Defining parameters
| Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 189.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(189, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 54 | 16 | 38 |
| Cusp forms | 42 | 16 | 26 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 189.3.b.a | $4$ | $5.150$ | 4.0.1166592.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-6+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
| 189.3.b.b | $4$ | $5.150$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{3}q^{5}+\beta _{2}q^{7}+\cdots\) |
| 189.3.b.c | $8$ | $5.150$ | 8.0.1997017344.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+(-1-\beta _{2}-\beta _{3})q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)