Properties

Label 189.3.b.b.134.1
Level $189$
Weight $3$
Character 189.134
Analytic conductor $5.150$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,3,Mod(134,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.14987699641\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 134.1
Root \(-2.57794i\) of defining polynomial
Character \(\chi\) \(=\) 189.134
Dual form 189.3.b.b.134.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57794i q^{2} -2.64575 q^{4} -1.66471i q^{5} -2.64575 q^{7} -3.49117i q^{8} -4.29150 q^{10} -14.3926i q^{11} -16.2288 q^{13} +6.82058i q^{14} -19.5830 q^{16} -4.24264i q^{17} +8.64575 q^{19} +4.40440i q^{20} -37.1033 q^{22} +17.7220i q^{23} +22.2288 q^{25} +41.8367i q^{26} +7.00000 q^{28} -38.8308i q^{29} -2.52026 q^{31} +36.5191i q^{32} -10.9373 q^{34} +4.40440i q^{35} +14.0405 q^{37} -22.2882i q^{38} -5.81176 q^{40} +36.5764i q^{41} +32.6863 q^{43} +38.0793i q^{44} +45.6863 q^{46} +26.6926i q^{47} +7.00000 q^{49} -57.3043i q^{50} +42.9373 q^{52} -68.8528i q^{53} -23.9595 q^{55} +9.23676i q^{56} -100.103 q^{58} -104.031i q^{59} +113.956 q^{61} +6.49707i q^{62} +15.8118 q^{64} +27.0161i q^{65} +41.6458 q^{67} +11.2250i q^{68} +11.3542 q^{70} -123.256i q^{71} +109.852 q^{73} -36.1956i q^{74} -22.8745 q^{76} +38.0793i q^{77} -97.1882 q^{79} +32.5999i q^{80} +94.2915 q^{82} +121.534i q^{83} -7.06275 q^{85} -84.2631i q^{86} -50.2470 q^{88} +0.808777i q^{89} +42.9373 q^{91} -46.8881i q^{92} +68.8118 q^{94} -14.3926i q^{95} +104.539 q^{97} -18.0455i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{10} - 12 q^{13} - 36 q^{16} + 24 q^{19} - 32 q^{22} + 36 q^{25} + 28 q^{28} + 64 q^{31} - 12 q^{34} - 92 q^{37} + 72 q^{40} - 28 q^{43} + 24 q^{46} + 28 q^{49} + 140 q^{52} - 244 q^{55} - 284 q^{58}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.57794i − 1.28897i −0.764618 0.644484i \(-0.777072\pi\)
0.764618 0.644484i \(-0.222928\pi\)
\(3\) 0 0
\(4\) −2.64575 −0.661438
\(5\) − 1.66471i − 0.332941i −0.986046 0.166471i \(-0.946763\pi\)
0.986046 0.166471i \(-0.0532371\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) − 3.49117i − 0.436396i
\(9\) 0 0
\(10\) −4.29150 −0.429150
\(11\) − 14.3926i − 1.30842i −0.756313 0.654210i \(-0.773001\pi\)
0.756313 0.654210i \(-0.226999\pi\)
\(12\) 0 0
\(13\) −16.2288 −1.24837 −0.624183 0.781278i \(-0.714568\pi\)
−0.624183 + 0.781278i \(0.714568\pi\)
\(14\) 6.82058i 0.487184i
\(15\) 0 0
\(16\) −19.5830 −1.22394
\(17\) − 4.24264i − 0.249567i −0.992184 0.124784i \(-0.960176\pi\)
0.992184 0.124784i \(-0.0398236\pi\)
\(18\) 0 0
\(19\) 8.64575 0.455040 0.227520 0.973773i \(-0.426938\pi\)
0.227520 + 0.973773i \(0.426938\pi\)
\(20\) 4.40440i 0.220220i
\(21\) 0 0
\(22\) −37.1033 −1.68651
\(23\) 17.7220i 0.770523i 0.922807 + 0.385262i \(0.125889\pi\)
−0.922807 + 0.385262i \(0.874111\pi\)
\(24\) 0 0
\(25\) 22.2288 0.889150
\(26\) 41.8367i 1.60910i
\(27\) 0 0
\(28\) 7.00000 0.250000
\(29\) − 38.8308i − 1.33899i −0.742815 0.669496i \(-0.766510\pi\)
0.742815 0.669496i \(-0.233490\pi\)
\(30\) 0 0
\(31\) −2.52026 −0.0812987 −0.0406493 0.999173i \(-0.512943\pi\)
−0.0406493 + 0.999173i \(0.512943\pi\)
\(32\) 36.5191i 1.14122i
\(33\) 0 0
\(34\) −10.9373 −0.321684
\(35\) 4.40440i 0.125840i
\(36\) 0 0
\(37\) 14.0405 0.379473 0.189737 0.981835i \(-0.439237\pi\)
0.189737 + 0.981835i \(0.439237\pi\)
\(38\) − 22.2882i − 0.586531i
\(39\) 0 0
\(40\) −5.81176 −0.145294
\(41\) 36.5764i 0.892106i 0.895006 + 0.446053i \(0.147171\pi\)
−0.895006 + 0.446053i \(0.852829\pi\)
\(42\) 0 0
\(43\) 32.6863 0.760146 0.380073 0.924957i \(-0.375899\pi\)
0.380073 + 0.924957i \(0.375899\pi\)
\(44\) 38.0793i 0.865439i
\(45\) 0 0
\(46\) 45.6863 0.993180
\(47\) 26.6926i 0.567927i 0.958835 + 0.283964i \(0.0916495\pi\)
−0.958835 + 0.283964i \(0.908350\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) − 57.3043i − 1.14609i
\(51\) 0 0
\(52\) 42.9373 0.825716
\(53\) − 68.8528i − 1.29911i −0.760315 0.649555i \(-0.774955\pi\)
0.760315 0.649555i \(-0.225045\pi\)
\(54\) 0 0
\(55\) −23.9595 −0.435627
\(56\) 9.23676i 0.164942i
\(57\) 0 0
\(58\) −100.103 −1.72592
\(59\) − 104.031i − 1.76323i −0.471968 0.881616i \(-0.656456\pi\)
0.471968 0.881616i \(-0.343544\pi\)
\(60\) 0 0
\(61\) 113.956 1.86812 0.934062 0.357111i \(-0.116238\pi\)
0.934062 + 0.357111i \(0.116238\pi\)
\(62\) 6.49707i 0.104791i
\(63\) 0 0
\(64\) 15.8118 0.247059
\(65\) 27.0161i 0.415632i
\(66\) 0 0
\(67\) 41.6458 0.621578 0.310789 0.950479i \(-0.399407\pi\)
0.310789 + 0.950479i \(0.399407\pi\)
\(68\) 11.2250i 0.165073i
\(69\) 0 0
\(70\) 11.3542 0.162204
\(71\) − 123.256i − 1.73599i −0.496569 0.867997i \(-0.665407\pi\)
0.496569 0.867997i \(-0.334593\pi\)
\(72\) 0 0
\(73\) 109.852 1.50483 0.752413 0.658692i \(-0.228890\pi\)
0.752413 + 0.658692i \(0.228890\pi\)
\(74\) − 36.1956i − 0.489129i
\(75\) 0 0
\(76\) −22.8745 −0.300980
\(77\) 38.0793i 0.494537i
\(78\) 0 0
\(79\) −97.1882 −1.23023 −0.615115 0.788437i \(-0.710891\pi\)
−0.615115 + 0.788437i \(0.710891\pi\)
\(80\) 32.5999i 0.407499i
\(81\) 0 0
\(82\) 94.2915 1.14990
\(83\) 121.534i 1.46426i 0.681165 + 0.732130i \(0.261474\pi\)
−0.681165 + 0.732130i \(0.738526\pi\)
\(84\) 0 0
\(85\) −7.06275 −0.0830911
\(86\) − 84.2631i − 0.979803i
\(87\) 0 0
\(88\) −50.2470 −0.570989
\(89\) 0.808777i 0.00908738i 0.999990 + 0.00454369i \(0.00144631\pi\)
−0.999990 + 0.00454369i \(0.998554\pi\)
\(90\) 0 0
\(91\) 42.9373 0.471838
\(92\) − 46.8881i − 0.509653i
\(93\) 0 0
\(94\) 68.8118 0.732040
\(95\) − 14.3926i − 0.151501i
\(96\) 0 0
\(97\) 104.539 1.07772 0.538859 0.842396i \(-0.318856\pi\)
0.538859 + 0.842396i \(0.318856\pi\)
\(98\) − 18.0455i − 0.184138i
\(99\) 0 0
\(100\) −58.8118 −0.588118
\(101\) 183.081i 1.81268i 0.422550 + 0.906339i \(0.361135\pi\)
−0.422550 + 0.906339i \(0.638865\pi\)
\(102\) 0 0
\(103\) −114.933 −1.11586 −0.557929 0.829889i \(-0.688404\pi\)
−0.557929 + 0.829889i \(0.688404\pi\)
\(104\) 56.6573i 0.544782i
\(105\) 0 0
\(106\) −177.498 −1.67451
\(107\) 58.4837i 0.546577i 0.961932 + 0.273289i \(0.0881114\pi\)
−0.961932 + 0.273289i \(0.911889\pi\)
\(108\) 0 0
\(109\) −74.1438 −0.680218 −0.340109 0.940386i \(-0.610464\pi\)
−0.340109 + 0.940386i \(0.610464\pi\)
\(110\) 61.7660i 0.561509i
\(111\) 0 0
\(112\) 51.8118 0.462605
\(113\) 181.958i 1.61025i 0.593104 + 0.805126i \(0.297902\pi\)
−0.593104 + 0.805126i \(0.702098\pi\)
\(114\) 0 0
\(115\) 29.5020 0.256539
\(116\) 102.737i 0.885660i
\(117\) 0 0
\(118\) −268.184 −2.27275
\(119\) 11.2250i 0.0943275i
\(120\) 0 0
\(121\) −86.1477 −0.711965
\(122\) − 293.770i − 2.40795i
\(123\) 0 0
\(124\) 6.66798 0.0537740
\(125\) − 78.6220i − 0.628976i
\(126\) 0 0
\(127\) 46.7307 0.367958 0.183979 0.982930i \(-0.441102\pi\)
0.183979 + 0.982930i \(0.441102\pi\)
\(128\) 105.315i 0.822770i
\(129\) 0 0
\(130\) 69.6458 0.535737
\(131\) 45.0515i 0.343905i 0.985105 + 0.171952i \(0.0550075\pi\)
−0.985105 + 0.171952i \(0.944993\pi\)
\(132\) 0 0
\(133\) −22.8745 −0.171989
\(134\) − 107.360i − 0.801194i
\(135\) 0 0
\(136\) −14.8118 −0.108910
\(137\) − 3.71022i − 0.0270819i −0.999908 0.0135410i \(-0.995690\pi\)
0.999908 0.0135410i \(-0.00431035\pi\)
\(138\) 0 0
\(139\) −76.4575 −0.550054 −0.275027 0.961436i \(-0.588687\pi\)
−0.275027 + 0.961436i \(0.588687\pi\)
\(140\) − 11.6529i − 0.0832353i
\(141\) 0 0
\(142\) −317.745 −2.23764
\(143\) 233.574i 1.63339i
\(144\) 0 0
\(145\) −64.6418 −0.445806
\(146\) − 283.192i − 1.93967i
\(147\) 0 0
\(148\) −37.1477 −0.250998
\(149\) − 216.547i − 1.45333i −0.686991 0.726666i \(-0.741069\pi\)
0.686991 0.726666i \(-0.258931\pi\)
\(150\) 0 0
\(151\) 118.125 0.782288 0.391144 0.920329i \(-0.372079\pi\)
0.391144 + 0.920329i \(0.372079\pi\)
\(152\) − 30.1838i − 0.198577i
\(153\) 0 0
\(154\) 98.1660 0.637442
\(155\) 4.19549i 0.0270677i
\(156\) 0 0
\(157\) 215.269 1.37114 0.685571 0.728006i \(-0.259553\pi\)
0.685571 + 0.728006i \(0.259553\pi\)
\(158\) 250.545i 1.58573i
\(159\) 0 0
\(160\) 60.7935 0.379959
\(161\) − 46.8881i − 0.291230i
\(162\) 0 0
\(163\) −183.099 −1.12331 −0.561654 0.827372i \(-0.689835\pi\)
−0.561654 + 0.827372i \(0.689835\pi\)
\(164\) − 96.7720i − 0.590073i
\(165\) 0 0
\(166\) 313.306 1.88738
\(167\) 64.6674i 0.387230i 0.981078 + 0.193615i \(0.0620213\pi\)
−0.981078 + 0.193615i \(0.937979\pi\)
\(168\) 0 0
\(169\) 94.3725 0.558417
\(170\) 18.2073i 0.107102i
\(171\) 0 0
\(172\) −86.4797 −0.502789
\(173\) − 250.060i − 1.44543i −0.691145 0.722716i \(-0.742893\pi\)
0.691145 0.722716i \(-0.257107\pi\)
\(174\) 0 0
\(175\) −58.8118 −0.336067
\(176\) 281.851i 1.60143i
\(177\) 0 0
\(178\) 2.08497 0.0117133
\(179\) − 324.971i − 1.81548i −0.419530 0.907742i \(-0.637805\pi\)
0.419530 0.907742i \(-0.362195\pi\)
\(180\) 0 0
\(181\) −211.793 −1.17013 −0.585065 0.810987i \(-0.698931\pi\)
−0.585065 + 0.810987i \(0.698931\pi\)
\(182\) − 110.689i − 0.608184i
\(183\) 0 0
\(184\) 61.8706 0.336253
\(185\) − 23.3733i − 0.126342i
\(186\) 0 0
\(187\) −61.0627 −0.326539
\(188\) − 70.6219i − 0.375649i
\(189\) 0 0
\(190\) −37.1033 −0.195280
\(191\) − 122.228i − 0.639936i −0.947428 0.319968i \(-0.896328\pi\)
0.947428 0.319968i \(-0.103672\pi\)
\(192\) 0 0
\(193\) 99.3725 0.514884 0.257442 0.966294i \(-0.417120\pi\)
0.257442 + 0.966294i \(0.417120\pi\)
\(194\) − 269.494i − 1.38914i
\(195\) 0 0
\(196\) −18.5203 −0.0944911
\(197\) 274.326i 1.39252i 0.717791 + 0.696259i \(0.245153\pi\)
−0.717791 + 0.696259i \(0.754847\pi\)
\(198\) 0 0
\(199\) −260.077 −1.30692 −0.653460 0.756961i \(-0.726683\pi\)
−0.653460 + 0.756961i \(0.726683\pi\)
\(200\) − 77.6043i − 0.388021i
\(201\) 0 0
\(202\) 471.970 2.33648
\(203\) 102.737i 0.506092i
\(204\) 0 0
\(205\) 60.8889 0.297019
\(206\) 296.291i 1.43830i
\(207\) 0 0
\(208\) 317.808 1.52792
\(209\) − 124.435i − 0.595383i
\(210\) 0 0
\(211\) −88.9150 −0.421398 −0.210699 0.977551i \(-0.567574\pi\)
−0.210699 + 0.977551i \(0.567574\pi\)
\(212\) 182.167i 0.859280i
\(213\) 0 0
\(214\) 150.767 0.704520
\(215\) − 54.4130i − 0.253084i
\(216\) 0 0
\(217\) 6.66798 0.0307280
\(218\) 191.138i 0.876779i
\(219\) 0 0
\(220\) 63.3908 0.288140
\(221\) 68.8528i 0.311551i
\(222\) 0 0
\(223\) −200.158 −0.897570 −0.448785 0.893640i \(-0.648143\pi\)
−0.448785 + 0.893640i \(0.648143\pi\)
\(224\) − 96.6204i − 0.431341i
\(225\) 0 0
\(226\) 469.077 2.07556
\(227\) 162.097i 0.714082i 0.934089 + 0.357041i \(0.116214\pi\)
−0.934089 + 0.357041i \(0.883786\pi\)
\(228\) 0 0
\(229\) 72.4941 0.316568 0.158284 0.987394i \(-0.449404\pi\)
0.158284 + 0.987394i \(0.449404\pi\)
\(230\) − 76.0542i − 0.330670i
\(231\) 0 0
\(232\) −135.565 −0.584331
\(233\) − 24.9234i − 0.106967i −0.998569 0.0534837i \(-0.982967\pi\)
0.998569 0.0534837i \(-0.0170325\pi\)
\(234\) 0 0
\(235\) 44.4353 0.189086
\(236\) 275.239i 1.16627i
\(237\) 0 0
\(238\) 28.9373 0.121585
\(239\) 388.898i 1.62719i 0.581434 + 0.813593i \(0.302492\pi\)
−0.581434 + 0.813593i \(0.697508\pi\)
\(240\) 0 0
\(241\) 291.306 1.20874 0.604369 0.796705i \(-0.293425\pi\)
0.604369 + 0.796705i \(0.293425\pi\)
\(242\) 222.083i 0.917699i
\(243\) 0 0
\(244\) −301.498 −1.23565
\(245\) − 11.6529i − 0.0475630i
\(246\) 0 0
\(247\) −140.310 −0.568056
\(248\) 8.79864i 0.0354784i
\(249\) 0 0
\(250\) −202.682 −0.810729
\(251\) 56.8089i 0.226330i 0.993576 + 0.113165i \(0.0360989\pi\)
−0.993576 + 0.113165i \(0.963901\pi\)
\(252\) 0 0
\(253\) 255.067 1.00817
\(254\) − 120.469i − 0.474287i
\(255\) 0 0
\(256\) 334.741 1.30758
\(257\) − 321.042i − 1.24919i −0.780948 0.624596i \(-0.785264\pi\)
0.780948 0.624596i \(-0.214736\pi\)
\(258\) 0 0
\(259\) −37.1477 −0.143427
\(260\) − 71.4779i − 0.274915i
\(261\) 0 0
\(262\) 116.140 0.443282
\(263\) − 42.7601i − 0.162586i −0.996690 0.0812929i \(-0.974095\pi\)
0.996690 0.0812929i \(-0.0259049\pi\)
\(264\) 0 0
\(265\) −114.620 −0.432527
\(266\) 58.9690i 0.221688i
\(267\) 0 0
\(268\) −110.184 −0.411135
\(269\) 61.9952i 0.230465i 0.993339 + 0.115233i \(0.0367614\pi\)
−0.993339 + 0.115233i \(0.963239\pi\)
\(270\) 0 0
\(271\) −1.04052 −0.00383955 −0.00191978 0.999998i \(-0.500611\pi\)
−0.00191978 + 0.999998i \(0.500611\pi\)
\(272\) 83.0837i 0.305455i
\(273\) 0 0
\(274\) −9.56471 −0.0349077
\(275\) − 319.930i − 1.16338i
\(276\) 0 0
\(277\) 206.579 0.745773 0.372886 0.927877i \(-0.378368\pi\)
0.372886 + 0.927877i \(0.378368\pi\)
\(278\) 197.103i 0.709002i
\(279\) 0 0
\(280\) 15.3765 0.0549160
\(281\) − 59.9867i − 0.213476i −0.994287 0.106738i \(-0.965959\pi\)
0.994287 0.106738i \(-0.0340406\pi\)
\(282\) 0 0
\(283\) −240.907 −0.851262 −0.425631 0.904897i \(-0.639948\pi\)
−0.425631 + 0.904897i \(0.639948\pi\)
\(284\) 326.104i 1.14825i
\(285\) 0 0
\(286\) 602.140 2.10538
\(287\) − 96.7720i − 0.337185i
\(288\) 0 0
\(289\) 271.000 0.937716
\(290\) 166.642i 0.574629i
\(291\) 0 0
\(292\) −290.642 −0.995349
\(293\) 94.2513i 0.321677i 0.986981 + 0.160838i \(0.0514198\pi\)
−0.986981 + 0.160838i \(0.948580\pi\)
\(294\) 0 0
\(295\) −173.180 −0.587052
\(296\) − 49.0178i − 0.165601i
\(297\) 0 0
\(298\) −558.243 −1.87330
\(299\) − 287.607i − 0.961895i
\(300\) 0 0
\(301\) −86.4797 −0.287308
\(302\) − 304.520i − 1.00834i
\(303\) 0 0
\(304\) −169.310 −0.556940
\(305\) − 189.702i − 0.621975i
\(306\) 0 0
\(307\) −379.605 −1.23650 −0.618250 0.785982i \(-0.712158\pi\)
−0.618250 + 0.785982i \(0.712158\pi\)
\(308\) − 100.748i − 0.327105i
\(309\) 0 0
\(310\) 10.8157 0.0348894
\(311\) − 394.033i − 1.26699i −0.773748 0.633494i \(-0.781620\pi\)
0.773748 0.633494i \(-0.218380\pi\)
\(312\) 0 0
\(313\) −422.561 −1.35003 −0.675017 0.737802i \(-0.735864\pi\)
−0.675017 + 0.737802i \(0.735864\pi\)
\(314\) − 554.950i − 1.76736i
\(315\) 0 0
\(316\) 257.136 0.813721
\(317\) 281.251i 0.887227i 0.896218 + 0.443614i \(0.146304\pi\)
−0.896218 + 0.443614i \(0.853696\pi\)
\(318\) 0 0
\(319\) −558.877 −1.75197
\(320\) − 26.3219i − 0.0822560i
\(321\) 0 0
\(322\) −120.875 −0.375387
\(323\) − 36.6808i − 0.113563i
\(324\) 0 0
\(325\) −360.745 −1.10998
\(326\) 472.018i 1.44791i
\(327\) 0 0
\(328\) 127.694 0.389311
\(329\) − 70.6219i − 0.214656i
\(330\) 0 0
\(331\) −27.2470 −0.0823174 −0.0411587 0.999153i \(-0.513105\pi\)
−0.0411587 + 0.999153i \(0.513105\pi\)
\(332\) − 321.548i − 0.968517i
\(333\) 0 0
\(334\) 166.708 0.499127
\(335\) − 69.3279i − 0.206949i
\(336\) 0 0
\(337\) 348.454 1.03399 0.516993 0.855989i \(-0.327051\pi\)
0.516993 + 0.855989i \(0.327051\pi\)
\(338\) − 243.286i − 0.719782i
\(339\) 0 0
\(340\) 18.6863 0.0549596
\(341\) 36.2732i 0.106373i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) − 114.113i − 0.331724i
\(345\) 0 0
\(346\) −644.638 −1.86312
\(347\) − 421.535i − 1.21480i −0.794397 0.607398i \(-0.792213\pi\)
0.794397 0.607398i \(-0.207787\pi\)
\(348\) 0 0
\(349\) 561.454 1.60875 0.804375 0.594122i \(-0.202500\pi\)
0.804375 + 0.594122i \(0.202500\pi\)
\(350\) 151.613i 0.433180i
\(351\) 0 0
\(352\) 525.605 1.49320
\(353\) 163.970i 0.464505i 0.972656 + 0.232252i \(0.0746095\pi\)
−0.972656 + 0.232252i \(0.925390\pi\)
\(354\) 0 0
\(355\) −205.184 −0.577984
\(356\) − 2.13982i − 0.00601073i
\(357\) 0 0
\(358\) −837.755 −2.34010
\(359\) 154.619i 0.430693i 0.976538 + 0.215347i \(0.0690881\pi\)
−0.976538 + 0.215347i \(0.930912\pi\)
\(360\) 0 0
\(361\) −286.251 −0.792939
\(362\) 545.990i 1.50826i
\(363\) 0 0
\(364\) −113.601 −0.312091
\(365\) − 182.872i − 0.501018i
\(366\) 0 0
\(367\) 45.4131 0.123741 0.0618707 0.998084i \(-0.480293\pi\)
0.0618707 + 0.998084i \(0.480293\pi\)
\(368\) − 347.051i − 0.943073i
\(369\) 0 0
\(370\) −60.2549 −0.162851
\(371\) 182.167i 0.491017i
\(372\) 0 0
\(373\) −294.047 −0.788330 −0.394165 0.919040i \(-0.628966\pi\)
−0.394165 + 0.919040i \(0.628966\pi\)
\(374\) 157.416i 0.420898i
\(375\) 0 0
\(376\) 93.1882 0.247841
\(377\) 630.175i 1.67155i
\(378\) 0 0
\(379\) 679.476 1.79281 0.896406 0.443234i \(-0.146169\pi\)
0.896406 + 0.443234i \(0.146169\pi\)
\(380\) 38.0793i 0.100209i
\(381\) 0 0
\(382\) −315.095 −0.824857
\(383\) 409.235i 1.06850i 0.845327 + 0.534249i \(0.179405\pi\)
−0.845327 + 0.534249i \(0.820595\pi\)
\(384\) 0 0
\(385\) 63.3908 0.164652
\(386\) − 256.176i − 0.663668i
\(387\) 0 0
\(388\) −276.583 −0.712843
\(389\) − 111.812i − 0.287433i −0.989619 0.143717i \(-0.954095\pi\)
0.989619 0.143717i \(-0.0459054\pi\)
\(390\) 0 0
\(391\) 75.1882 0.192297
\(392\) − 24.4382i − 0.0623422i
\(393\) 0 0
\(394\) 707.195 1.79491
\(395\) 161.790i 0.409594i
\(396\) 0 0
\(397\) −98.8419 −0.248972 −0.124486 0.992221i \(-0.539728\pi\)
−0.124486 + 0.992221i \(0.539728\pi\)
\(398\) 670.462i 1.68458i
\(399\) 0 0
\(400\) −435.306 −1.08826
\(401\) 252.163i 0.628834i 0.949285 + 0.314417i \(0.101809\pi\)
−0.949285 + 0.314417i \(0.898191\pi\)
\(402\) 0 0
\(403\) 40.9007 0.101491
\(404\) − 484.386i − 1.19897i
\(405\) 0 0
\(406\) 264.848 0.652336
\(407\) − 202.080i − 0.496511i
\(408\) 0 0
\(409\) 614.553 1.50257 0.751287 0.659975i \(-0.229433\pi\)
0.751287 + 0.659975i \(0.229433\pi\)
\(410\) − 156.968i − 0.382848i
\(411\) 0 0
\(412\) 304.085 0.738070
\(413\) 275.239i 0.666439i
\(414\) 0 0
\(415\) 202.318 0.487512
\(416\) − 592.659i − 1.42466i
\(417\) 0 0
\(418\) −320.786 −0.767430
\(419\) 516.005i 1.23152i 0.787936 + 0.615758i \(0.211150\pi\)
−0.787936 + 0.615758i \(0.788850\pi\)
\(420\) 0 0
\(421\) 734.608 1.74491 0.872456 0.488693i \(-0.162526\pi\)
0.872456 + 0.488693i \(0.162526\pi\)
\(422\) 229.217i 0.543169i
\(423\) 0 0
\(424\) −240.376 −0.566926
\(425\) − 94.3086i − 0.221903i
\(426\) 0 0
\(427\) −301.498 −0.706084
\(428\) − 154.733i − 0.361527i
\(429\) 0 0
\(430\) −140.273 −0.326217
\(431\) 406.448i 0.943034i 0.881857 + 0.471517i \(0.156293\pi\)
−0.881857 + 0.471517i \(0.843707\pi\)
\(432\) 0 0
\(433\) −95.3582 −0.220227 −0.110113 0.993919i \(-0.535121\pi\)
−0.110113 + 0.993919i \(0.535121\pi\)
\(434\) − 17.1896i − 0.0396074i
\(435\) 0 0
\(436\) 196.166 0.449922
\(437\) 153.220i 0.350619i
\(438\) 0 0
\(439\) −746.952 −1.70148 −0.850742 0.525583i \(-0.823847\pi\)
−0.850742 + 0.525583i \(0.823847\pi\)
\(440\) 83.6465i 0.190106i
\(441\) 0 0
\(442\) 177.498 0.401579
\(443\) 236.648i 0.534194i 0.963670 + 0.267097i \(0.0860644\pi\)
−0.963670 + 0.267097i \(0.913936\pi\)
\(444\) 0 0
\(445\) 1.34637 0.00302556
\(446\) 515.995i 1.15694i
\(447\) 0 0
\(448\) −41.8340 −0.0933794
\(449\) − 51.8822i − 0.115551i −0.998330 0.0577753i \(-0.981599\pi\)
0.998330 0.0577753i \(-0.0184007\pi\)
\(450\) 0 0
\(451\) 526.430 1.16725
\(452\) − 481.417i − 1.06508i
\(453\) 0 0
\(454\) 417.875 0.920428
\(455\) − 71.4779i − 0.157094i
\(456\) 0 0
\(457\) 97.4496 0.213238 0.106619 0.994300i \(-0.465998\pi\)
0.106619 + 0.994300i \(0.465998\pi\)
\(458\) − 186.885i − 0.408046i
\(459\) 0 0
\(460\) −78.0549 −0.169685
\(461\) − 178.390i − 0.386962i −0.981104 0.193481i \(-0.938022\pi\)
0.981104 0.193481i \(-0.0619779\pi\)
\(462\) 0 0
\(463\) −153.409 −0.331337 −0.165669 0.986181i \(-0.552978\pi\)
−0.165669 + 0.986181i \(0.552978\pi\)
\(464\) 760.424i 1.63884i
\(465\) 0 0
\(466\) −64.2510 −0.137878
\(467\) 494.697i 1.05931i 0.848213 + 0.529655i \(0.177678\pi\)
−0.848213 + 0.529655i \(0.822322\pi\)
\(468\) 0 0
\(469\) −110.184 −0.234935
\(470\) − 114.551i − 0.243726i
\(471\) 0 0
\(472\) −363.188 −0.769467
\(473\) − 470.441i − 0.994590i
\(474\) 0 0
\(475\) 192.184 0.404599
\(476\) − 29.6985i − 0.0623918i
\(477\) 0 0
\(478\) 1002.55 2.09739
\(479\) − 455.429i − 0.950790i −0.879772 0.475395i \(-0.842305\pi\)
0.879772 0.475395i \(-0.157695\pi\)
\(480\) 0 0
\(481\) −227.860 −0.473722
\(482\) − 750.968i − 1.55802i
\(483\) 0 0
\(484\) 227.925 0.470920
\(485\) − 174.026i − 0.358816i
\(486\) 0 0
\(487\) 693.254 1.42352 0.711759 0.702423i \(-0.247899\pi\)
0.711759 + 0.702423i \(0.247899\pi\)
\(488\) − 397.838i − 0.815241i
\(489\) 0 0
\(490\) −30.0405 −0.0613072
\(491\) − 505.134i − 1.02879i −0.857555 0.514393i \(-0.828017\pi\)
0.857555 0.514393i \(-0.171983\pi\)
\(492\) 0 0
\(493\) −164.745 −0.334169
\(494\) 361.710i 0.732206i
\(495\) 0 0
\(496\) 49.3542 0.0995045
\(497\) 326.104i 0.656144i
\(498\) 0 0
\(499\) 833.003 1.66934 0.834672 0.550748i \(-0.185657\pi\)
0.834672 + 0.550748i \(0.185657\pi\)
\(500\) 208.014i 0.416028i
\(501\) 0 0
\(502\) 146.450 0.291732
\(503\) − 81.3312i − 0.161692i −0.996727 0.0808461i \(-0.974238\pi\)
0.996727 0.0808461i \(-0.0257622\pi\)
\(504\) 0 0
\(505\) 304.775 0.603515
\(506\) − 657.545i − 1.29950i
\(507\) 0 0
\(508\) −123.638 −0.243382
\(509\) 898.129i 1.76450i 0.470784 + 0.882249i \(0.343971\pi\)
−0.470784 + 0.882249i \(0.656029\pi\)
\(510\) 0 0
\(511\) −290.642 −0.568771
\(512\) − 441.683i − 0.862662i
\(513\) 0 0
\(514\) −827.626 −1.61017
\(515\) 191.330i 0.371515i
\(516\) 0 0
\(517\) 384.176 0.743088
\(518\) 95.7644i 0.184873i
\(519\) 0 0
\(520\) 94.3177 0.181380
\(521\) − 967.885i − 1.85774i −0.370400 0.928872i \(-0.620779\pi\)
0.370400 0.928872i \(-0.379221\pi\)
\(522\) 0 0
\(523\) 632.069 1.20855 0.604273 0.796778i \(-0.293464\pi\)
0.604273 + 0.796778i \(0.293464\pi\)
\(524\) − 119.195i − 0.227471i
\(525\) 0 0
\(526\) −110.233 −0.209568
\(527\) 10.6926i 0.0202895i
\(528\) 0 0
\(529\) 214.929 0.406294
\(530\) 295.482i 0.557513i
\(531\) 0 0
\(532\) 60.5203 0.113760
\(533\) − 593.589i − 1.11368i
\(534\) 0 0
\(535\) 97.3582 0.181978
\(536\) − 145.392i − 0.271254i
\(537\) 0 0
\(538\) 159.820 0.297063
\(539\) − 100.748i − 0.186917i
\(540\) 0 0
\(541\) −101.118 −0.186909 −0.0934544 0.995624i \(-0.529791\pi\)
−0.0934544 + 0.995624i \(0.529791\pi\)
\(542\) 2.68239i 0.00494906i
\(543\) 0 0
\(544\) 154.937 0.284811
\(545\) 123.428i 0.226473i
\(546\) 0 0
\(547\) 107.336 0.196227 0.0981133 0.995175i \(-0.468719\pi\)
0.0981133 + 0.995175i \(0.468719\pi\)
\(548\) 9.81633i 0.0179130i
\(549\) 0 0
\(550\) −824.759 −1.49956
\(551\) − 335.721i − 0.609295i
\(552\) 0 0
\(553\) 257.136 0.464984
\(554\) − 532.548i − 0.961277i
\(555\) 0 0
\(556\) 202.288 0.363827
\(557\) 524.814i 0.942215i 0.882076 + 0.471107i \(0.156146\pi\)
−0.882076 + 0.471107i \(0.843854\pi\)
\(558\) 0 0
\(559\) −530.458 −0.948940
\(560\) − 86.2513i − 0.154020i
\(561\) 0 0
\(562\) −154.642 −0.275163
\(563\) 661.094i 1.17423i 0.809502 + 0.587117i \(0.199737\pi\)
−0.809502 + 0.587117i \(0.800263\pi\)
\(564\) 0 0
\(565\) 302.907 0.536119
\(566\) 621.043i 1.09725i
\(567\) 0 0
\(568\) −430.306 −0.757581
\(569\) − 64.5528i − 0.113450i −0.998390 0.0567248i \(-0.981934\pi\)
0.998390 0.0567248i \(-0.0180658\pi\)
\(570\) 0 0
\(571\) 587.231 1.02843 0.514213 0.857662i \(-0.328084\pi\)
0.514213 + 0.857662i \(0.328084\pi\)
\(572\) − 617.980i − 1.08038i
\(573\) 0 0
\(574\) −249.472 −0.434620
\(575\) 393.939i 0.685111i
\(576\) 0 0
\(577\) −454.029 −0.786878 −0.393439 0.919351i \(-0.628715\pi\)
−0.393439 + 0.919351i \(0.628715\pi\)
\(578\) − 698.621i − 1.20869i
\(579\) 0 0
\(580\) 171.026 0.294873
\(581\) − 321.548i − 0.553438i
\(582\) 0 0
\(583\) −990.972 −1.69978
\(584\) − 383.513i − 0.656700i
\(585\) 0 0
\(586\) 242.974 0.414631
\(587\) − 339.337i − 0.578087i −0.957316 0.289044i \(-0.906663\pi\)
0.957316 0.289044i \(-0.0933373\pi\)
\(588\) 0 0
\(589\) −21.7895 −0.0369941
\(590\) 446.448i 0.756691i
\(591\) 0 0
\(592\) −274.956 −0.464452
\(593\) − 90.3626i − 0.152382i −0.997093 0.0761911i \(-0.975724\pi\)
0.997093 0.0761911i \(-0.0242759\pi\)
\(594\) 0 0
\(595\) 18.6863 0.0314055
\(596\) 572.928i 0.961289i
\(597\) 0 0
\(598\) −741.431 −1.23985
\(599\) 371.725i 0.620575i 0.950643 + 0.310288i \(0.100425\pi\)
−0.950643 + 0.310288i \(0.899575\pi\)
\(600\) 0 0
\(601\) 40.4876 0.0673671 0.0336835 0.999433i \(-0.489276\pi\)
0.0336835 + 0.999433i \(0.489276\pi\)
\(602\) 222.939i 0.370331i
\(603\) 0 0
\(604\) −312.531 −0.517435
\(605\) 143.411i 0.237042i
\(606\) 0 0
\(607\) 180.494 0.297354 0.148677 0.988886i \(-0.452498\pi\)
0.148677 + 0.988886i \(0.452498\pi\)
\(608\) 315.735i 0.519301i
\(609\) 0 0
\(610\) −489.041 −0.801706
\(611\) − 433.187i − 0.708981i
\(612\) 0 0
\(613\) −235.848 −0.384744 −0.192372 0.981322i \(-0.561618\pi\)
−0.192372 + 0.981322i \(0.561618\pi\)
\(614\) 978.598i 1.59381i
\(615\) 0 0
\(616\) 132.941 0.215814
\(617\) − 471.466i − 0.764126i −0.924136 0.382063i \(-0.875214\pi\)
0.924136 0.382063i \(-0.124786\pi\)
\(618\) 0 0
\(619\) −292.660 −0.472795 −0.236397 0.971656i \(-0.575967\pi\)
−0.236397 + 0.971656i \(0.575967\pi\)
\(620\) − 11.1002i − 0.0179036i
\(621\) 0 0
\(622\) −1015.79 −1.63311
\(623\) − 2.13982i − 0.00343471i
\(624\) 0 0
\(625\) 424.837 0.679738
\(626\) 1089.33i 1.74015i
\(627\) 0 0
\(628\) −569.549 −0.906925
\(629\) − 59.5689i − 0.0947041i
\(630\) 0 0
\(631\) −87.5568 −0.138759 −0.0693794 0.997590i \(-0.522102\pi\)
−0.0693794 + 0.997590i \(0.522102\pi\)
\(632\) 339.300i 0.536867i
\(633\) 0 0
\(634\) 725.047 1.14361
\(635\) − 77.7929i − 0.122508i
\(636\) 0 0
\(637\) −113.601 −0.178338
\(638\) 1440.75i 2.25823i
\(639\) 0 0
\(640\) 175.318 0.273934
\(641\) 835.595i 1.30358i 0.758399 + 0.651790i \(0.225982\pi\)
−0.758399 + 0.651790i \(0.774018\pi\)
\(642\) 0 0
\(643\) −616.431 −0.958680 −0.479340 0.877629i \(-0.659124\pi\)
−0.479340 + 0.877629i \(0.659124\pi\)
\(644\) 124.054i 0.192631i
\(645\) 0 0
\(646\) −94.5608 −0.146379
\(647\) − 188.048i − 0.290646i −0.989384 0.145323i \(-0.953578\pi\)
0.989384 0.145323i \(-0.0464221\pi\)
\(648\) 0 0
\(649\) −1497.27 −2.30705
\(650\) 929.978i 1.43073i
\(651\) 0 0
\(652\) 484.435 0.742999
\(653\) − 191.889i − 0.293858i −0.989147 0.146929i \(-0.953061\pi\)
0.989147 0.146929i \(-0.0469389\pi\)
\(654\) 0 0
\(655\) 74.9975 0.114500
\(656\) − 716.275i − 1.09188i
\(657\) 0 0
\(658\) −182.059 −0.276685
\(659\) 1120.62i 1.70049i 0.526391 + 0.850243i \(0.323545\pi\)
−0.526391 + 0.850243i \(0.676455\pi\)
\(660\) 0 0
\(661\) 572.767 0.866516 0.433258 0.901270i \(-0.357364\pi\)
0.433258 + 0.901270i \(0.357364\pi\)
\(662\) 70.2411i 0.106104i
\(663\) 0 0
\(664\) 424.294 0.638997
\(665\) 38.0793i 0.0572621i
\(666\) 0 0
\(667\) 688.161 1.03173
\(668\) − 171.094i − 0.256129i
\(669\) 0 0
\(670\) −178.723 −0.266751
\(671\) − 1640.12i − 2.44429i
\(672\) 0 0
\(673\) 9.10072 0.0135226 0.00676131 0.999977i \(-0.497848\pi\)
0.00676131 + 0.999977i \(0.497848\pi\)
\(674\) − 898.291i − 1.33278i
\(675\) 0 0
\(676\) −249.686 −0.369358
\(677\) − 278.808i − 0.411829i −0.978570 0.205914i \(-0.933983\pi\)
0.978570 0.205914i \(-0.0660168\pi\)
\(678\) 0 0
\(679\) −276.583 −0.407339
\(680\) 24.6572i 0.0362606i
\(681\) 0 0
\(682\) 93.5098 0.137111
\(683\) − 978.500i − 1.43265i −0.697767 0.716325i \(-0.745823\pi\)
0.697767 0.716325i \(-0.254177\pi\)
\(684\) 0 0
\(685\) −6.17643 −0.00901668
\(686\) 47.7440i 0.0695977i
\(687\) 0 0
\(688\) −640.095 −0.930371
\(689\) 1117.40i 1.62176i
\(690\) 0 0
\(691\) 475.867 0.688664 0.344332 0.938848i \(-0.388105\pi\)
0.344332 + 0.938848i \(0.388105\pi\)
\(692\) 661.596i 0.956063i
\(693\) 0 0
\(694\) −1086.69 −1.56583
\(695\) 127.279i 0.183136i
\(696\) 0 0
\(697\) 155.180 0.222640
\(698\) − 1447.39i − 2.07363i
\(699\) 0 0
\(700\) 155.601 0.222288
\(701\) − 249.534i − 0.355968i −0.984033 0.177984i \(-0.943042\pi\)
0.984033 0.177984i \(-0.0569576\pi\)
\(702\) 0 0
\(703\) 121.391 0.172675
\(704\) − 227.573i − 0.323257i
\(705\) 0 0
\(706\) 422.705 0.598732
\(707\) − 484.386i − 0.685128i
\(708\) 0 0
\(709\) −388.646 −0.548160 −0.274080 0.961707i \(-0.588373\pi\)
−0.274080 + 0.961707i \(0.588373\pi\)
\(710\) 528.952i 0.745003i
\(711\) 0 0
\(712\) 2.82357 0.00396569
\(713\) − 44.6641i − 0.0626425i
\(714\) 0 0
\(715\) 388.833 0.543822
\(716\) 859.794i 1.20083i
\(717\) 0 0
\(718\) 398.597 0.555150
\(719\) − 190.386i − 0.264793i −0.991197 0.132397i \(-0.957733\pi\)
0.991197 0.132397i \(-0.0422673\pi\)
\(720\) 0 0
\(721\) 304.085 0.421754
\(722\) 737.937i 1.02207i
\(723\) 0 0
\(724\) 560.353 0.773968
\(725\) − 863.160i − 1.19057i
\(726\) 0 0
\(727\) −1406.23 −1.93429 −0.967144 0.254229i \(-0.918178\pi\)
−0.967144 + 0.254229i \(0.918178\pi\)
\(728\) − 149.901i − 0.205908i
\(729\) 0 0
\(730\) −471.431 −0.645796
\(731\) − 138.676i − 0.189707i
\(732\) 0 0
\(733\) 16.7307 0.0228250 0.0114125 0.999935i \(-0.496367\pi\)
0.0114125 + 0.999935i \(0.496367\pi\)
\(734\) − 117.072i − 0.159499i
\(735\) 0 0
\(736\) −647.192 −0.879337
\(737\) − 599.392i − 0.813286i
\(738\) 0 0
\(739\) 560.295 0.758181 0.379090 0.925360i \(-0.376237\pi\)
0.379090 + 0.925360i \(0.376237\pi\)
\(740\) 61.8400i 0.0835676i
\(741\) 0 0
\(742\) 469.616 0.632905
\(743\) − 64.1416i − 0.0863278i −0.999068 0.0431639i \(-0.986256\pi\)
0.999068 0.0431639i \(-0.0137438\pi\)
\(744\) 0 0
\(745\) −360.486 −0.483874
\(746\) 758.034i 1.01613i
\(747\) 0 0
\(748\) 161.557 0.215985
\(749\) − 154.733i − 0.206587i
\(750\) 0 0
\(751\) 151.018 0.201090 0.100545 0.994933i \(-0.467941\pi\)
0.100545 + 0.994933i \(0.467941\pi\)
\(752\) − 522.721i − 0.695108i
\(753\) 0 0
\(754\) 1624.55 2.15458
\(755\) − 196.644i − 0.260456i
\(756\) 0 0
\(757\) 951.239 1.25659 0.628295 0.777975i \(-0.283753\pi\)
0.628295 + 0.777975i \(0.283753\pi\)
\(758\) − 1751.64i − 2.31088i
\(759\) 0 0
\(760\) −50.2470 −0.0661145
\(761\) 434.236i 0.570612i 0.958437 + 0.285306i \(0.0920952\pi\)
−0.958437 + 0.285306i \(0.907905\pi\)
\(762\) 0 0
\(763\) 196.166 0.257098
\(764\) 323.384i 0.423278i
\(765\) 0 0
\(766\) 1054.98 1.37726
\(767\) 1688.29i 2.20116i
\(768\) 0 0
\(769\) −138.702 −0.180367 −0.0901834 0.995925i \(-0.528745\pi\)
−0.0901834 + 0.995925i \(0.528745\pi\)
\(770\) − 163.417i − 0.212230i
\(771\) 0 0
\(772\) −262.915 −0.340564
\(773\) − 1175.03i − 1.52009i −0.649868 0.760047i \(-0.725176\pi\)
0.649868 0.760047i \(-0.274824\pi\)
\(774\) 0 0
\(775\) −56.0222 −0.0722867
\(776\) − 364.961i − 0.470311i
\(777\) 0 0
\(778\) −288.243 −0.370492
\(779\) 316.230i 0.405944i
\(780\) 0 0
\(781\) −1773.97 −2.27141
\(782\) − 193.830i − 0.247865i
\(783\) 0 0
\(784\) −137.081 −0.174848
\(785\) − 358.360i − 0.456509i
\(786\) 0 0
\(787\) 1378.94 1.75214 0.876071 0.482182i \(-0.160156\pi\)
0.876071 + 0.482182i \(0.160156\pi\)
\(788\) − 725.798i − 0.921064i
\(789\) 0 0
\(790\) 417.084 0.527954
\(791\) − 481.417i − 0.608618i
\(792\) 0 0
\(793\) −1849.36 −2.33210
\(794\) 254.808i 0.320917i
\(795\) 0 0
\(796\) 688.099 0.864446
\(797\) − 798.749i − 1.00219i −0.865391 0.501097i \(-0.832930\pi\)
0.865391 0.501097i \(-0.167070\pi\)
\(798\) 0 0
\(799\) 113.247 0.141736
\(800\) 811.773i 1.01472i
\(801\) 0 0
\(802\) 650.059 0.810547
\(803\) − 1581.06i − 1.96895i
\(804\) 0 0
\(805\) −78.0549 −0.0969626
\(806\) − 105.439i − 0.130818i
\(807\) 0 0
\(808\) 639.165 0.791045
\(809\) 1125.86i 1.39167i 0.718200 + 0.695837i \(0.244966\pi\)
−0.718200 + 0.695837i \(0.755034\pi\)
\(810\) 0 0
\(811\) 1282.47 1.58134 0.790670 0.612243i \(-0.209732\pi\)
0.790670 + 0.612243i \(0.209732\pi\)
\(812\) − 271.816i − 0.334748i
\(813\) 0 0
\(814\) −520.949 −0.639987
\(815\) 304.806i 0.373996i
\(816\) 0 0
\(817\) 282.597 0.345896
\(818\) − 1584.28i − 1.93677i
\(819\) 0 0
\(820\) −161.097 −0.196459
\(821\) 1439.87i 1.75380i 0.480670 + 0.876902i \(0.340394\pi\)
−0.480670 + 0.876902i \(0.659606\pi\)
\(822\) 0 0
\(823\) −1.95554 −0.00237612 −0.00118806 0.999999i \(-0.500378\pi\)
−0.00118806 + 0.999999i \(0.500378\pi\)
\(824\) 401.251i 0.486955i
\(825\) 0 0
\(826\) 709.549 0.859018
\(827\) 965.583i 1.16757i 0.811907 + 0.583787i \(0.198430\pi\)
−0.811907 + 0.583787i \(0.801570\pi\)
\(828\) 0 0
\(829\) −260.294 −0.313986 −0.156993 0.987600i \(-0.550180\pi\)
−0.156993 + 0.987600i \(0.550180\pi\)
\(830\) − 521.562i − 0.628388i
\(831\) 0 0
\(832\) −256.605 −0.308420
\(833\) − 29.6985i − 0.0356524i
\(834\) 0 0
\(835\) 107.652 0.128925
\(836\) 329.224i 0.393809i
\(837\) 0 0
\(838\) 1330.23 1.58738
\(839\) 251.859i 0.300190i 0.988672 + 0.150095i \(0.0479579\pi\)
−0.988672 + 0.150095i \(0.952042\pi\)
\(840\) 0 0
\(841\) −666.830 −0.792901
\(842\) − 1893.77i − 2.24913i
\(843\) 0 0
\(844\) 235.247 0.278729
\(845\) − 157.102i − 0.185920i
\(846\) 0 0
\(847\) 227.925 0.269097
\(848\) 1348.34i 1.59003i
\(849\) 0 0
\(850\) −243.122 −0.286025
\(851\) 248.827i 0.292393i
\(852\) 0 0
\(853\) −267.624 −0.313744 −0.156872 0.987619i \(-0.550141\pi\)
−0.156872 + 0.987619i \(0.550141\pi\)
\(854\) 777.242i 0.910120i
\(855\) 0 0
\(856\) 204.176 0.238524
\(857\) 55.4140i 0.0646604i 0.999477 + 0.0323302i \(0.0102928\pi\)
−0.999477 + 0.0323302i \(0.989707\pi\)
\(858\) 0 0
\(859\) −148.674 −0.173079 −0.0865393 0.996248i \(-0.527581\pi\)
−0.0865393 + 0.996248i \(0.527581\pi\)
\(860\) 143.963i 0.167399i
\(861\) 0 0
\(862\) 1047.80 1.21554
\(863\) − 269.383i − 0.312147i −0.987745 0.156073i \(-0.950116\pi\)
0.987745 0.156073i \(-0.0498836\pi\)
\(864\) 0 0
\(865\) −416.276 −0.481244
\(866\) 245.827i 0.283865i
\(867\) 0 0
\(868\) −17.6418 −0.0203247
\(869\) 1398.79i 1.60966i
\(870\) 0 0
\(871\) −675.859 −0.775957
\(872\) 258.848i 0.296844i
\(873\) 0 0
\(874\) 394.992 0.451936
\(875\) 208.014i 0.237730i
\(876\) 0 0
\(877\) −570.154 −0.650119 −0.325059 0.945694i \(-0.605384\pi\)
−0.325059 + 0.945694i \(0.605384\pi\)
\(878\) 1925.59i 2.19316i
\(879\) 0 0
\(880\) 469.199 0.533180
\(881\) − 964.674i − 1.09498i −0.836814 0.547488i \(-0.815584\pi\)
0.836814 0.547488i \(-0.184416\pi\)
\(882\) 0 0
\(883\) 711.592 0.805880 0.402940 0.915226i \(-0.367988\pi\)
0.402940 + 0.915226i \(0.367988\pi\)
\(884\) − 182.167i − 0.206072i
\(885\) 0 0
\(886\) 610.063 0.688558
\(887\) 1209.71i 1.36382i 0.731438 + 0.681908i \(0.238850\pi\)
−0.731438 + 0.681908i \(0.761150\pi\)
\(888\) 0 0
\(889\) −123.638 −0.139075
\(890\) − 3.47087i − 0.00389985i
\(891\) 0 0
\(892\) 529.569 0.593687
\(893\) 230.777i 0.258429i
\(894\) 0 0
\(895\) −540.982 −0.604449
\(896\) − 278.636i − 0.310978i
\(897\) 0 0
\(898\) −133.749 −0.148941
\(899\) 97.8636i 0.108858i
\(900\) 0 0
\(901\) −292.118 −0.324215
\(902\) − 1357.10i − 1.50455i
\(903\) 0 0
\(904\) 635.247 0.702707
\(905\) 352.574i 0.389584i
\(906\) 0 0
\(907\) 1432.61 1.57951 0.789753 0.613425i \(-0.210209\pi\)
0.789753 + 0.613425i \(0.210209\pi\)
\(908\) − 428.867i − 0.472321i
\(909\) 0 0
\(910\) −184.265 −0.202489
\(911\) − 806.179i − 0.884939i −0.896784 0.442469i \(-0.854103\pi\)
0.896784 0.442469i \(-0.145897\pi\)
\(912\) 0 0
\(913\) 1749.19 1.91587
\(914\) − 251.219i − 0.274857i
\(915\) 0 0
\(916\) −191.801 −0.209390
\(917\) − 119.195i − 0.129984i
\(918\) 0 0
\(919\) −923.506 −1.00490 −0.502452 0.864605i \(-0.667568\pi\)
−0.502452 + 0.864605i \(0.667568\pi\)
\(920\) − 102.996i − 0.111952i
\(921\) 0 0
\(922\) −459.877 −0.498782
\(923\) 2000.29i 2.16716i
\(924\) 0 0
\(925\) 312.103 0.337409
\(926\) 395.479i 0.427083i
\(927\) 0 0
\(928\) 1418.06 1.52809
\(929\) 140.027i 0.150729i 0.997156 + 0.0753646i \(0.0240121\pi\)
−0.997156 + 0.0753646i \(0.975988\pi\)
\(930\) 0 0
\(931\) 60.5203 0.0650056
\(932\) 65.9412i 0.0707523i
\(933\) 0 0
\(934\) 1275.30 1.36542
\(935\) 101.651i 0.108718i
\(936\) 0 0
\(937\) −85.6888 −0.0914502 −0.0457251 0.998954i \(-0.514560\pi\)
−0.0457251 + 0.998954i \(0.514560\pi\)
\(938\) 284.048i 0.302823i
\(939\) 0 0
\(940\) −117.565 −0.125069
\(941\) − 1476.53i − 1.56910i −0.620063 0.784552i \(-0.712893\pi\)
0.620063 0.784552i \(-0.287107\pi\)
\(942\) 0 0
\(943\) −648.208 −0.687389
\(944\) 2037.23i 2.15809i
\(945\) 0 0
\(946\) −1212.77 −1.28200
\(947\) − 183.852i − 0.194142i −0.995277 0.0970709i \(-0.969053\pi\)
0.995277 0.0970709i \(-0.0309474\pi\)
\(948\) 0 0
\(949\) −1782.77 −1.87857
\(950\) − 495.439i − 0.521514i
\(951\) 0 0
\(952\) 39.1882 0.0411641
\(953\) 400.598i 0.420354i 0.977663 + 0.210177i \(0.0674041\pi\)
−0.977663 + 0.210177i \(0.932596\pi\)
\(954\) 0 0
\(955\) −203.473 −0.213061
\(956\) − 1028.93i − 1.07628i
\(957\) 0 0
\(958\) −1174.07 −1.22554
\(959\) 9.81633i 0.0102360i
\(960\) 0 0
\(961\) −954.648 −0.993391
\(962\) 587.409i 0.610612i
\(963\) 0 0
\(964\) −770.723 −0.799505
\(965\) − 165.426i − 0.171426i
\(966\) 0 0
\(967\) −1156.89 −1.19637 −0.598186 0.801357i \(-0.704112\pi\)
−0.598186 + 0.801357i \(0.704112\pi\)
\(968\) 300.756i 0.310698i
\(969\) 0 0
\(970\) −448.627 −0.462503
\(971\) 543.385i 0.559614i 0.960056 + 0.279807i \(0.0902705\pi\)
−0.960056 + 0.279807i \(0.909730\pi\)
\(972\) 0 0
\(973\) 202.288 0.207901
\(974\) − 1787.16i − 1.83487i
\(975\) 0 0
\(976\) −2231.59 −2.28647
\(977\) 992.745i 1.01612i 0.861323 + 0.508058i \(0.169636\pi\)
−0.861323 + 0.508058i \(0.830364\pi\)
\(978\) 0 0
\(979\) 11.6404 0.0118901
\(980\) 30.8308i 0.0314600i
\(981\) 0 0
\(982\) −1302.20 −1.32607
\(983\) 474.189i 0.482389i 0.970477 + 0.241195i \(0.0775392\pi\)
−0.970477 + 0.241195i \(0.922461\pi\)
\(984\) 0 0
\(985\) 456.672 0.463626
\(986\) 424.702i 0.430732i
\(987\) 0 0
\(988\) 371.225 0.375734
\(989\) 579.267i 0.585710i
\(990\) 0 0
\(991\) 973.071 0.981908 0.490954 0.871186i \(-0.336648\pi\)
0.490954 + 0.871186i \(0.336648\pi\)
\(992\) − 92.0375i − 0.0927797i
\(993\) 0 0
\(994\) 840.674 0.845749
\(995\) 432.952i 0.435127i
\(996\) 0 0
\(997\) 943.814 0.946654 0.473327 0.880887i \(-0.343053\pi\)
0.473327 + 0.880887i \(0.343053\pi\)
\(998\) − 2147.43i − 2.15173i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.3.b.b.134.1 4
3.2 odd 2 inner 189.3.b.b.134.4 yes 4
4.3 odd 2 3024.3.d.c.1457.2 4
9.2 odd 6 567.3.r.b.134.4 8
9.4 even 3 567.3.r.b.512.4 8
9.5 odd 6 567.3.r.b.512.1 8
9.7 even 3 567.3.r.b.134.1 8
12.11 even 2 3024.3.d.c.1457.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.3.b.b.134.1 4 1.1 even 1 trivial
189.3.b.b.134.4 yes 4 3.2 odd 2 inner
567.3.r.b.134.1 8 9.7 even 3
567.3.r.b.134.4 8 9.2 odd 6
567.3.r.b.512.1 8 9.5 odd 6
567.3.r.b.512.4 8 9.4 even 3
3024.3.d.c.1457.2 4 4.3 odd 2
3024.3.d.c.1457.3 4 12.11 even 2