245330\pi\)
\(908\) − 261.517i − 0.288014i
\(909\) 0 0
\(910\) 368.717 0.405183
\(911\) 403.136i 0.442521i 0.975215 + 0.221260i \(0.0710170\pi\)
−0.975215 + 0.221260i \(0.928983\pi\)
\(912\) 0 0
\(913\) −206.499 −0.226176
\(914\) 351.318i 0.384374i
\(915\) 0 0
\(916\) 2428.13 2.65079
\(917\) − 357.744i − 0.390124i
\(918\) 0 0
\(919\) 1249.88 1.36004 0.680021 0.733193i \(-0.261971\pi\)
0.680021 + 0.733193i \(0.261971\pi\)
\(920\) 2203.62i 2.39524i
\(921\) 0 0
\(922\) 1091.52 1.18386
\(923\) − 51.2170i − 0.0554897i
\(924\) 0 0
\(925\) 324.747 0.351077
\(926\) − 334.922i − 0.361687i
\(927\) 0 0
\(928\) −6149.62 −6.62675
\(929\) 930.851i 1.00199i 0.865449 + 0.500996i \(0.167033\pi\)
−0.865449 + 0.500996i \(0.832967\pi\)
\(930\) 0 0
\(931\) −127.945 −0.137427
\(932\) 1236.07i 1.32626i
\(933\) 0 0
\(934\) 1509.65 1.61633
\(935\) − 193.505i − 0.206957i
\(936\) 0 0
\(937\) 717.981 0.766255 0.383127 0.923695i \(-0.374847\pi\)
0.383127 + 0.923695i \(0.374847\pi\)
\(938\) − 1099.30i − 1.17196i
\(939\) 0 0
\(940\) 5965.77 6.34656
\(941\) 1089.25i 1.15754i 0.815491 + 0.578770i \(0.196467\pi\)
−0.815491 + 0.578770i \(0.803533\pi\)
\(942\) 0 0
\(943\) 354.835 0.376283
\(944\) 3076.30i 3.25879i
\(945\) 0 0
\(946\) 1198.24 1.26664
\(947\) − 1660.50i − 1.75343i −0.481007 0.876717i \(-0.659729\pi\)
0.481007 0.876717i \(-0.340271\pi\)
\(948\) 0 0
\(949\) 671.622 0.707716
\(950\) − 1787.80i − 1.88190i
\(951\) 0 0
\(952\) 425.774 0.447242
\(953\) 1831.96i 1.92231i 0.276003 + 0.961157i \(0.410990\pi\)
−0.276003 + 0.961157i \(0.589010\pi\)
\(954\) 0 0
\(955\) 1288.83 1.34956
\(956\) 127.405i 0.133268i
\(957\) 0 0
\(958\) 1316.49 1.37421
\(959\) 542.353i 0.565540i
\(960\) 0 0
\(961\) −953.620 −0.992321
\(962\) 257.292i 0.267455i
\(963\) 0 0
\(964\) 1785.65 1.85234
\(965\) 447.395i 0.463622i
\(966\) 0 0
\(967\) −1361.09 −1.40753 −0.703767 0.710431i \(-0.748500\pi\)
−0.703767 + 0.710431i \(0.748500\pi\)
\(968\) 2811.17i 2.90410i
\(969\) 0 0
\(970\) −2715.19 −2.79917
\(971\) − 343.016i − 0.353261i −0.984277 0.176630i \(-0.943480\pi\)
0.984277 0.176630i \(-0.0565197\pi\)
\(972\) 0 0
\(973\) −504.165 −0.518155
\(974\) − 391.378i − 0.401825i
\(975\) 0 0
\(976\) −917.903 −0.940474
\(977\) 1413.35i 1.44663i 0.690521 + 0.723313i \(0.257381\pi\)
−0.690521 + 0.723313i \(0.742619\pi\)
\(978\) 0 0
\(979\) 265.038 0.270723
\(980\) 565.199i 0.576733i
\(981\) 0 0
\(982\) −2054.29 −2.09195
\(983\) 1153.38i 1.17333i 0.809830 + 0.586665i \(0.199559\pi\)
−0.809830 + 0.586665i \(0.800441\pi\)
\(984\) 0 0
\(985\) −5.91978 −0.00600993
\(986\) − 864.853i − 0.877133i
\(987\) 0 0
\(988\) 1049.26 1.06200
\(989\) − 656.259i − 0.663558i
\(990\) 0 0
\(991\) −238.933 −0.241103 −0.120551 0.992707i \(-0.538466\pi\)
−0.120551 + 0.992707i \(0.538466\pi\)
\(992\) 418.367i 0.421741i
\(993\) 0 0
\(994\) 105.984 0.106624
\(995\) − 1005.67i − 1.01073i
\(996\) 0 0
\(997\) −1328.25 −1.33224 −0.666121 0.745843i \(-0.732047\pi\)
−0.666121 + 0.745843i \(0.732047\pi\)
\(998\) − 330.432i − 0.331094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.3.b.c.134.1 8
3.2 odd 2 inner 189.3.b.c.134.8 yes 8
4.3 odd 2 3024.3.d.j.1457.2 8
9.2 odd 6 567.3.r.e.134.8 16
9.4 even 3 567.3.r.e.512.8 16
9.5 odd 6 567.3.r.e.512.1 16
9.7 even 3 567.3.r.e.134.1 16
12.11 even 2 3024.3.d.j.1457.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.3.b.c.134.1 8 1.1 even 1 trivial
189.3.b.c.134.8 yes 8 3.2 odd 2 inner
567.3.r.e.134.1 16 9.7 even 3
567.3.r.e.134.8 16 9.2 odd 6
567.3.r.e.512.1 16 9.5 odd 6
567.3.r.e.512.8 16 9.4 even 3
3024.3.d.j.1457.2 8 4.3 odd 2
3024.3.d.j.1457.7 8 12.11 even 2