Properties

Label 189.3.b
Level $189$
Weight $3$
Character orbit 189.b
Rep. character $\chi_{189}(134,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $3$
Sturm bound $72$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 189.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(189, [\chi])\).

Total New Old
Modular forms 54 16 38
Cusp forms 42 16 26
Eisenstein series 12 0 12

Trace form

\( 16 q - 36 q^{4} - 20 q^{10} + 60 q^{13} + 108 q^{16} - 12 q^{19} - 128 q^{22} - 252 q^{25} + 112 q^{28} + 76 q^{31} + 204 q^{34} - 44 q^{37} + 72 q^{40} - 40 q^{43} - 12 q^{46} + 112 q^{49} - 376 q^{52}+ \cdots - 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
189.3.b.a 189.b 3.b $4$ $5.150$ 4.0.1166592.2 None 189.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-6+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\)
189.3.b.b 189.b 3.b $4$ $5.150$ \(\Q(\sqrt{-2}, \sqrt{7})\) None 189.3.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{3}q^{5}+\beta _{2}q^{7}+\cdots\)
189.3.b.c 189.b 3.b $8$ $5.150$ 8.0.1997017344.2 None 189.3.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+(-1-\beta _{2}-\beta _{3})q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(189, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)