Properties

Label 189.3.b.b.134.3
Level $189$
Weight $3$
Character 189.134
Analytic conductor $5.150$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,3,Mod(134,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14987699641\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 134.3
Root \(1.16372i\) of defining polynomial
Character \(\chi\) \(=\) 189.134
Dual form 189.3.b.b.134.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.16372i q^{2} +2.64575 q^{4} -5.40636i q^{5} +2.64575 q^{7} +7.73381i q^{8} +6.29150 q^{10} -18.1343i q^{11} +10.2288 q^{13} +3.07892i q^{14} +1.58301 q^{16} -4.24264i q^{17} +3.35425 q^{19} -14.3039i q^{20} +21.1033 q^{22} +28.9470i q^{23} -4.22876 q^{25} +11.9034i q^{26} +7.00000 q^{28} +36.0024i q^{29} +34.5203 q^{31} +32.7774i q^{32} +4.93725 q^{34} -14.3039i q^{35} -60.0405 q^{37} +3.90341i q^{38} +41.8118 q^{40} -71.9317i q^{41} -46.6863 q^{43} -47.9788i q^{44} -33.6863 q^{46} -18.2073i q^{47} +7.00000 q^{49} -4.92110i q^{50} +27.0627 q^{52} +43.3969i q^{53} -98.0405 q^{55} +20.4617i q^{56} -41.8967 q^{58} +53.1190i q^{59} -65.9555 q^{61} +40.1720i q^{62} -31.8118 q^{64} -55.3004i q^{65} +36.3542 q^{67} -11.2250i q^{68} +16.6458 q^{70} +0.219057i q^{71} -11.8523 q^{73} -69.8705i q^{74} +8.87451 q^{76} -47.9788i q^{77} -144.812 q^{79} -8.55830i q^{80} +83.7085 q^{82} +99.0837i q^{83} -22.9373 q^{85} -54.3298i q^{86} +140.247 q^{88} -92.7327i q^{89} +27.0627 q^{91} +76.5866i q^{92} +21.1882 q^{94} -18.1343i q^{95} -96.5385 q^{97} +8.14605i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{10} - 12 q^{13} - 36 q^{16} + 24 q^{19} - 32 q^{22} + 36 q^{25} + 28 q^{28} + 64 q^{31} - 12 q^{34} - 92 q^{37} + 72 q^{40} - 28 q^{43} + 24 q^{46} + 28 q^{49} + 140 q^{52} - 244 q^{55} - 284 q^{58}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16372i 0.581861i 0.956744 + 0.290930i \(0.0939648\pi\)
−0.956744 + 0.290930i \(0.906035\pi\)
\(3\) 0 0
\(4\) 2.64575 0.661438
\(5\) − 5.40636i − 1.08127i −0.841256 0.540636i \(-0.818184\pi\)
0.841256 0.540636i \(-0.181816\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) 7.73381i 0.966726i
\(9\) 0 0
\(10\) 6.29150 0.629150
\(11\) − 18.1343i − 1.64857i −0.566174 0.824286i \(-0.691577\pi\)
0.566174 0.824286i \(-0.308423\pi\)
\(12\) 0 0
\(13\) 10.2288 0.786827 0.393414 0.919362i \(-0.371294\pi\)
0.393414 + 0.919362i \(0.371294\pi\)
\(14\) 3.07892i 0.219923i
\(15\) 0 0
\(16\) 1.58301 0.0989378
\(17\) − 4.24264i − 0.249567i −0.992184 0.124784i \(-0.960176\pi\)
0.992184 0.124784i \(-0.0398236\pi\)
\(18\) 0 0
\(19\) 3.35425 0.176539 0.0882697 0.996097i \(-0.471866\pi\)
0.0882697 + 0.996097i \(0.471866\pi\)
\(20\) − 14.3039i − 0.715195i
\(21\) 0 0
\(22\) 21.1033 0.959239
\(23\) 28.9470i 1.25857i 0.777176 + 0.629283i \(0.216651\pi\)
−0.777176 + 0.629283i \(0.783349\pi\)
\(24\) 0 0
\(25\) −4.22876 −0.169150
\(26\) 11.9034i 0.457824i
\(27\) 0 0
\(28\) 7.00000 0.250000
\(29\) 36.0024i 1.24146i 0.784024 + 0.620730i \(0.213164\pi\)
−0.784024 + 0.620730i \(0.786836\pi\)
\(30\) 0 0
\(31\) 34.5203 1.11356 0.556778 0.830661i \(-0.312037\pi\)
0.556778 + 0.830661i \(0.312037\pi\)
\(32\) 32.7774i 1.02429i
\(33\) 0 0
\(34\) 4.93725 0.145213
\(35\) − 14.3039i − 0.408683i
\(36\) 0 0
\(37\) −60.0405 −1.62272 −0.811358 0.584549i \(-0.801271\pi\)
−0.811358 + 0.584549i \(0.801271\pi\)
\(38\) 3.90341i 0.102721i
\(39\) 0 0
\(40\) 41.8118 1.04529
\(41\) − 71.9317i − 1.75443i −0.480096 0.877216i \(-0.659398\pi\)
0.480096 0.877216i \(-0.340602\pi\)
\(42\) 0 0
\(43\) −46.6863 −1.08573 −0.542864 0.839821i \(-0.682660\pi\)
−0.542864 + 0.839821i \(0.682660\pi\)
\(44\) − 47.9788i − 1.09043i
\(45\) 0 0
\(46\) −33.6863 −0.732310
\(47\) − 18.2073i − 0.387389i −0.981062 0.193695i \(-0.937953\pi\)
0.981062 0.193695i \(-0.0620471\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) − 4.92110i − 0.0984219i
\(51\) 0 0
\(52\) 27.0627 0.520437
\(53\) 43.3969i 0.818810i 0.912353 + 0.409405i \(0.134264\pi\)
−0.912353 + 0.409405i \(0.865736\pi\)
\(54\) 0 0
\(55\) −98.0405 −1.78255
\(56\) 20.4617i 0.365388i
\(57\) 0 0
\(58\) −41.8967 −0.722358
\(59\) 53.1190i 0.900321i 0.892948 + 0.450161i \(0.148633\pi\)
−0.892948 + 0.450161i \(0.851367\pi\)
\(60\) 0 0
\(61\) −65.9555 −1.08124 −0.540619 0.841267i \(-0.681810\pi\)
−0.540619 + 0.841267i \(0.681810\pi\)
\(62\) 40.1720i 0.647935i
\(63\) 0 0
\(64\) −31.8118 −0.497059
\(65\) − 55.3004i − 0.850775i
\(66\) 0 0
\(67\) 36.3542 0.542601 0.271300 0.962495i \(-0.412546\pi\)
0.271300 + 0.962495i \(0.412546\pi\)
\(68\) − 11.2250i − 0.165073i
\(69\) 0 0
\(70\) 16.6458 0.237796
\(71\) 0.219057i 0.00308531i 0.999999 + 0.00154265i \(0.000491042\pi\)
−0.999999 + 0.00154265i \(0.999509\pi\)
\(72\) 0 0
\(73\) −11.8523 −0.162360 −0.0811800 0.996699i \(-0.525869\pi\)
−0.0811800 + 0.996699i \(0.525869\pi\)
\(74\) − 69.8705i − 0.944195i
\(75\) 0 0
\(76\) 8.87451 0.116770
\(77\) − 47.9788i − 0.623101i
\(78\) 0 0
\(79\) −144.812 −1.83306 −0.916530 0.399966i \(-0.869022\pi\)
−0.916530 + 0.399966i \(0.869022\pi\)
\(80\) − 8.55830i − 0.106979i
\(81\) 0 0
\(82\) 83.7085 1.02084
\(83\) 99.0837i 1.19378i 0.802323 + 0.596890i \(0.203597\pi\)
−0.802323 + 0.596890i \(0.796403\pi\)
\(84\) 0 0
\(85\) −22.9373 −0.269850
\(86\) − 54.3298i − 0.631742i
\(87\) 0 0
\(88\) 140.247 1.59372
\(89\) − 92.7327i − 1.04194i −0.853575 0.520970i \(-0.825570\pi\)
0.853575 0.520970i \(-0.174430\pi\)
\(90\) 0 0
\(91\) 27.0627 0.297393
\(92\) 76.5866i 0.832463i
\(93\) 0 0
\(94\) 21.1882 0.225407
\(95\) − 18.1343i − 0.190887i
\(96\) 0 0
\(97\) −96.5385 −0.995243 −0.497621 0.867394i \(-0.665793\pi\)
−0.497621 + 0.867394i \(0.665793\pi\)
\(98\) 8.14605i 0.0831230i
\(99\) 0 0
\(100\) −11.1882 −0.111882
\(101\) 108.247i 1.07176i 0.844295 + 0.535878i \(0.180019\pi\)
−0.844295 + 0.535878i \(0.819981\pi\)
\(102\) 0 0
\(103\) 154.933 1.50421 0.752103 0.659045i \(-0.229039\pi\)
0.752103 + 0.659045i \(0.229039\pi\)
\(104\) 79.1072i 0.760646i
\(105\) 0 0
\(106\) −50.5020 −0.476434
\(107\) 65.9671i 0.616515i 0.951303 + 0.308257i \(0.0997458\pi\)
−0.951303 + 0.308257i \(0.900254\pi\)
\(108\) 0 0
\(109\) 58.1438 0.533429 0.266715 0.963776i \(-0.414062\pi\)
0.266715 + 0.963776i \(0.414062\pi\)
\(110\) − 114.092i − 1.03720i
\(111\) 0 0
\(112\) 4.18824 0.0373950
\(113\) − 57.5076i − 0.508917i −0.967084 0.254459i \(-0.918103\pi\)
0.967084 0.254459i \(-0.0818973\pi\)
\(114\) 0 0
\(115\) 156.498 1.36085
\(116\) 95.2533i 0.821149i
\(117\) 0 0
\(118\) −61.8157 −0.523862
\(119\) − 11.2250i − 0.0943275i
\(120\) 0 0
\(121\) −207.852 −1.71779
\(122\) − 76.7539i − 0.629130i
\(123\) 0 0
\(124\) 91.3320 0.736549
\(125\) − 112.297i − 0.898375i
\(126\) 0 0
\(127\) 147.269 1.15960 0.579800 0.814759i \(-0.303131\pi\)
0.579800 + 0.814759i \(0.303131\pi\)
\(128\) 94.0896i 0.735075i
\(129\) 0 0
\(130\) 64.3542 0.495033
\(131\) 232.134i 1.77202i 0.463668 + 0.886009i \(0.346533\pi\)
−0.463668 + 0.886009i \(0.653467\pi\)
\(132\) 0 0
\(133\) 8.87451 0.0667256
\(134\) 42.3062i 0.315718i
\(135\) 0 0
\(136\) 32.8118 0.241263
\(137\) 130.989i 0.956127i 0.878325 + 0.478064i \(0.158661\pi\)
−0.878325 + 0.478064i \(0.841339\pi\)
\(138\) 0 0
\(139\) −23.5425 −0.169370 −0.0846852 0.996408i \(-0.526988\pi\)
−0.0846852 + 0.996408i \(0.526988\pi\)
\(140\) − 37.8445i − 0.270318i
\(141\) 0 0
\(142\) −0.254921 −0.00179522
\(143\) − 185.491i − 1.29714i
\(144\) 0 0
\(145\) 194.642 1.34236
\(146\) − 13.7928i − 0.0944709i
\(147\) 0 0
\(148\) −158.852 −1.07333
\(149\) 97.7526i 0.656058i 0.944668 + 0.328029i \(0.106384\pi\)
−0.944668 + 0.328029i \(0.893616\pi\)
\(150\) 0 0
\(151\) 149.875 0.992546 0.496273 0.868166i \(-0.334701\pi\)
0.496273 + 0.868166i \(0.334701\pi\)
\(152\) 25.9411i 0.170665i
\(153\) 0 0
\(154\) 55.8340 0.362558
\(155\) − 186.629i − 1.20406i
\(156\) 0 0
\(157\) 114.731 0.730769 0.365384 0.930857i \(-0.380938\pi\)
0.365384 + 0.930857i \(0.380938\pi\)
\(158\) − 168.521i − 1.06659i
\(159\) 0 0
\(160\) 177.207 1.10754
\(161\) 76.5866i 0.475693i
\(162\) 0 0
\(163\) 129.099 0.792020 0.396010 0.918246i \(-0.370394\pi\)
0.396010 + 0.918246i \(0.370394\pi\)
\(164\) − 190.313i − 1.16045i
\(165\) 0 0
\(166\) −115.306 −0.694614
\(167\) − 152.349i − 0.912268i −0.889911 0.456134i \(-0.849234\pi\)
0.889911 0.456134i \(-0.150766\pi\)
\(168\) 0 0
\(169\) −64.3725 −0.380903
\(170\) − 26.6926i − 0.157015i
\(171\) 0 0
\(172\) −123.520 −0.718141
\(173\) 112.881i 0.652491i 0.945285 + 0.326246i \(0.105784\pi\)
−0.945285 + 0.326246i \(0.894216\pi\)
\(174\) 0 0
\(175\) −11.1882 −0.0639328
\(176\) − 28.7067i − 0.163106i
\(177\) 0 0
\(178\) 107.915 0.606264
\(179\) − 130.405i − 0.728521i −0.931297 0.364261i \(-0.881322\pi\)
0.931297 0.364261i \(-0.118678\pi\)
\(180\) 0 0
\(181\) −328.207 −1.81330 −0.906648 0.421888i \(-0.861367\pi\)
−0.906648 + 0.421888i \(0.861367\pi\)
\(182\) 31.4935i 0.173041i
\(183\) 0 0
\(184\) −223.871 −1.21669
\(185\) 324.601i 1.75460i
\(186\) 0 0
\(187\) −76.9373 −0.411429
\(188\) − 48.1720i − 0.256234i
\(189\) 0 0
\(190\) 21.1033 0.111070
\(191\) − 215.769i − 1.12968i −0.825200 0.564841i \(-0.808938\pi\)
0.825200 0.564841i \(-0.191062\pi\)
\(192\) 0 0
\(193\) −59.3725 −0.307630 −0.153815 0.988100i \(-0.549156\pi\)
−0.153815 + 0.988100i \(0.549156\pi\)
\(194\) − 112.344i − 0.579093i
\(195\) 0 0
\(196\) 18.5203 0.0944911
\(197\) 147.110i 0.746749i 0.927681 + 0.373375i \(0.121799\pi\)
−0.927681 + 0.373375i \(0.878201\pi\)
\(198\) 0 0
\(199\) 142.077 0.713955 0.356978 0.934113i \(-0.383807\pi\)
0.356978 + 0.934113i \(0.383807\pi\)
\(200\) − 32.7044i − 0.163522i
\(201\) 0 0
\(202\) −125.970 −0.623613
\(203\) 95.2533i 0.469228i
\(204\) 0 0
\(205\) −388.889 −1.89702
\(206\) 180.299i 0.875239i
\(207\) 0 0
\(208\) 16.1922 0.0778470
\(209\) − 60.8269i − 0.291038i
\(210\) 0 0
\(211\) 16.9150 0.0801660 0.0400830 0.999196i \(-0.487238\pi\)
0.0400830 + 0.999196i \(0.487238\pi\)
\(212\) 114.818i 0.541592i
\(213\) 0 0
\(214\) −76.7673 −0.358726
\(215\) 252.403i 1.17397i
\(216\) 0 0
\(217\) 91.3320 0.420885
\(218\) 67.6632i 0.310382i
\(219\) 0 0
\(220\) −259.391 −1.17905
\(221\) − 43.3969i − 0.196366i
\(222\) 0 0
\(223\) 350.158 1.57022 0.785108 0.619359i \(-0.212607\pi\)
0.785108 + 0.619359i \(0.212607\pi\)
\(224\) 86.7209i 0.387147i
\(225\) 0 0
\(226\) 66.9229 0.296119
\(227\) − 331.802i − 1.46168i −0.682547 0.730842i \(-0.739128\pi\)
0.682547 0.730842i \(-0.260872\pi\)
\(228\) 0 0
\(229\) −308.494 −1.34714 −0.673568 0.739125i \(-0.735239\pi\)
−0.673568 + 0.739125i \(0.735239\pi\)
\(230\) 182.120i 0.791827i
\(231\) 0 0
\(232\) −278.435 −1.20015
\(233\) 109.776i 0.471143i 0.971857 + 0.235571i \(0.0756961\pi\)
−0.971857 + 0.235571i \(0.924304\pi\)
\(234\) 0 0
\(235\) −98.4353 −0.418874
\(236\) 140.540i 0.595507i
\(237\) 0 0
\(238\) 13.0627 0.0548855
\(239\) − 329.501i − 1.37866i −0.724446 0.689332i \(-0.757904\pi\)
0.724446 0.689332i \(-0.242096\pi\)
\(240\) 0 0
\(241\) −137.306 −0.569734 −0.284867 0.958567i \(-0.591949\pi\)
−0.284867 + 0.958567i \(0.591949\pi\)
\(242\) − 241.882i − 0.999513i
\(243\) 0 0
\(244\) −174.502 −0.715172
\(245\) − 37.8445i − 0.154468i
\(246\) 0 0
\(247\) 34.3098 0.138906
\(248\) 266.973i 1.07650i
\(249\) 0 0
\(250\) 130.682 0.522729
\(251\) 356.141i 1.41889i 0.704761 + 0.709445i \(0.251054\pi\)
−0.704761 + 0.709445i \(0.748946\pi\)
\(252\) 0 0
\(253\) 524.933 2.07484
\(254\) 171.380i 0.674726i
\(255\) 0 0
\(256\) −236.741 −0.924770
\(257\) − 384.650i − 1.49669i −0.663307 0.748347i \(-0.730848\pi\)
0.663307 0.748347i \(-0.269152\pi\)
\(258\) 0 0
\(259\) −158.852 −0.613329
\(260\) − 146.311i − 0.562735i
\(261\) 0 0
\(262\) −270.140 −1.03107
\(263\) 290.247i 1.10360i 0.833976 + 0.551801i \(0.186059\pi\)
−0.833976 + 0.551801i \(0.813941\pi\)
\(264\) 0 0
\(265\) 234.620 0.885357
\(266\) 10.3275i 0.0388250i
\(267\) 0 0
\(268\) 96.1843 0.358897
\(269\) − 532.928i − 1.98115i −0.136985 0.990573i \(-0.543741\pi\)
0.136985 0.990573i \(-0.456259\pi\)
\(270\) 0 0
\(271\) 73.0405 0.269522 0.134761 0.990878i \(-0.456973\pi\)
0.134761 + 0.990878i \(0.456973\pi\)
\(272\) − 6.71612i − 0.0246916i
\(273\) 0 0
\(274\) −152.435 −0.556333
\(275\) 76.6855i 0.278856i
\(276\) 0 0
\(277\) −68.5791 −0.247578 −0.123789 0.992309i \(-0.539505\pi\)
−0.123789 + 0.992309i \(0.539505\pi\)
\(278\) − 27.3969i − 0.0985500i
\(279\) 0 0
\(280\) 110.624 0.395084
\(281\) − 89.9199i − 0.320000i −0.987117 0.160000i \(-0.948851\pi\)
0.987117 0.160000i \(-0.0511494\pi\)
\(282\) 0 0
\(283\) 372.907 1.31769 0.658847 0.752277i \(-0.271045\pi\)
0.658847 + 0.752277i \(0.271045\pi\)
\(284\) 0.579570i 0.00204074i
\(285\) 0 0
\(286\) 215.860 0.754756
\(287\) − 190.313i − 0.663113i
\(288\) 0 0
\(289\) 271.000 0.937716
\(290\) 226.509i 0.781065i
\(291\) 0 0
\(292\) −31.3582 −0.107391
\(293\) 86.7680i 0.296137i 0.988977 + 0.148068i \(0.0473055\pi\)
−0.988977 + 0.148068i \(0.952694\pi\)
\(294\) 0 0
\(295\) 287.180 0.973493
\(296\) − 464.342i − 1.56872i
\(297\) 0 0
\(298\) −113.757 −0.381735
\(299\) 296.092i 0.990274i
\(300\) 0 0
\(301\) −123.520 −0.410366
\(302\) 174.412i 0.577524i
\(303\) 0 0
\(304\) 5.30979 0.0174664
\(305\) 356.580i 1.16911i
\(306\) 0 0
\(307\) −448.395 −1.46057 −0.730285 0.683143i \(-0.760613\pi\)
−0.730285 + 0.683143i \(0.760613\pi\)
\(308\) − 126.940i − 0.412143i
\(309\) 0 0
\(310\) 217.184 0.700595
\(311\) − 259.333i − 0.833870i −0.908936 0.416935i \(-0.863104\pi\)
0.908936 0.416935i \(-0.136896\pi\)
\(312\) 0 0
\(313\) −311.439 −0.995013 −0.497507 0.867460i \(-0.665751\pi\)
−0.497507 + 0.867460i \(0.665751\pi\)
\(314\) 133.515i 0.425206i
\(315\) 0 0
\(316\) −383.136 −1.21246
\(317\) 236.351i 0.745587i 0.927914 + 0.372794i \(0.121600\pi\)
−0.927914 + 0.372794i \(0.878400\pi\)
\(318\) 0 0
\(319\) 652.877 2.04664
\(320\) 171.986i 0.537456i
\(321\) 0 0
\(322\) −89.1255 −0.276787
\(323\) − 14.2309i − 0.0440584i
\(324\) 0 0
\(325\) −43.2549 −0.133092
\(326\) 150.236i 0.460846i
\(327\) 0 0
\(328\) 556.306 1.69605
\(329\) − 48.1720i − 0.146419i
\(330\) 0 0
\(331\) 163.247 0.493193 0.246597 0.969118i \(-0.420688\pi\)
0.246597 + 0.969118i \(0.420688\pi\)
\(332\) 262.151i 0.789611i
\(333\) 0 0
\(334\) 177.292 0.530813
\(335\) − 196.544i − 0.586699i
\(336\) 0 0
\(337\) 41.5464 0.123283 0.0616416 0.998098i \(-0.480366\pi\)
0.0616416 + 0.998098i \(0.480366\pi\)
\(338\) − 74.9117i − 0.221632i
\(339\) 0 0
\(340\) −60.6863 −0.178489
\(341\) − 626.000i − 1.83578i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) − 361.063i − 1.04960i
\(345\) 0 0
\(346\) −131.362 −0.379659
\(347\) − 148.394i − 0.427647i −0.976872 0.213824i \(-0.931408\pi\)
0.976872 0.213824i \(-0.0685918\pi\)
\(348\) 0 0
\(349\) 254.546 0.729359 0.364680 0.931133i \(-0.381178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(350\) − 13.0200i − 0.0372000i
\(351\) 0 0
\(352\) 594.395 1.68862
\(353\) − 154.071i − 0.436461i −0.975897 0.218230i \(-0.929972\pi\)
0.975897 0.218230i \(-0.0700284\pi\)
\(354\) 0 0
\(355\) 1.18430 0.00333606
\(356\) − 245.348i − 0.689179i
\(357\) 0 0
\(358\) 151.755 0.423898
\(359\) 34.8858i 0.0971749i 0.998819 + 0.0485875i \(0.0154720\pi\)
−0.998819 + 0.0485875i \(0.984528\pi\)
\(360\) 0 0
\(361\) −349.749 −0.968834
\(362\) − 381.941i − 1.05509i
\(363\) 0 0
\(364\) 71.6013 0.196707
\(365\) 64.0777i 0.175555i
\(366\) 0 0
\(367\) −187.413 −0.510662 −0.255331 0.966854i \(-0.582184\pi\)
−0.255331 + 0.966854i \(0.582184\pi\)
\(368\) 45.8233i 0.124520i
\(369\) 0 0
\(370\) −377.745 −1.02093
\(371\) 114.818i 0.309481i
\(372\) 0 0
\(373\) 706.047 1.89289 0.946444 0.322869i \(-0.104647\pi\)
0.946444 + 0.322869i \(0.104647\pi\)
\(374\) − 89.5336i − 0.239395i
\(375\) 0 0
\(376\) 140.812 0.374499
\(377\) 368.259i 0.976815i
\(378\) 0 0
\(379\) 462.524 1.22038 0.610190 0.792255i \(-0.291093\pi\)
0.610190 + 0.792255i \(0.291093\pi\)
\(380\) − 47.9788i − 0.126260i
\(381\) 0 0
\(382\) 251.095 0.657318
\(383\) 184.735i 0.482337i 0.970483 + 0.241169i \(0.0775307\pi\)
−0.970483 + 0.241169i \(0.922469\pi\)
\(384\) 0 0
\(385\) −259.391 −0.673742
\(386\) − 69.0931i − 0.178998i
\(387\) 0 0
\(388\) −255.417 −0.658291
\(389\) − 134.262i − 0.345145i −0.984997 0.172573i \(-0.944792\pi\)
0.984997 0.172573i \(-0.0552080\pi\)
\(390\) 0 0
\(391\) 122.812 0.314097
\(392\) 54.1366i 0.138104i
\(393\) 0 0
\(394\) −171.195 −0.434504
\(395\) 782.905i 1.98204i
\(396\) 0 0
\(397\) −649.158 −1.63516 −0.817580 0.575816i \(-0.804685\pi\)
−0.817580 + 0.575816i \(0.804685\pi\)
\(398\) 165.338i 0.415423i
\(399\) 0 0
\(400\) −6.69414 −0.0167354
\(401\) − 353.986i − 0.882758i −0.897321 0.441379i \(-0.854489\pi\)
0.897321 0.441379i \(-0.145511\pi\)
\(402\) 0 0
\(403\) 353.099 0.876177
\(404\) 286.396i 0.708900i
\(405\) 0 0
\(406\) −110.848 −0.273025
\(407\) 1088.79i 2.67516i
\(408\) 0 0
\(409\) −4.55290 −0.0111318 −0.00556590 0.999985i \(-0.501772\pi\)
−0.00556590 + 0.999985i \(0.501772\pi\)
\(410\) − 452.558i − 1.10380i
\(411\) 0 0
\(412\) 409.915 0.994939
\(413\) 140.540i 0.340289i
\(414\) 0 0
\(415\) 535.682 1.29080
\(416\) 335.272i 0.805943i
\(417\) 0 0
\(418\) 70.7856 0.169344
\(419\) 111.906i 0.267079i 0.991044 + 0.133539i \(0.0426342\pi\)
−0.991044 + 0.133539i \(0.957366\pi\)
\(420\) 0 0
\(421\) −376.608 −0.894555 −0.447278 0.894395i \(-0.647606\pi\)
−0.447278 + 0.894395i \(0.647606\pi\)
\(422\) 19.6844i 0.0466455i
\(423\) 0 0
\(424\) −335.624 −0.791565
\(425\) 17.9411i 0.0422143i
\(426\) 0 0
\(427\) −174.502 −0.408670
\(428\) 174.532i 0.407786i
\(429\) 0 0
\(430\) −293.727 −0.683086
\(431\) 13.5737i 0.0314935i 0.999876 + 0.0157468i \(0.00501255\pi\)
−0.999876 + 0.0157468i \(0.994987\pi\)
\(432\) 0 0
\(433\) −354.642 −0.819034 −0.409517 0.912302i \(-0.634303\pi\)
−0.409517 + 0.912302i \(0.634303\pi\)
\(434\) 106.285i 0.244896i
\(435\) 0 0
\(436\) 153.834 0.352830
\(437\) 97.0955i 0.222186i
\(438\) 0 0
\(439\) −313.048 −0.713094 −0.356547 0.934277i \(-0.616046\pi\)
−0.356547 + 0.934277i \(0.616046\pi\)
\(440\) − 758.226i − 1.72324i
\(441\) 0 0
\(442\) 50.5020 0.114258
\(443\) − 537.875i − 1.21417i −0.794639 0.607083i \(-0.792340\pi\)
0.794639 0.607083i \(-0.207660\pi\)
\(444\) 0 0
\(445\) −501.346 −1.12662
\(446\) 407.487i 0.913647i
\(447\) 0 0
\(448\) −84.1660 −0.187871
\(449\) 60.3675i 0.134449i 0.997738 + 0.0672244i \(0.0214143\pi\)
−0.997738 + 0.0672244i \(0.978586\pi\)
\(450\) 0 0
\(451\) −1304.43 −2.89231
\(452\) − 152.151i − 0.336617i
\(453\) 0 0
\(454\) 386.125 0.850497
\(455\) − 146.311i − 0.321563i
\(456\) 0 0
\(457\) −463.450 −1.01411 −0.507056 0.861913i \(-0.669266\pi\)
−0.507056 + 0.861913i \(0.669266\pi\)
\(458\) − 359.001i − 0.783846i
\(459\) 0 0
\(460\) 414.055 0.900119
\(461\) − 646.097i − 1.40151i −0.713401 0.700756i \(-0.752846\pi\)
0.713401 0.700756i \(-0.247154\pi\)
\(462\) 0 0
\(463\) 333.409 0.720106 0.360053 0.932932i \(-0.382759\pi\)
0.360053 + 0.932932i \(0.382759\pi\)
\(464\) 56.9919i 0.122827i
\(465\) 0 0
\(466\) −127.749 −0.274140
\(467\) − 291.051i − 0.623235i −0.950208 0.311617i \(-0.899129\pi\)
0.950208 0.311617i \(-0.100871\pi\)
\(468\) 0 0
\(469\) 96.1843 0.205084
\(470\) − 114.551i − 0.243726i
\(471\) 0 0
\(472\) −410.812 −0.870364
\(473\) 846.622i 1.78990i
\(474\) 0 0
\(475\) −14.1843 −0.0298617
\(476\) − 29.6985i − 0.0623918i
\(477\) 0 0
\(478\) 383.447 0.802191
\(479\) 8.53702i 0.0178226i 0.999960 + 0.00891129i \(0.00283659\pi\)
−0.999960 + 0.00891129i \(0.997163\pi\)
\(480\) 0 0
\(481\) −614.140 −1.27680
\(482\) − 159.786i − 0.331506i
\(483\) 0 0
\(484\) −549.925 −1.13621
\(485\) 521.922i 1.07613i
\(486\) 0 0
\(487\) −423.254 −0.869104 −0.434552 0.900647i \(-0.643093\pi\)
−0.434552 + 0.900647i \(0.643093\pi\)
\(488\) − 510.087i − 1.04526i
\(489\) 0 0
\(490\) 44.0405 0.0898786
\(491\) 800.705i 1.63076i 0.578924 + 0.815381i \(0.303473\pi\)
−0.578924 + 0.815381i \(0.696527\pi\)
\(492\) 0 0
\(493\) 152.745 0.309828
\(494\) 39.9271i 0.0808240i
\(495\) 0 0
\(496\) 54.6458 0.110173
\(497\) 0.579570i 0.00116614i
\(498\) 0 0
\(499\) −347.003 −0.695396 −0.347698 0.937607i \(-0.613037\pi\)
−0.347698 + 0.937607i \(0.613037\pi\)
\(500\) − 297.110i − 0.594219i
\(501\) 0 0
\(502\) −414.450 −0.825597
\(503\) − 979.329i − 1.94698i −0.228738 0.973488i \(-0.573460\pi\)
0.228738 0.973488i \(-0.426540\pi\)
\(504\) 0 0
\(505\) 585.225 1.15886
\(506\) 610.876i 1.20727i
\(507\) 0 0
\(508\) 389.638 0.767004
\(509\) − 29.8020i − 0.0585500i −0.999571 0.0292750i \(-0.990680\pi\)
0.999571 0.0292750i \(-0.00931985\pi\)
\(510\) 0 0
\(511\) −31.3582 −0.0613663
\(512\) 100.857i 0.196987i
\(513\) 0 0
\(514\) 447.626 0.870868
\(515\) − 837.626i − 1.62646i
\(516\) 0 0
\(517\) −330.176 −0.638639
\(518\) − 184.860i − 0.356872i
\(519\) 0 0
\(520\) 427.682 0.822466
\(521\) − 215.812i − 0.414226i −0.978317 0.207113i \(-0.933593\pi\)
0.978317 0.207113i \(-0.0664068\pi\)
\(522\) 0 0
\(523\) −278.069 −0.531681 −0.265841 0.964017i \(-0.585649\pi\)
−0.265841 + 0.964017i \(0.585649\pi\)
\(524\) 614.170i 1.17208i
\(525\) 0 0
\(526\) −337.767 −0.642143
\(527\) − 146.457i − 0.277907i
\(528\) 0 0
\(529\) −308.929 −0.583987
\(530\) 273.032i 0.515155i
\(531\) 0 0
\(532\) 23.4797 0.0441349
\(533\) − 735.772i − 1.38044i
\(534\) 0 0
\(535\) 356.642 0.666620
\(536\) 281.157i 0.524546i
\(537\) 0 0
\(538\) 620.180 1.15275
\(539\) − 126.940i − 0.235510i
\(540\) 0 0
\(541\) 375.118 0.693378 0.346689 0.937980i \(-0.387306\pi\)
0.346689 + 0.937980i \(0.387306\pi\)
\(542\) 84.9989i 0.156824i
\(543\) 0 0
\(544\) 139.063 0.255630
\(545\) − 314.346i − 0.576782i
\(546\) 0 0
\(547\) 276.664 0.505784 0.252892 0.967494i \(-0.418618\pi\)
0.252892 + 0.967494i \(0.418618\pi\)
\(548\) 346.565i 0.632419i
\(549\) 0 0
\(550\) −89.2406 −0.162256
\(551\) 120.761i 0.219167i
\(552\) 0 0
\(553\) −383.136 −0.692832
\(554\) − 79.8070i − 0.144056i
\(555\) 0 0
\(556\) −62.2876 −0.112028
\(557\) 83.2981i 0.149548i 0.997201 + 0.0747739i \(0.0238235\pi\)
−0.997201 + 0.0747739i \(0.976176\pi\)
\(558\) 0 0
\(559\) −477.542 −0.854280
\(560\) − 22.6431i − 0.0404342i
\(561\) 0 0
\(562\) 104.642 0.186195
\(563\) − 723.319i − 1.28476i −0.766387 0.642379i \(-0.777947\pi\)
0.766387 0.642379i \(-0.222053\pi\)
\(564\) 0 0
\(565\) −310.907 −0.550278
\(566\) 433.960i 0.766714i
\(567\) 0 0
\(568\) −1.69414 −0.00298265
\(569\) − 57.0695i − 0.100298i −0.998742 0.0501490i \(-0.984030\pi\)
0.998742 0.0501490i \(-0.0159696\pi\)
\(570\) 0 0
\(571\) −619.231 −1.08447 −0.542234 0.840227i \(-0.682421\pi\)
−0.542234 + 0.840227i \(0.682421\pi\)
\(572\) − 490.764i − 0.857978i
\(573\) 0 0
\(574\) 221.472 0.385839
\(575\) − 122.410i − 0.212887i
\(576\) 0 0
\(577\) 382.029 0.662095 0.331047 0.943614i \(-0.392598\pi\)
0.331047 + 0.943614i \(0.392598\pi\)
\(578\) 315.369i 0.545620i
\(579\) 0 0
\(580\) 514.974 0.887886
\(581\) 262.151i 0.451206i
\(582\) 0 0
\(583\) 786.972 1.34987
\(584\) − 91.6632i − 0.156958i
\(585\) 0 0
\(586\) −100.974 −0.172310
\(587\) 633.494i 1.07921i 0.841920 + 0.539603i \(0.181426\pi\)
−0.841920 + 0.539603i \(0.818574\pi\)
\(588\) 0 0
\(589\) 115.790 0.196587
\(590\) 334.198i 0.566437i
\(591\) 0 0
\(592\) −95.0445 −0.160548
\(593\) 841.310i 1.41874i 0.704839 + 0.709368i \(0.251019\pi\)
−0.704839 + 0.709368i \(0.748981\pi\)
\(594\) 0 0
\(595\) −60.6863 −0.101994
\(596\) 258.629i 0.433942i
\(597\) 0 0
\(598\) −344.569 −0.576202
\(599\) 854.398i 1.42637i 0.700973 + 0.713187i \(0.252749\pi\)
−0.700973 + 0.713187i \(0.747251\pi\)
\(600\) 0 0
\(601\) 585.512 0.974230 0.487115 0.873338i \(-0.338049\pi\)
0.487115 + 0.873338i \(0.338049\pi\)
\(602\) − 143.743i − 0.238776i
\(603\) 0 0
\(604\) 396.531 0.656508
\(605\) 1123.72i 1.85740i
\(606\) 0 0
\(607\) −200.494 −0.330303 −0.165152 0.986268i \(-0.552811\pi\)
−0.165152 + 0.986268i \(0.552811\pi\)
\(608\) 109.944i 0.180828i
\(609\) 0 0
\(610\) −414.959 −0.680261
\(611\) − 186.238i − 0.304809i
\(612\) 0 0
\(613\) 139.848 0.228138 0.114069 0.993473i \(-0.463612\pi\)
0.114069 + 0.993473i \(0.463612\pi\)
\(614\) − 521.807i − 0.849848i
\(615\) 0 0
\(616\) 371.059 0.602368
\(617\) − 606.165i − 0.982440i −0.871036 0.491220i \(-0.836551\pi\)
0.871036 0.491220i \(-0.163449\pi\)
\(618\) 0 0
\(619\) 130.660 0.211083 0.105541 0.994415i \(-0.466342\pi\)
0.105541 + 0.994415i \(0.466342\pi\)
\(620\) − 493.774i − 0.796410i
\(621\) 0 0
\(622\) 301.792 0.485196
\(623\) − 245.348i − 0.393816i
\(624\) 0 0
\(625\) −712.837 −1.14054
\(626\) − 362.429i − 0.578960i
\(627\) 0 0
\(628\) 303.549 0.483358
\(629\) 254.730i 0.404977i
\(630\) 0 0
\(631\) 277.557 0.439868 0.219934 0.975515i \(-0.429416\pi\)
0.219934 + 0.975515i \(0.429416\pi\)
\(632\) − 1119.95i − 1.77207i
\(633\) 0 0
\(634\) −275.047 −0.433828
\(635\) − 796.191i − 1.25384i
\(636\) 0 0
\(637\) 71.6013 0.112404
\(638\) 759.767i 1.19086i
\(639\) 0 0
\(640\) 508.682 0.794816
\(641\) − 1005.30i − 1.56833i −0.620551 0.784166i \(-0.713091\pi\)
0.620551 0.784166i \(-0.286909\pi\)
\(642\) 0 0
\(643\) −219.569 −0.341475 −0.170738 0.985317i \(-0.554615\pi\)
−0.170738 + 0.985317i \(0.554615\pi\)
\(644\) 202.629i 0.314641i
\(645\) 0 0
\(646\) 16.5608 0.0256359
\(647\) 657.567i 1.01633i 0.861259 + 0.508166i \(0.169676\pi\)
−0.861259 + 0.508166i \(0.830324\pi\)
\(648\) 0 0
\(649\) 963.274 1.48424
\(650\) − 50.3367i − 0.0774411i
\(651\) 0 0
\(652\) 341.565 0.523872
\(653\) − 79.6396i − 0.121960i −0.998139 0.0609798i \(-0.980577\pi\)
0.998139 0.0609798i \(-0.0194225\pi\)
\(654\) 0 0
\(655\) 1255.00 1.91603
\(656\) − 113.868i − 0.173580i
\(657\) 0 0
\(658\) 56.0588 0.0851958
\(659\) 368.547i 0.559252i 0.960109 + 0.279626i \(0.0902104\pi\)
−0.960109 + 0.279626i \(0.909790\pi\)
\(660\) 0 0
\(661\) 345.233 0.522288 0.261144 0.965300i \(-0.415900\pi\)
0.261144 + 0.965300i \(0.415900\pi\)
\(662\) 189.974i 0.286970i
\(663\) 0 0
\(664\) −766.294 −1.15406
\(665\) − 47.9788i − 0.0721486i
\(666\) 0 0
\(667\) −1042.16 −1.56246
\(668\) − 403.077i − 0.603408i
\(669\) 0 0
\(670\) 228.723 0.341377
\(671\) 1196.06i 1.78250i
\(672\) 0 0
\(673\) 1130.90 1.68039 0.840193 0.542288i \(-0.182442\pi\)
0.840193 + 0.542288i \(0.182442\pi\)
\(674\) 48.3485i 0.0717337i
\(675\) 0 0
\(676\) −170.314 −0.251943
\(677\) 563.065i 0.831706i 0.909432 + 0.415853i \(0.136517\pi\)
−0.909432 + 0.415853i \(0.863483\pi\)
\(678\) 0 0
\(679\) −255.417 −0.376166
\(680\) − 177.392i − 0.260871i
\(681\) 0 0
\(682\) 728.490 1.06817
\(683\) − 765.225i − 1.12039i −0.828361 0.560194i \(-0.810726\pi\)
0.828361 0.560194i \(-0.189274\pi\)
\(684\) 0 0
\(685\) 708.176 1.03383
\(686\) 21.5524i 0.0314175i
\(687\) 0 0
\(688\) −73.9046 −0.107419
\(689\) 443.897i 0.644262i
\(690\) 0 0
\(691\) −63.8666 −0.0924264 −0.0462132 0.998932i \(-0.514715\pi\)
−0.0462132 + 0.998932i \(0.514715\pi\)
\(692\) 298.655i 0.431583i
\(693\) 0 0
\(694\) 172.689 0.248831
\(695\) 127.279i 0.183136i
\(696\) 0 0
\(697\) −305.180 −0.437848
\(698\) 296.221i 0.424386i
\(699\) 0 0
\(700\) −29.6013 −0.0422876
\(701\) − 1125.08i − 1.60497i −0.596674 0.802483i \(-0.703512\pi\)
0.596674 0.802483i \(-0.296488\pi\)
\(702\) 0 0
\(703\) −201.391 −0.286473
\(704\) 576.884i 0.819437i
\(705\) 0 0
\(706\) 179.295 0.253960
\(707\) 286.396i 0.405086i
\(708\) 0 0
\(709\) −383.354 −0.540697 −0.270349 0.962763i \(-0.587139\pi\)
−0.270349 + 0.962763i \(0.587139\pi\)
\(710\) 1.37820i 0.00194112i
\(711\) 0 0
\(712\) 717.176 1.00727
\(713\) 999.258i 1.40148i
\(714\) 0 0
\(715\) −1002.83 −1.40256
\(716\) − 345.020i − 0.481871i
\(717\) 0 0
\(718\) −40.5974 −0.0565423
\(719\) − 55.6867i − 0.0774503i −0.999250 0.0387251i \(-0.987670\pi\)
0.999250 0.0387251i \(-0.0123297\pi\)
\(720\) 0 0
\(721\) 409.915 0.568537
\(722\) − 407.011i − 0.563727i
\(723\) 0 0
\(724\) −868.353 −1.19938
\(725\) − 152.245i − 0.209993i
\(726\) 0 0
\(727\) 54.2274 0.0745906 0.0372953 0.999304i \(-0.488126\pi\)
0.0372953 + 0.999304i \(0.488126\pi\)
\(728\) 209.298i 0.287497i
\(729\) 0 0
\(730\) −74.5687 −0.102149
\(731\) 198.073i 0.270962i
\(732\) 0 0
\(733\) 117.269 0.159985 0.0799927 0.996795i \(-0.474510\pi\)
0.0799927 + 0.996795i \(0.474510\pi\)
\(734\) − 218.097i − 0.297134i
\(735\) 0 0
\(736\) −948.808 −1.28914
\(737\) − 659.258i − 0.894516i
\(738\) 0 0
\(739\) 803.705 1.08756 0.543778 0.839229i \(-0.316993\pi\)
0.543778 + 0.839229i \(0.316993\pi\)
\(740\) 858.813i 1.16056i
\(741\) 0 0
\(742\) −133.616 −0.180075
\(743\) − 1085.61i − 1.46112i −0.682847 0.730561i \(-0.739259\pi\)
0.682847 0.730561i \(-0.260741\pi\)
\(744\) 0 0
\(745\) 528.486 0.709377
\(746\) 821.642i 1.10140i
\(747\) 0 0
\(748\) −203.557 −0.272135
\(749\) 174.532i 0.233021i
\(750\) 0 0
\(751\) −13.0183 −0.0173346 −0.00866730 0.999962i \(-0.502759\pi\)
−0.00866730 + 0.999962i \(0.502759\pi\)
\(752\) − 28.8223i − 0.0383275i
\(753\) 0 0
\(754\) −428.552 −0.568371
\(755\) − 810.276i − 1.07321i
\(756\) 0 0
\(757\) 252.761 0.333898 0.166949 0.985966i \(-0.446608\pi\)
0.166949 + 0.985966i \(0.446608\pi\)
\(758\) 538.250i 0.710092i
\(759\) 0 0
\(760\) 140.247 0.184536
\(761\) − 620.912i − 0.815916i −0.913001 0.407958i \(-0.866241\pi\)
0.913001 0.407958i \(-0.133759\pi\)
\(762\) 0 0
\(763\) 153.834 0.201617
\(764\) − 570.872i − 0.747214i
\(765\) 0 0
\(766\) −214.980 −0.280653
\(767\) 543.341i 0.708398i
\(768\) 0 0
\(769\) −1075.30 −1.39831 −0.699153 0.714972i \(-0.746440\pi\)
−0.699153 + 0.714972i \(0.746440\pi\)
\(770\) − 301.859i − 0.392024i
\(771\) 0 0
\(772\) −157.085 −0.203478
\(773\) − 116.144i − 0.150251i −0.997174 0.0751255i \(-0.976064\pi\)
0.997174 0.0751255i \(-0.0239357\pi\)
\(774\) 0 0
\(775\) −145.978 −0.188358
\(776\) − 746.610i − 0.962127i
\(777\) 0 0
\(778\) 156.243 0.200827
\(779\) − 241.277i − 0.309726i
\(780\) 0 0
\(781\) 3.97244 0.00508635
\(782\) 142.919i 0.182761i
\(783\) 0 0
\(784\) 11.0810 0.0141340
\(785\) − 620.276i − 0.790160i
\(786\) 0 0
\(787\) −70.9359 −0.0901345 −0.0450673 0.998984i \(-0.514350\pi\)
−0.0450673 + 0.998984i \(0.514350\pi\)
\(788\) 389.216i 0.493928i
\(789\) 0 0
\(790\) −911.084 −1.15327
\(791\) − 152.151i − 0.192353i
\(792\) 0 0
\(793\) −674.643 −0.850748
\(794\) − 755.440i − 0.951435i
\(795\) 0 0
\(796\) 375.901 0.472237
\(797\) − 667.791i − 0.837880i −0.908014 0.418940i \(-0.862402\pi\)
0.908014 0.418940i \(-0.137598\pi\)
\(798\) 0 0
\(799\) −77.2470 −0.0966797
\(800\) − 138.608i − 0.173260i
\(801\) 0 0
\(802\) 411.941 0.513642
\(803\) 214.933i 0.267662i
\(804\) 0 0
\(805\) 414.055 0.514354
\(806\) 410.909i 0.509813i
\(807\) 0 0
\(808\) −837.165 −1.03609
\(809\) − 625.232i − 0.772846i −0.922322 0.386423i \(-0.873711\pi\)
0.922322 0.386423i \(-0.126289\pi\)
\(810\) 0 0
\(811\) −876.467 −1.08072 −0.540362 0.841433i \(-0.681713\pi\)
−0.540362 + 0.841433i \(0.681713\pi\)
\(812\) 252.017i 0.310365i
\(813\) 0 0
\(814\) −1267.05 −1.55657
\(815\) − 697.958i − 0.856390i
\(816\) 0 0
\(817\) −156.597 −0.191674
\(818\) − 5.29831i − 0.00647716i
\(819\) 0 0
\(820\) −1028.90 −1.25476
\(821\) 1252.79i 1.52593i 0.646439 + 0.762966i \(0.276258\pi\)
−0.646439 + 0.762966i \(0.723742\pi\)
\(822\) 0 0
\(823\) 177.956 0.216228 0.108114 0.994139i \(-0.465519\pi\)
0.108114 + 0.994139i \(0.465519\pi\)
\(824\) 1198.22i 1.45416i
\(825\) 0 0
\(826\) −163.549 −0.198001
\(827\) − 10.9892i − 0.0132880i −0.999978 0.00664402i \(-0.997885\pi\)
0.999978 0.00664402i \(-0.00211487\pi\)
\(828\) 0 0
\(829\) 930.294 1.12219 0.561094 0.827752i \(-0.310381\pi\)
0.561094 + 0.827752i \(0.310381\pi\)
\(830\) 623.385i 0.751067i
\(831\) 0 0
\(832\) −325.395 −0.391099
\(833\) − 29.6985i − 0.0356524i
\(834\) 0 0
\(835\) −823.652 −0.986410
\(836\) − 160.933i − 0.192503i
\(837\) 0 0
\(838\) −130.227 −0.155403
\(839\) − 908.054i − 1.08231i −0.840924 0.541153i \(-0.817988\pi\)
0.840924 0.541153i \(-0.182012\pi\)
\(840\) 0 0
\(841\) −455.170 −0.541225
\(842\) − 438.267i − 0.520507i
\(843\) 0 0
\(844\) 44.7530 0.0530248
\(845\) 348.021i 0.411860i
\(846\) 0 0
\(847\) −549.925 −0.649263
\(848\) 68.6976i 0.0810113i
\(849\) 0 0
\(850\) −20.8784 −0.0245629
\(851\) − 1737.99i − 2.04230i
\(852\) 0 0
\(853\) −172.376 −0.202083 −0.101041 0.994882i \(-0.532217\pi\)
−0.101041 + 0.994882i \(0.532217\pi\)
\(854\) − 203.072i − 0.237789i
\(855\) 0 0
\(856\) −510.176 −0.596000
\(857\) − 1250.42i − 1.45907i −0.683943 0.729536i \(-0.739736\pi\)
0.683943 0.729536i \(-0.260264\pi\)
\(858\) 0 0
\(859\) 692.674 0.806373 0.403187 0.915118i \(-0.367903\pi\)
0.403187 + 0.915118i \(0.367903\pi\)
\(860\) 667.795i 0.776506i
\(861\) 0 0
\(862\) −15.7960 −0.0183248
\(863\) 1347.01i 1.56085i 0.625250 + 0.780425i \(0.284997\pi\)
−0.625250 + 0.780425i \(0.715003\pi\)
\(864\) 0 0
\(865\) 610.276 0.705521
\(866\) − 412.704i − 0.476564i
\(867\) 0 0
\(868\) 241.642 0.278389
\(869\) 2626.06i 3.02193i
\(870\) 0 0
\(871\) 371.859 0.426933
\(872\) 449.673i 0.515680i
\(873\) 0 0
\(874\) −112.992 −0.129282
\(875\) − 297.110i − 0.339554i
\(876\) 0 0
\(877\) 234.154 0.266995 0.133497 0.991049i \(-0.457379\pi\)
0.133497 + 0.991049i \(0.457379\pi\)
\(878\) − 364.301i − 0.414922i
\(879\) 0 0
\(880\) −155.199 −0.176362
\(881\) 1673.19i 1.89920i 0.313465 + 0.949600i \(0.398510\pi\)
−0.313465 + 0.949600i \(0.601490\pi\)
\(882\) 0 0
\(883\) −1415.59 −1.60316 −0.801581 0.597886i \(-0.796007\pi\)
−0.801581 + 0.597886i \(0.796007\pi\)
\(884\) − 114.818i − 0.129884i
\(885\) 0 0
\(886\) 625.937 0.706475
\(887\) 753.223i 0.849181i 0.905386 + 0.424590i \(0.139582\pi\)
−0.905386 + 0.424590i \(0.860418\pi\)
\(888\) 0 0
\(889\) 389.638 0.438288
\(890\) − 583.428i − 0.655537i
\(891\) 0 0
\(892\) 926.431 1.03860
\(893\) − 61.0718i − 0.0683895i
\(894\) 0 0
\(895\) −705.018 −0.787730
\(896\) 248.938i 0.277832i
\(897\) 0 0
\(898\) −70.2510 −0.0782305
\(899\) 1242.81i 1.38244i
\(900\) 0 0
\(901\) 184.118 0.204348
\(902\) − 1517.99i − 1.68292i
\(903\) 0 0
\(904\) 444.753 0.491983
\(905\) 1774.40i 1.96067i
\(906\) 0 0
\(907\) 575.388 0.634386 0.317193 0.948361i \(-0.397260\pi\)
0.317193 + 0.948361i \(0.397260\pi\)
\(908\) − 877.866i − 0.966813i
\(909\) 0 0
\(910\) 170.265 0.187105
\(911\) − 110.231i − 0.121000i −0.998168 0.0605000i \(-0.980730\pi\)
0.998168 0.0605000i \(-0.0192695\pi\)
\(912\) 0 0
\(913\) 1796.81 1.96803
\(914\) − 539.327i − 0.590073i
\(915\) 0 0
\(916\) −816.199 −0.891047
\(917\) 614.170i 0.669760i
\(918\) 0 0
\(919\) −1304.49 −1.41947 −0.709736 0.704468i \(-0.751186\pi\)
−0.709736 + 0.704468i \(0.751186\pi\)
\(920\) 1210.33i 1.31557i
\(921\) 0 0
\(922\) 751.877 0.815485
\(923\) 2.24068i 0.00242761i
\(924\) 0 0
\(925\) 253.897 0.274483
\(926\) 387.995i 0.419002i
\(927\) 0 0
\(928\) −1180.06 −1.27162
\(929\) − 451.154i − 0.485634i −0.970072 0.242817i \(-0.921928\pi\)
0.970072 0.242817i \(-0.0780715\pi\)
\(930\) 0 0
\(931\) 23.4797 0.0252199
\(932\) 290.441i 0.311632i
\(933\) 0 0
\(934\) 338.702 0.362636
\(935\) 415.951i 0.444867i
\(936\) 0 0
\(937\) 1173.69 1.25260 0.626301 0.779581i \(-0.284568\pi\)
0.626301 + 0.779581i \(0.284568\pi\)
\(938\) 111.932i 0.119330i
\(939\) 0 0
\(940\) −260.435 −0.277059
\(941\) − 484.988i − 0.515396i −0.966226 0.257698i \(-0.917036\pi\)
0.966226 0.257698i \(-0.0829639\pi\)
\(942\) 0 0
\(943\) 2082.21 2.20807
\(944\) 84.0876i 0.0890758i
\(945\) 0 0
\(946\) −985.233 −1.04147
\(947\) 470.938i 0.497294i 0.968594 + 0.248647i \(0.0799860\pi\)
−0.968594 + 0.248647i \(0.920014\pi\)
\(948\) 0 0
\(949\) −121.234 −0.127749
\(950\) − 16.5066i − 0.0173753i
\(951\) 0 0
\(952\) 86.8118 0.0911888
\(953\) − 100.784i − 0.105755i −0.998601 0.0528774i \(-0.983161\pi\)
0.998601 0.0528774i \(-0.0168393\pi\)
\(954\) 0 0
\(955\) −1166.53 −1.22149
\(956\) − 871.777i − 0.911900i
\(957\) 0 0
\(958\) −9.93471 −0.0103703
\(959\) 346.565i 0.361382i
\(960\) 0 0
\(961\) 230.648 0.240009
\(962\) − 714.688i − 0.742919i
\(963\) 0 0
\(964\) −363.277 −0.376844
\(965\) 320.989i 0.332632i
\(966\) 0 0
\(967\) 472.891 0.489029 0.244515 0.969646i \(-0.421371\pi\)
0.244515 + 0.969646i \(0.421371\pi\)
\(968\) − 1607.49i − 1.66063i
\(969\) 0 0
\(970\) −607.373 −0.626157
\(971\) − 1162.81i − 1.19754i −0.800921 0.598770i \(-0.795656\pi\)
0.800921 0.598770i \(-0.204344\pi\)
\(972\) 0 0
\(973\) −62.2876 −0.0640160
\(974\) − 492.549i − 0.505698i
\(975\) 0 0
\(976\) −104.408 −0.106975
\(977\) − 1162.45i − 1.18982i −0.803794 0.594908i \(-0.797188\pi\)
0.803794 0.594908i \(-0.202812\pi\)
\(978\) 0 0
\(979\) −1681.64 −1.71771
\(980\) − 100.127i − 0.102171i
\(981\) 0 0
\(982\) −931.797 −0.948877
\(983\) − 491.159i − 0.499653i −0.968291 0.249827i \(-0.919626\pi\)
0.968291 0.249827i \(-0.0803736\pi\)
\(984\) 0 0
\(985\) 795.328 0.807440
\(986\) 177.753i 0.180277i
\(987\) 0 0
\(988\) 90.7752 0.0918777
\(989\) − 1351.43i − 1.36646i
\(990\) 0 0
\(991\) 1496.93 1.51052 0.755262 0.655423i \(-0.227510\pi\)
0.755262 + 0.655423i \(0.227510\pi\)
\(992\) 1131.48i 1.14061i
\(993\) 0 0
\(994\) −0.674458 −0.000678530 0
\(995\) − 768.120i − 0.771980i
\(996\) 0 0
\(997\) −283.814 −0.284668 −0.142334 0.989819i \(-0.545461\pi\)
−0.142334 + 0.989819i \(0.545461\pi\)
\(998\) − 403.814i − 0.404624i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.3.b.b.134.3 yes 4
3.2 odd 2 inner 189.3.b.b.134.2 4
4.3 odd 2 3024.3.d.c.1457.1 4
9.2 odd 6 567.3.r.b.134.2 8
9.4 even 3 567.3.r.b.512.2 8
9.5 odd 6 567.3.r.b.512.3 8
9.7 even 3 567.3.r.b.134.3 8
12.11 even 2 3024.3.d.c.1457.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.3.b.b.134.2 4 3.2 odd 2 inner
189.3.b.b.134.3 yes 4 1.1 even 1 trivial
567.3.r.b.134.2 8 9.2 odd 6
567.3.r.b.134.3 8 9.7 even 3
567.3.r.b.512.2 8 9.4 even 3
567.3.r.b.512.3 8 9.5 odd 6
3024.3.d.c.1457.1 4 4.3 odd 2
3024.3.d.c.1457.4 4 12.11 even 2