Properties

Label 189.2.w.a.25.5
Level $189$
Weight $2$
Character 189.25
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(25,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 25.5
Character \(\chi\) \(=\) 189.25
Dual form 189.2.w.a.121.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.47150 + 0.535583i) q^{2} +(0.0586596 + 1.73106i) q^{3} +(0.346382 - 0.290649i) q^{4} +(3.26769 + 1.18934i) q^{5} +(-1.01344 - 2.51584i) q^{6} +(-0.172863 + 2.64010i) q^{7} +(1.21191 - 2.09908i) q^{8} +(-2.99312 + 0.203086i) q^{9} +O(q^{10})\) \(q+(-1.47150 + 0.535583i) q^{2} +(0.0586596 + 1.73106i) q^{3} +(0.346382 - 0.290649i) q^{4} +(3.26769 + 1.18934i) q^{5} +(-1.01344 - 2.51584i) q^{6} +(-0.172863 + 2.64010i) q^{7} +(1.21191 - 2.09908i) q^{8} +(-2.99312 + 0.203086i) q^{9} -5.44540 q^{10} +(3.82352 - 1.39165i) q^{11} +(0.523448 + 0.582557i) q^{12} +(-0.0193280 - 0.109614i) q^{13} +(-1.15962 - 3.97749i) q^{14} +(-1.86714 + 5.72632i) q^{15} +(-0.816126 + 4.62848i) q^{16} -3.19244 q^{17} +(4.29561 - 1.90191i) q^{18} -6.67057 q^{19} +(1.47755 - 0.537783i) q^{20} +(-4.58030 - 0.144369i) q^{21} +(-4.88098 + 4.09563i) q^{22} +(0.749091 + 4.24830i) q^{23} +(3.70472 + 1.97475i) q^{24} +(5.43302 + 4.55885i) q^{25} +(0.0871487 + 0.150946i) q^{26} +(-0.527129 - 5.16935i) q^{27} +(0.707465 + 0.964724i) q^{28} +(1.65539 - 9.38817i) q^{29} +(-0.319425 - 9.42630i) q^{30} +(3.19029 - 2.67697i) q^{31} +(-0.436224 - 2.47395i) q^{32} +(2.63331 + 6.53710i) q^{33} +(4.69768 - 1.70982i) q^{34} +(-3.70484 + 8.42142i) q^{35} +(-0.977734 + 0.940291i) q^{36} +(1.65756 - 2.87098i) q^{37} +(9.81577 - 3.57265i) q^{38} +(0.188615 - 0.0398877i) q^{39} +(6.45665 - 5.41777i) q^{40} +(-0.169276 - 0.960010i) q^{41} +(6.81725 - 2.24069i) q^{42} +(5.64237 + 4.73451i) q^{43} +(0.919917 - 1.59334i) q^{44} +(-10.0221 - 2.89622i) q^{45} +(-3.37761 - 5.85019i) q^{46} +(4.36301 + 3.66100i) q^{47} +(-8.06004 - 1.14126i) q^{48} +(-6.94024 - 0.912751i) q^{49} +(-10.4363 - 3.79852i) q^{50} +(-0.187267 - 5.52630i) q^{51} +(-0.0385541 - 0.0323507i) q^{52} +(4.61341 - 7.99066i) q^{53} +(3.54429 + 7.32438i) q^{54} +14.1492 q^{55} +(5.33229 + 3.56240i) q^{56} +(-0.391293 - 11.5471i) q^{57} +(2.59224 + 14.7013i) q^{58} +(1.10471 + 6.26513i) q^{59} +(1.01761 + 2.52617i) q^{60} +(-2.96003 - 2.48376i) q^{61} +(-3.26078 + 5.64783i) q^{62} +(-0.0187681 - 7.93723i) q^{63} +(-2.73297 - 4.73365i) q^{64} +(0.0672110 - 0.381173i) q^{65} +(-7.37609 - 8.20901i) q^{66} +(2.63767 + 0.960035i) q^{67} +(-1.10580 + 0.927878i) q^{68} +(-7.31012 + 1.54592i) q^{69} +(0.941308 - 14.3764i) q^{70} +(0.320883 + 0.555786i) q^{71} +(-3.20108 + 6.52892i) q^{72} +(0.416497 + 0.721395i) q^{73} +(-0.901458 + 5.11242i) q^{74} +(-7.57293 + 9.67229i) q^{75} +(-2.31056 + 1.93879i) q^{76} +(3.01314 + 10.3350i) q^{77} +(-0.256184 + 0.159714i) q^{78} +(-2.03880 + 0.742063i) q^{79} +(-8.17168 + 14.1538i) q^{80} +(8.91751 - 1.21572i) q^{81} +(0.763254 + 1.32200i) q^{82} +(-1.66349 + 9.43414i) q^{83} +(-1.62849 + 1.28125i) q^{84} +(-10.4319 - 3.79690i) q^{85} +(-10.8385 - 3.94489i) q^{86} +(16.3486 + 2.31486i) q^{87} +(1.71256 - 9.71243i) q^{88} +0.420642 q^{89} +(16.2987 - 1.10589i) q^{90} +(0.292734 - 0.0320794i) q^{91} +(1.49424 + 1.25381i) q^{92} +(4.82113 + 5.36554i) q^{93} +(-8.38096 - 3.05042i) q^{94} +(-21.7973 - 7.93359i) q^{95} +(4.25696 - 0.900249i) q^{96} +(8.06794 + 6.76980i) q^{97} +(10.7014 - 2.37396i) q^{98} +(-11.1616 + 4.94187i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 3 q^{11} - 3 q^{12} - 12 q^{13} + 15 q^{14} - 9 q^{16} - 54 q^{17} - 3 q^{18} - 6 q^{19} - 18 q^{20} - 21 q^{21} - 12 q^{22} + 45 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 57 q^{30} - 3 q^{31} + 51 q^{32} + 15 q^{33} - 18 q^{34} - 12 q^{35} - 60 q^{36} + 3 q^{37} - 57 q^{38} - 66 q^{39} - 66 q^{40} + 33 q^{42} - 12 q^{43} + 3 q^{44} + 33 q^{45} + 3 q^{46} - 21 q^{47} + 90 q^{48} + 12 q^{49} - 39 q^{50} - 48 q^{51} + 9 q^{52} + 9 q^{53} - 63 q^{54} - 24 q^{55} + 57 q^{56} - 18 q^{57} - 3 q^{58} - 18 q^{59} + 81 q^{60} + 33 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} + 81 q^{65} + 69 q^{66} - 3 q^{67} + 6 q^{68} - 6 q^{69} - 42 q^{70} - 18 q^{71} - 105 q^{72} + 21 q^{73} - 93 q^{74} + 18 q^{75} - 24 q^{76} + 87 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} + 39 q^{81} - 6 q^{82} - 42 q^{83} - 36 q^{84} - 63 q^{85} + 159 q^{86} + 30 q^{87} + 57 q^{88} - 150 q^{89} - 39 q^{90} + 6 q^{91} - 66 q^{92} - 27 q^{93} + 33 q^{94} - 147 q^{95} + 81 q^{96} - 12 q^{97} + 99 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.47150 + 0.535583i −1.04051 + 0.378714i −0.805073 0.593175i \(-0.797874\pi\)
−0.235436 + 0.971890i \(0.575652\pi\)
\(3\) 0.0586596 + 1.73106i 0.0338671 + 0.999426i
\(4\) 0.346382 0.290649i 0.173191 0.145324i
\(5\) 3.26769 + 1.18934i 1.46135 + 0.531889i 0.945738 0.324930i \(-0.105341\pi\)
0.515616 + 0.856820i \(0.327563\pi\)
\(6\) −1.01344 2.51584i −0.413736 1.02709i
\(7\) −0.172863 + 2.64010i −0.0653361 + 0.997863i
\(8\) 1.21191 2.09908i 0.428473 0.742137i
\(9\) −2.99312 + 0.203086i −0.997706 + 0.0676954i
\(10\) −5.44540 −1.72199
\(11\) 3.82352 1.39165i 1.15284 0.419598i 0.306303 0.951934i \(-0.400908\pi\)
0.846533 + 0.532336i \(0.178686\pi\)
\(12\) 0.523448 + 0.582557i 0.151106 + 0.168170i
\(13\) −0.0193280 0.109614i −0.00536061 0.0304015i 0.982010 0.188828i \(-0.0604689\pi\)
−0.987371 + 0.158427i \(0.949358\pi\)
\(14\) −1.15962 3.97749i −0.309922 1.06303i
\(15\) −1.86714 + 5.72632i −0.482092 + 1.47853i
\(16\) −0.816126 + 4.62848i −0.204031 + 1.15712i
\(17\) −3.19244 −0.774280 −0.387140 0.922021i \(-0.626537\pi\)
−0.387140 + 0.922021i \(0.626537\pi\)
\(18\) 4.29561 1.90191i 1.01249 0.448283i
\(19\) −6.67057 −1.53033 −0.765167 0.643831i \(-0.777344\pi\)
−0.765167 + 0.643831i \(0.777344\pi\)
\(20\) 1.47755 0.537783i 0.330390 0.120252i
\(21\) −4.58030 0.144369i −0.999504 0.0315038i
\(22\) −4.88098 + 4.09563i −1.04063 + 0.873191i
\(23\) 0.749091 + 4.24830i 0.156196 + 0.885833i 0.957684 + 0.287822i \(0.0929310\pi\)
−0.801488 + 0.598011i \(0.795958\pi\)
\(24\) 3.70472 + 1.97475i 0.756223 + 0.403093i
\(25\) 5.43302 + 4.55885i 1.08660 + 0.911770i
\(26\) 0.0871487 + 0.150946i 0.0170913 + 0.0296029i
\(27\) −0.527129 5.16935i −0.101446 0.994841i
\(28\) 0.707465 + 0.964724i 0.133698 + 0.182316i
\(29\) 1.65539 9.38817i 0.307398 1.74334i −0.304601 0.952480i \(-0.598523\pi\)
0.611998 0.790859i \(-0.290366\pi\)
\(30\) −0.319425 9.42630i −0.0583188 1.72100i
\(31\) 3.19029 2.67697i 0.572992 0.480798i −0.309645 0.950852i \(-0.600210\pi\)
0.882637 + 0.470055i \(0.155766\pi\)
\(32\) −0.436224 2.47395i −0.0771142 0.437336i
\(33\) 2.63331 + 6.53710i 0.458400 + 1.13796i
\(34\) 4.69768 1.70982i 0.805646 0.293231i
\(35\) −3.70484 + 8.42142i −0.626232 + 1.42348i
\(36\) −0.977734 + 0.940291i −0.162956 + 0.156715i
\(37\) 1.65756 2.87098i 0.272502 0.471987i −0.697000 0.717071i \(-0.745482\pi\)
0.969502 + 0.245084i \(0.0788157\pi\)
\(38\) 9.81577 3.57265i 1.59233 0.579560i
\(39\) 0.188615 0.0398877i 0.0302025 0.00638715i
\(40\) 6.45665 5.41777i 1.02089 0.856625i
\(41\) −0.169276 0.960010i −0.0264364 0.149928i 0.968732 0.248109i \(-0.0798090\pi\)
−0.995169 + 0.0981802i \(0.968698\pi\)
\(42\) 6.81725 2.24069i 1.05192 0.345746i
\(43\) 5.64237 + 4.73451i 0.860454 + 0.722007i 0.962066 0.272818i \(-0.0879556\pi\)
−0.101612 + 0.994824i \(0.532400\pi\)
\(44\) 0.919917 1.59334i 0.138683 0.240206i
\(45\) −10.0221 2.89622i −1.49401 0.431742i
\(46\) −3.37761 5.85019i −0.498001 0.862563i
\(47\) 4.36301 + 3.66100i 0.636411 + 0.534012i 0.902914 0.429822i \(-0.141424\pi\)
−0.266503 + 0.963834i \(0.585868\pi\)
\(48\) −8.06004 1.14126i −1.16337 0.164726i
\(49\) −6.94024 0.912751i −0.991462 0.130393i
\(50\) −10.4363 3.79852i −1.47592 0.537192i
\(51\) −0.187267 5.52630i −0.0262227 0.773836i
\(52\) −0.0385541 0.0323507i −0.00534649 0.00448624i
\(53\) 4.61341 7.99066i 0.633700 1.09760i −0.353089 0.935590i \(-0.614869\pi\)
0.986789 0.162011i \(-0.0517981\pi\)
\(54\) 3.54429 + 7.32438i 0.482316 + 0.996722i
\(55\) 14.1492 1.90788
\(56\) 5.33229 + 3.56240i 0.712557 + 0.476046i
\(57\) −0.391293 11.5471i −0.0518280 1.52946i
\(58\) 2.59224 + 14.7013i 0.340377 + 1.93038i
\(59\) 1.10471 + 6.26513i 0.143821 + 0.815651i 0.968306 + 0.249767i \(0.0803540\pi\)
−0.824485 + 0.565884i \(0.808535\pi\)
\(60\) 1.01761 + 2.52617i 0.131372 + 0.326127i
\(61\) −2.96003 2.48376i −0.378993 0.318013i 0.433314 0.901243i \(-0.357344\pi\)
−0.812307 + 0.583230i \(0.801789\pi\)
\(62\) −3.26078 + 5.64783i −0.414119 + 0.717275i
\(63\) −0.0187681 7.93723i −0.00236455 0.999997i
\(64\) −2.73297 4.73365i −0.341622 0.591706i
\(65\) 0.0672110 0.381173i 0.00833650 0.0472787i
\(66\) −7.37609 8.20901i −0.907933 1.01046i
\(67\) 2.63767 + 0.960035i 0.322243 + 0.117287i 0.498077 0.867133i \(-0.334040\pi\)
−0.175833 + 0.984420i \(0.556262\pi\)
\(68\) −1.10580 + 0.927878i −0.134098 + 0.112522i
\(69\) −7.31012 + 1.54592i −0.880035 + 0.186107i
\(70\) 0.941308 14.3764i 0.112508 1.71831i
\(71\) 0.320883 + 0.555786i 0.0380818 + 0.0659596i 0.884438 0.466657i \(-0.154542\pi\)
−0.846356 + 0.532617i \(0.821209\pi\)
\(72\) −3.20108 + 6.52892i −0.377251 + 0.769441i
\(73\) 0.416497 + 0.721395i 0.0487473 + 0.0844328i 0.889369 0.457189i \(-0.151144\pi\)
−0.840622 + 0.541622i \(0.817810\pi\)
\(74\) −0.901458 + 5.11242i −0.104792 + 0.594307i
\(75\) −7.57293 + 9.67229i −0.874446 + 1.11686i
\(76\) −2.31056 + 1.93879i −0.265040 + 0.222395i
\(77\) 3.01314 + 10.3350i 0.343380 + 1.17779i
\(78\) −0.256184 + 0.159714i −0.0290071 + 0.0180840i
\(79\) −2.03880 + 0.742063i −0.229383 + 0.0834886i −0.454155 0.890923i \(-0.650059\pi\)
0.224772 + 0.974411i \(0.427836\pi\)
\(80\) −8.17168 + 14.1538i −0.913622 + 1.58244i
\(81\) 8.91751 1.21572i 0.990835 0.135080i
\(82\) 0.763254 + 1.32200i 0.0842874 + 0.145990i
\(83\) −1.66349 + 9.43414i −0.182592 + 1.03553i 0.746418 + 0.665477i \(0.231772\pi\)
−0.929010 + 0.370054i \(0.879339\pi\)
\(84\) −1.62849 + 1.28125i −0.177683 + 0.139796i
\(85\) −10.4319 3.79690i −1.13150 0.411831i
\(86\) −10.8385 3.94489i −1.16874 0.425388i
\(87\) 16.3486 + 2.31486i 1.75275 + 0.248179i
\(88\) 1.71256 9.71243i 0.182560 1.03535i
\(89\) 0.420642 0.0445879 0.0222940 0.999751i \(-0.492903\pi\)
0.0222940 + 0.999751i \(0.492903\pi\)
\(90\) 16.2987 1.10589i 1.71804 0.116571i
\(91\) 0.292734 0.0320794i 0.0306868 0.00336284i
\(92\) 1.49424 + 1.25381i 0.155785 + 0.130719i
\(93\) 4.82113 + 5.36554i 0.499927 + 0.556380i
\(94\) −8.38096 3.05042i −0.864430 0.314627i
\(95\) −21.7973 7.93359i −2.23636 0.813969i
\(96\) 4.25696 0.900249i 0.434474 0.0918813i
\(97\) 8.06794 + 6.76980i 0.819175 + 0.687370i 0.952779 0.303665i \(-0.0982105\pi\)
−0.133604 + 0.991035i \(0.542655\pi\)
\(98\) 10.7014 2.37396i 1.08101 0.239806i
\(99\) −11.1616 + 4.94187i −1.12179 + 0.496677i
\(100\) 3.20692 0.320692
\(101\) 1.46461 8.30622i 0.145734 0.826500i −0.821040 0.570870i \(-0.806606\pi\)
0.966775 0.255630i \(-0.0822829\pi\)
\(102\) 3.23535 + 8.03166i 0.320348 + 0.795253i
\(103\) 4.99736 + 1.81889i 0.492405 + 0.179221i 0.576275 0.817256i \(-0.304506\pi\)
−0.0838700 + 0.996477i \(0.526728\pi\)
\(104\) −0.253513 0.0922712i −0.0248590 0.00904793i
\(105\) −14.7953 5.91929i −1.44387 0.577664i
\(106\) −2.50898 + 14.2291i −0.243694 + 1.38206i
\(107\) −3.55714 6.16115i −0.343882 0.595621i 0.641268 0.767317i \(-0.278409\pi\)
−0.985150 + 0.171696i \(0.945075\pi\)
\(108\) −1.68505 1.63736i −0.162144 0.157555i
\(109\) −6.74684 + 11.6859i −0.646230 + 1.11930i 0.337786 + 0.941223i \(0.390322\pi\)
−0.984016 + 0.178080i \(0.943011\pi\)
\(110\) −20.8206 + 7.57808i −1.98517 + 0.722542i
\(111\) 5.06707 + 2.70093i 0.480945 + 0.256360i
\(112\) −12.0786 2.95475i −1.14132 0.279197i
\(113\) 8.07931 6.77935i 0.760037 0.637747i −0.178099 0.984013i \(-0.556995\pi\)
0.938137 + 0.346265i \(0.112550\pi\)
\(114\) 6.76025 + 16.7821i 0.633155 + 1.57179i
\(115\) −2.60489 + 14.7731i −0.242907 + 1.37759i
\(116\) −2.15526 3.73303i −0.200111 0.346603i
\(117\) 0.0801120 + 0.324163i 0.00740636 + 0.0299689i
\(118\) −4.98109 8.62750i −0.458546 0.794225i
\(119\) 0.551855 8.42835i 0.0505884 0.772626i
\(120\) 9.75722 + 10.8590i 0.890708 + 0.991289i
\(121\) 4.25616 3.57134i 0.386923 0.324667i
\(122\) 5.68595 + 2.06952i 0.514782 + 0.187365i
\(123\) 1.65190 0.349340i 0.148947 0.0314989i
\(124\) 0.326999 1.85451i 0.0293654 0.166539i
\(125\) 3.63790 + 6.30102i 0.325383 + 0.563580i
\(126\) 4.27866 + 11.6696i 0.381174 + 1.03961i
\(127\) 1.80508 3.12650i 0.160175 0.277432i −0.774756 0.632260i \(-0.782127\pi\)
0.934931 + 0.354828i \(0.115461\pi\)
\(128\) 10.4056 + 8.73135i 0.919735 + 0.771750i
\(129\) −7.86473 + 10.0450i −0.692451 + 0.884413i
\(130\) 0.105248 + 0.596894i 0.00923090 + 0.0523510i
\(131\) −2.68876 15.2487i −0.234918 1.33229i −0.842786 0.538249i \(-0.819086\pi\)
0.607868 0.794038i \(-0.292025\pi\)
\(132\) 2.81213 + 1.49896i 0.244765 + 0.130468i
\(133\) 1.15310 17.6110i 0.0999861 1.52706i
\(134\) −4.39552 −0.379715
\(135\) 4.42562 17.5187i 0.380897 1.50777i
\(136\) −3.86893 + 6.70119i −0.331758 + 0.574622i
\(137\) −11.6673 9.79006i −0.996808 0.836421i −0.0102688 0.999947i \(-0.503269\pi\)
−0.986539 + 0.163526i \(0.947713\pi\)
\(138\) 9.92888 6.19000i 0.845203 0.526928i
\(139\) 1.37493 + 0.500432i 0.116620 + 0.0424461i 0.399671 0.916659i \(-0.369124\pi\)
−0.283051 + 0.959105i \(0.591347\pi\)
\(140\) 1.16439 + 3.99383i 0.0984087 + 0.337540i
\(141\) −6.08147 + 7.76738i −0.512152 + 0.654131i
\(142\) −0.769850 0.645981i −0.0646044 0.0542095i
\(143\) −0.226445 0.392215i −0.0189363 0.0327987i
\(144\) 1.50278 14.0193i 0.125232 1.16828i
\(145\) 16.5750 28.7088i 1.37648 2.38413i
\(146\) −0.999244 0.838465i −0.0826980 0.0693919i
\(147\) 1.17291 12.0675i 0.0967402 0.995310i
\(148\) −0.260298 1.47622i −0.0213964 0.121345i
\(149\) 9.53636 8.00195i 0.781249 0.655546i −0.162314 0.986739i \(-0.551896\pi\)
0.943563 + 0.331194i \(0.107451\pi\)
\(150\) 5.96326 18.2887i 0.486899 1.49327i
\(151\) 1.41378 0.514576i 0.115052 0.0418756i −0.283853 0.958868i \(-0.591613\pi\)
0.398905 + 0.916992i \(0.369390\pi\)
\(152\) −8.08411 + 14.0021i −0.655708 + 1.13572i
\(153\) 9.55535 0.648340i 0.772504 0.0524152i
\(154\) −9.96912 13.5943i −0.803335 1.09546i
\(155\) 13.6087 4.95316i 1.09308 0.397847i
\(156\) 0.0537394 0.0686370i 0.00430260 0.00549536i
\(157\) 1.21859 + 6.91100i 0.0972545 + 0.551557i 0.994033 + 0.109078i \(0.0347899\pi\)
−0.896779 + 0.442479i \(0.854099\pi\)
\(158\) 2.60266 2.18390i 0.207057 0.173741i
\(159\) 14.1029 + 7.51734i 1.11843 + 0.596164i
\(160\) 1.51692 8.60290i 0.119923 0.680119i
\(161\) −11.3454 + 1.24330i −0.894145 + 0.0979856i
\(162\) −12.4710 + 6.56501i −0.979816 + 0.515796i
\(163\) −11.2418 19.4713i −0.880524 1.52511i −0.850760 0.525555i \(-0.823858\pi\)
−0.0297644 0.999557i \(-0.509476\pi\)
\(164\) −0.337660 0.283330i −0.0263668 0.0221244i
\(165\) 0.829988 + 24.4931i 0.0646144 + 1.90679i
\(166\) −2.60493 14.7733i −0.202182 1.14663i
\(167\) 0.698941 0.586481i 0.0540857 0.0453833i −0.615344 0.788259i \(-0.710983\pi\)
0.669430 + 0.742875i \(0.266538\pi\)
\(168\) −5.85393 + 9.43946i −0.451641 + 0.728271i
\(169\) 12.2044 4.44202i 0.938797 0.341694i
\(170\) 17.3841 1.33330
\(171\) 19.9658 1.35470i 1.52682 0.103597i
\(172\) 3.33049 0.253948
\(173\) 0.474745 2.69242i 0.0360942 0.204701i −0.961428 0.275058i \(-0.911303\pi\)
0.997522 + 0.0703575i \(0.0224140\pi\)
\(174\) −25.2968 + 5.34968i −1.91774 + 0.405559i
\(175\) −12.9750 + 13.5557i −0.980816 + 1.02471i
\(176\) 3.32074 + 18.8329i 0.250310 + 1.41958i
\(177\) −10.7805 + 2.27983i −0.810312 + 0.171363i
\(178\) −0.618975 + 0.225289i −0.0463941 + 0.0168861i
\(179\) 2.46922 0.184558 0.0922789 0.995733i \(-0.470585\pi\)
0.0922789 + 0.995733i \(0.470585\pi\)
\(180\) −4.31326 + 1.90972i −0.321491 + 0.142342i
\(181\) −11.6476 + 20.1742i −0.865757 + 1.49954i 0.000536603 1.00000i \(0.499829\pi\)
−0.866294 + 0.499535i \(0.833504\pi\)
\(182\) −0.413577 + 0.203988i −0.0306564 + 0.0151206i
\(183\) 4.12590 5.26968i 0.304995 0.389546i
\(184\) 9.82536 + 3.57614i 0.724335 + 0.263637i
\(185\) 8.83097 7.41007i 0.649266 0.544799i
\(186\) −9.96799 5.31329i −0.730888 0.389589i
\(187\) −12.2064 + 4.44275i −0.892618 + 0.324886i
\(188\) 2.57533 0.187825
\(189\) 13.7387 0.498083i 0.999343 0.0362302i
\(190\) 36.3239 2.63522
\(191\) −17.7560 + 6.46266i −1.28478 + 0.467622i −0.892010 0.452015i \(-0.850705\pi\)
−0.392770 + 0.919637i \(0.628483\pi\)
\(192\) 8.03390 5.00861i 0.579797 0.361465i
\(193\) −3.00338 + 2.52014i −0.216188 + 0.181404i −0.744450 0.667678i \(-0.767288\pi\)
0.528262 + 0.849081i \(0.322844\pi\)
\(194\) −15.4978 5.64073i −1.11268 0.404981i
\(195\) 0.663774 + 0.0939867i 0.0475339 + 0.00673053i
\(196\) −2.66926 + 1.70101i −0.190661 + 0.121501i
\(197\) −5.25085 + 9.09475i −0.374108 + 0.647974i −0.990193 0.139706i \(-0.955384\pi\)
0.616085 + 0.787680i \(0.288718\pi\)
\(198\) 13.7776 13.2500i 0.979130 0.941634i
\(199\) −10.9582 −0.776805 −0.388402 0.921490i \(-0.626973\pi\)
−0.388402 + 0.921490i \(0.626973\pi\)
\(200\) 16.1537 5.87947i 1.14224 0.415741i
\(201\) −1.50715 + 4.62228i −0.106306 + 0.326031i
\(202\) 2.29349 + 13.0071i 0.161370 + 0.915173i
\(203\) 24.4995 + 5.99325i 1.71953 + 0.420644i
\(204\) −1.67108 1.85978i −0.116999 0.130211i
\(205\) 0.588639 3.33834i 0.0411123 0.233160i
\(206\) −8.32780 −0.580225
\(207\) −3.10489 12.5635i −0.215805 0.873227i
\(208\) 0.523122 0.0362720
\(209\) −25.5051 + 9.28310i −1.76422 + 0.642125i
\(210\) 24.9416 + 0.786145i 1.72113 + 0.0542492i
\(211\) 7.42531 6.23057i 0.511179 0.428930i −0.350365 0.936613i \(-0.613942\pi\)
0.861544 + 0.507683i \(0.169498\pi\)
\(212\) −0.724474 4.10870i −0.0497571 0.282187i
\(213\) −0.943274 + 0.588069i −0.0646321 + 0.0402938i
\(214\) 8.53416 + 7.16101i 0.583383 + 0.489516i
\(215\) 12.8066 + 22.1816i 0.873400 + 1.51277i
\(216\) −11.4897 5.15827i −0.781776 0.350976i
\(217\) 6.51598 + 8.88542i 0.442333 + 0.603181i
\(218\) 3.66924 20.8093i 0.248512 1.40938i
\(219\) −1.22434 + 0.763297i −0.0827335 + 0.0515789i
\(220\) 4.90103 4.11245i 0.330427 0.277262i
\(221\) 0.0617033 + 0.349937i 0.00415062 + 0.0235393i
\(222\) −8.90277 1.26058i −0.597515 0.0846048i
\(223\) −15.4852 + 5.63617i −1.03697 + 0.377426i −0.803730 0.594994i \(-0.797154\pi\)
−0.233238 + 0.972420i \(0.574932\pi\)
\(224\) 6.60687 0.724019i 0.441440 0.0483756i
\(225\) −17.1875 12.5418i −1.14583 0.836120i
\(226\) −8.25782 + 14.3030i −0.549302 + 0.951419i
\(227\) 2.42341 0.882050i 0.160848 0.0585437i −0.260341 0.965517i \(-0.583835\pi\)
0.421189 + 0.906973i \(0.361613\pi\)
\(228\) −3.49170 3.88599i −0.231243 0.257356i
\(229\) −0.904076 + 0.758610i −0.0597431 + 0.0501304i −0.672170 0.740397i \(-0.734638\pi\)
0.612427 + 0.790527i \(0.290193\pi\)
\(230\) −4.07910 23.1337i −0.268968 1.52539i
\(231\) −17.7138 + 5.82217i −1.16548 + 0.383071i
\(232\) −17.7004 14.8524i −1.16209 0.975106i
\(233\) 10.2228 17.7065i 0.669721 1.15999i −0.308262 0.951302i \(-0.599747\pi\)
0.977982 0.208688i \(-0.0669194\pi\)
\(234\) −0.291501 0.434100i −0.0190560 0.0283780i
\(235\) 9.90278 + 17.1521i 0.645986 + 1.11888i
\(236\) 2.20361 + 1.84904i 0.143442 + 0.120363i
\(237\) −1.40415 3.48575i −0.0912093 0.226424i
\(238\) 3.70203 + 12.6979i 0.239967 + 0.823083i
\(239\) −7.54157 2.74491i −0.487824 0.177553i 0.0863857 0.996262i \(-0.472468\pi\)
−0.574209 + 0.818708i \(0.694690\pi\)
\(240\) −24.9803 13.3154i −1.61247 0.859505i
\(241\) −14.5101 12.1754i −0.934677 0.784287i 0.0419744 0.999119i \(-0.486635\pi\)
−0.976651 + 0.214832i \(0.931080\pi\)
\(242\) −4.35020 + 7.53476i −0.279641 + 0.484353i
\(243\) 2.62758 + 15.3654i 0.168559 + 0.985691i
\(244\) −1.74720 −0.111853
\(245\) −21.5929 11.2369i −1.37952 0.717899i
\(246\) −2.24368 + 1.39878i −0.143052 + 0.0891833i
\(247\) 0.128929 + 0.731190i 0.00820353 + 0.0465245i
\(248\) −1.75285 9.94090i −0.111306 0.631248i
\(249\) −16.4286 2.32620i −1.04112 0.147417i
\(250\) −8.72789 7.32357i −0.552000 0.463183i
\(251\) 9.52282 16.4940i 0.601075 1.04109i −0.391583 0.920143i \(-0.628073\pi\)
0.992659 0.120950i \(-0.0385942\pi\)
\(252\) −2.31345 2.74386i −0.145733 0.172847i
\(253\) 8.77631 + 15.2010i 0.551762 + 0.955680i
\(254\) −0.981687 + 5.56742i −0.0615965 + 0.349331i
\(255\) 5.96072 18.2809i 0.373275 1.14480i
\(256\) −9.71564 3.53620i −0.607227 0.221013i
\(257\) −13.6046 + 11.4156i −0.848633 + 0.712088i −0.959488 0.281749i \(-0.909086\pi\)
0.110855 + 0.993837i \(0.464641\pi\)
\(258\) 6.19305 18.9935i 0.385562 1.18248i
\(259\) 7.29315 + 4.87242i 0.453174 + 0.302757i
\(260\) −0.0875067 0.151566i −0.00542693 0.00939973i
\(261\) −3.04816 + 28.4361i −0.188677 + 1.76015i
\(262\) 12.1235 + 20.9985i 0.748991 + 1.29729i
\(263\) −4.79189 + 27.1762i −0.295481 + 1.67575i 0.369761 + 0.929127i \(0.379440\pi\)
−0.665242 + 0.746628i \(0.731672\pi\)
\(264\) 16.9132 + 2.39482i 1.04094 + 0.147391i
\(265\) 24.5788 20.6241i 1.50986 1.26693i
\(266\) 7.73536 + 26.5322i 0.474285 + 1.62679i
\(267\) 0.0246747 + 0.728155i 0.00151006 + 0.0445623i
\(268\) 1.19267 0.434098i 0.0728542 0.0265168i
\(269\) 8.35177 14.4657i 0.509216 0.881989i −0.490727 0.871314i \(-0.663269\pi\)
0.999943 0.0106750i \(-0.00339802\pi\)
\(270\) 2.87043 + 28.1492i 0.174689 + 1.71310i
\(271\) −6.25503 10.8340i −0.379966 0.658120i 0.611091 0.791560i \(-0.290731\pi\)
−0.991057 + 0.133440i \(0.957398\pi\)
\(272\) 2.60543 14.7761i 0.157978 0.895935i
\(273\) 0.0727030 + 0.504857i 0.00440018 + 0.0305553i
\(274\) 22.4119 + 8.15727i 1.35395 + 0.492798i
\(275\) 27.1176 + 9.87000i 1.63525 + 0.595183i
\(276\) −2.08277 + 2.66016i −0.125368 + 0.160123i
\(277\) 1.85461 10.5180i 0.111433 0.631967i −0.877022 0.480450i \(-0.840473\pi\)
0.988455 0.151516i \(-0.0484156\pi\)
\(278\) −2.29123 −0.137419
\(279\) −9.00525 + 8.66038i −0.539130 + 0.518484i
\(280\) 13.1873 + 17.9827i 0.788094 + 1.07467i
\(281\) −8.60406 7.21966i −0.513275 0.430689i 0.349005 0.937121i \(-0.386520\pi\)
−0.862280 + 0.506432i \(0.830964\pi\)
\(282\) 4.78883 14.6868i 0.285170 0.874589i
\(283\) 8.30507 + 3.02280i 0.493685 + 0.179687i 0.576852 0.816849i \(-0.304281\pi\)
−0.0831665 + 0.996536i \(0.526503\pi\)
\(284\) 0.272686 + 0.0992497i 0.0161810 + 0.00588939i
\(285\) 12.4549 38.1978i 0.737763 2.26264i
\(286\) 0.543279 + 0.455865i 0.0321248 + 0.0269559i
\(287\) 2.56378 0.280954i 0.151335 0.0165842i
\(288\) 1.80809 + 7.31623i 0.106543 + 0.431113i
\(289\) −6.80833 −0.400490
\(290\) −9.01425 + 51.1223i −0.529335 + 3.00201i
\(291\) −11.2457 + 14.3632i −0.659232 + 0.841984i
\(292\) 0.353939 + 0.128823i 0.0207127 + 0.00753882i
\(293\) 12.1570 + 4.42479i 0.710220 + 0.258499i 0.671768 0.740761i \(-0.265535\pi\)
0.0384521 + 0.999260i \(0.487757\pi\)
\(294\) 4.73720 + 18.3855i 0.276279 + 1.07227i
\(295\) −3.84153 + 21.7864i −0.223662 + 1.26845i
\(296\) −4.01762 6.95872i −0.233519 0.404467i
\(297\) −9.20940 19.0315i −0.534384 1.10432i
\(298\) −9.74706 + 16.8824i −0.564632 + 0.977972i
\(299\) 0.451196 0.164222i 0.0260934 0.00949721i
\(300\) 0.188117 + 5.55137i 0.0108609 + 0.320508i
\(301\) −13.4749 + 14.0780i −0.776682 + 0.811442i
\(302\) −1.80479 + 1.51440i −0.103854 + 0.0871438i
\(303\) 14.4645 + 2.04809i 0.830962 + 0.117659i
\(304\) 5.44403 30.8746i 0.312236 1.77078i
\(305\) −6.71842 11.6366i −0.384695 0.666312i
\(306\) −13.7135 + 6.07172i −0.783947 + 0.347097i
\(307\) −9.05717 15.6875i −0.516920 0.895331i −0.999807 0.0196488i \(-0.993745\pi\)
0.482887 0.875683i \(-0.339588\pi\)
\(308\) 4.04756 + 2.70410i 0.230631 + 0.154081i
\(309\) −2.85546 + 8.75742i −0.162442 + 0.498192i
\(310\) −17.3724 + 14.5772i −0.986685 + 0.827927i
\(311\) 17.0951 + 6.22212i 0.969375 + 0.352824i 0.777701 0.628635i \(-0.216386\pi\)
0.191675 + 0.981459i \(0.438608\pi\)
\(312\) 0.144856 0.444258i 0.00820084 0.0251512i
\(313\) −5.75976 + 32.6652i −0.325561 + 1.84635i 0.180143 + 0.983640i \(0.442344\pi\)
−0.505704 + 0.862707i \(0.668767\pi\)
\(314\) −5.49458 9.51689i −0.310077 0.537069i
\(315\) 9.37874 25.9587i 0.528432 1.46261i
\(316\) −0.490524 + 0.849612i −0.0275941 + 0.0477944i
\(317\) −6.90477 5.79379i −0.387810 0.325412i 0.427949 0.903803i \(-0.359236\pi\)
−0.815760 + 0.578391i \(0.803681\pi\)
\(318\) −24.7786 3.50851i −1.38952 0.196748i
\(319\) −6.73562 38.1996i −0.377122 2.13877i
\(320\) −3.30058 18.7185i −0.184508 1.04640i
\(321\) 10.4566 6.51903i 0.583633 0.363857i
\(322\) 16.0289 7.90594i 0.893258 0.440581i
\(323\) 21.2954 1.18491
\(324\) 2.73551 3.01297i 0.151973 0.167387i
\(325\) 0.394706 0.683650i 0.0218943 0.0379221i
\(326\) 26.9708 + 22.6312i 1.49378 + 1.25343i
\(327\) −20.6247 10.9937i −1.14055 0.607951i
\(328\) −2.22028 0.808118i −0.122595 0.0446208i
\(329\) −10.4196 + 10.8859i −0.574452 + 0.600161i
\(330\) −14.3394 35.5971i −0.789359 1.95956i
\(331\) 18.2578 + 15.3201i 1.00354 + 0.842071i 0.987471 0.157800i \(-0.0504402\pi\)
0.0160695 + 0.999871i \(0.494885\pi\)
\(332\) 2.16582 + 3.75131i 0.118865 + 0.205880i
\(333\) −4.37822 + 8.92982i −0.239925 + 0.489351i
\(334\) −0.714384 + 1.23735i −0.0390894 + 0.0677048i
\(335\) 7.47728 + 6.27419i 0.408528 + 0.342795i
\(336\) 4.40631 21.0820i 0.240384 1.15012i
\(337\) 2.31533 + 13.1309i 0.126124 + 0.715285i 0.980634 + 0.195850i \(0.0627465\pi\)
−0.854510 + 0.519435i \(0.826142\pi\)
\(338\) −15.5797 + 13.0729i −0.847423 + 0.711072i
\(339\) 12.2094 + 13.5881i 0.663122 + 0.738003i
\(340\) −4.71698 + 1.71684i −0.255814 + 0.0931087i
\(341\) 8.47273 14.6752i 0.458824 0.794707i
\(342\) −28.6542 + 12.6868i −1.54944 + 0.686024i
\(343\) 3.60946 18.1651i 0.194893 0.980825i
\(344\) 16.7762 6.10602i 0.904510 0.329215i
\(345\) −25.7258 3.64263i −1.38503 0.196113i
\(346\) 0.743423 + 4.21616i 0.0399667 + 0.226662i
\(347\) −19.5705 + 16.4216i −1.05060 + 0.881557i −0.993156 0.116792i \(-0.962739\pi\)
−0.0574424 + 0.998349i \(0.518295\pi\)
\(348\) 6.33565 3.94986i 0.339627 0.211735i
\(349\) −0.310889 + 1.76314i −0.0166415 + 0.0943787i −0.991997 0.126259i \(-0.959703\pi\)
0.975356 + 0.220638i \(0.0708140\pi\)
\(350\) 11.8325 26.8964i 0.632475 1.43767i
\(351\) −0.556446 + 0.157694i −0.0297009 + 0.00841707i
\(352\) −5.11078 8.85213i −0.272405 0.471820i
\(353\) 1.38987 + 1.16624i 0.0739751 + 0.0620725i 0.679025 0.734115i \(-0.262403\pi\)
−0.605050 + 0.796187i \(0.706847\pi\)
\(354\) 14.6425 9.12863i 0.778240 0.485181i
\(355\) 0.387527 + 2.19777i 0.0205678 + 0.116646i
\(356\) 0.145703 0.122259i 0.00772222 0.00647971i
\(357\) 14.6223 + 0.460888i 0.773896 + 0.0243928i
\(358\) −3.63346 + 1.32247i −0.192034 + 0.0698947i
\(359\) −15.5581 −0.821126 −0.410563 0.911832i \(-0.634668\pi\)
−0.410563 + 0.911832i \(0.634668\pi\)
\(360\) −18.2252 + 17.5273i −0.960555 + 0.923769i
\(361\) 25.4966 1.34192
\(362\) 6.33448 35.9246i 0.332933 1.88816i
\(363\) 6.43186 + 7.15816i 0.337585 + 0.375706i
\(364\) 0.0920737 0.0961944i 0.00482597 0.00504195i
\(365\) 0.502999 + 2.85265i 0.0263282 + 0.149314i
\(366\) −3.24892 + 9.96411i −0.169824 + 0.520832i
\(367\) −22.3160 + 8.12237i −1.16489 + 0.423984i −0.850841 0.525424i \(-0.823907\pi\)
−0.314046 + 0.949408i \(0.601685\pi\)
\(368\) −20.2745 −1.05688
\(369\) 0.701627 + 2.83904i 0.0365252 + 0.147795i
\(370\) −9.02609 + 15.6337i −0.469244 + 0.812755i
\(371\) 20.2986 + 13.5611i 1.05385 + 0.704059i
\(372\) 3.22944 + 0.457270i 0.167438 + 0.0237083i
\(373\) −19.0201 6.92277i −0.984826 0.358447i −0.201111 0.979568i \(-0.564455\pi\)
−0.783715 + 0.621121i \(0.786677\pi\)
\(374\) 15.5822 13.0750i 0.805738 0.676095i
\(375\) −10.6940 + 6.66702i −0.552237 + 0.344283i
\(376\) 12.9723 4.72153i 0.668995 0.243494i
\(377\) −1.06107 −0.0546480
\(378\) −19.9498 + 8.09115i −1.02611 + 0.416164i
\(379\) 8.77618 0.450802 0.225401 0.974266i \(-0.427631\pi\)
0.225401 + 0.974266i \(0.427631\pi\)
\(380\) −9.85609 + 3.58732i −0.505607 + 0.184026i
\(381\) 5.51803 + 2.94131i 0.282697 + 0.150688i
\(382\) 22.6667 19.0196i 1.15973 0.973130i
\(383\) 2.21936 + 0.807781i 0.113404 + 0.0412757i 0.398099 0.917342i \(-0.369670\pi\)
−0.284695 + 0.958618i \(0.591892\pi\)
\(384\) −14.5041 + 18.5249i −0.740158 + 0.945345i
\(385\) −2.44588 + 37.3553i −0.124653 + 1.90380i
\(386\) 3.06974 5.31695i 0.156246 0.270626i
\(387\) −17.8498 13.0251i −0.907357 0.662101i
\(388\) 4.76222 0.241765
\(389\) −14.2059 + 5.17053i −0.720269 + 0.262156i −0.676040 0.736865i \(-0.736305\pi\)
−0.0442287 + 0.999021i \(0.514083\pi\)
\(390\) −1.02708 + 0.217205i −0.0520084 + 0.0109986i
\(391\) −2.39143 13.5625i −0.120940 0.685883i
\(392\) −10.3268 + 13.4620i −0.521585 + 0.679931i
\(393\) 26.2387 5.54888i 1.32357 0.279904i
\(394\) 2.85565 16.1952i 0.143866 0.815903i
\(395\) −7.54473 −0.379617
\(396\) −2.42984 + 4.95589i −0.122104 + 0.249043i
\(397\) 19.6734 0.987379 0.493690 0.869638i \(-0.335648\pi\)
0.493690 + 0.869638i \(0.335648\pi\)
\(398\) 16.1250 5.86902i 0.808273 0.294187i
\(399\) 30.5532 + 0.963022i 1.52958 + 0.0482114i
\(400\) −25.5346 + 21.4260i −1.27673 + 1.07130i
\(401\) 0.783010 + 4.44067i 0.0391017 + 0.221757i 0.998097 0.0616658i \(-0.0196413\pi\)
−0.958995 + 0.283422i \(0.908530\pi\)
\(402\) −0.257840 7.60890i −0.0128599 0.379498i
\(403\) −0.355096 0.297961i −0.0176886 0.0148425i
\(404\) −1.90688 3.30281i −0.0948708 0.164321i
\(405\) 30.5855 + 6.63336i 1.51981 + 0.329614i
\(406\) −39.2610 + 4.30245i −1.94849 + 0.213527i
\(407\) 2.34233 13.2840i 0.116105 0.658464i
\(408\) −11.8271 6.30426i −0.585528 0.312107i
\(409\) 14.6704 12.3100i 0.725407 0.608688i −0.203468 0.979082i \(-0.565221\pi\)
0.928875 + 0.370393i \(0.120777\pi\)
\(410\) 0.921773 + 5.22764i 0.0455231 + 0.258175i
\(411\) 16.2627 20.7711i 0.802182 1.02456i
\(412\) 2.25965 0.822446i 0.111325 0.0405190i
\(413\) −16.7315 + 1.83354i −0.823305 + 0.0902225i
\(414\) 11.2977 + 16.8244i 0.555250 + 0.826872i
\(415\) −16.6562 + 28.8494i −0.817620 + 1.41616i
\(416\) −0.262749 + 0.0956327i −0.0128823 + 0.00468878i
\(417\) −0.785624 + 2.40943i −0.0384722 + 0.117990i
\(418\) 32.5589 27.3202i 1.59251 1.33627i
\(419\) −1.39020 7.88419i −0.0679155 0.385168i −0.999752 0.0222884i \(-0.992905\pi\)
0.931836 0.362879i \(-0.118206\pi\)
\(420\) −6.84525 + 2.24990i −0.334014 + 0.109784i
\(421\) −5.29363 4.44188i −0.257996 0.216484i 0.504611 0.863347i \(-0.331636\pi\)
−0.762606 + 0.646863i \(0.776081\pi\)
\(422\) −7.58937 + 13.1452i −0.369445 + 0.639897i
\(423\) −13.8025 10.0717i −0.671101 0.489705i
\(424\) −11.1820 19.3678i −0.543047 0.940586i
\(425\) −17.3446 14.5538i −0.841337 0.705965i
\(426\) 1.07307 1.37055i 0.0519904 0.0664032i
\(427\) 7.06905 7.38542i 0.342095 0.357406i
\(428\) −3.02286 1.10023i −0.146115 0.0531817i
\(429\) 0.665664 0.414997i 0.0321385 0.0200363i
\(430\) −30.7250 25.7813i −1.48169 1.24329i
\(431\) 14.2371 24.6593i 0.685775 1.18780i −0.287417 0.957805i \(-0.592797\pi\)
0.973193 0.229992i \(-0.0738700\pi\)
\(432\) 24.3564 + 1.77903i 1.17185 + 0.0855937i
\(433\) −24.5920 −1.18182 −0.590909 0.806738i \(-0.701231\pi\)
−0.590909 + 0.806738i \(0.701231\pi\)
\(434\) −14.3472 9.58507i −0.688685 0.460098i
\(435\) 50.6688 + 27.0083i 2.42938 + 1.29495i
\(436\) 1.05950 + 6.00873i 0.0507409 + 0.287766i
\(437\) −4.99686 28.3386i −0.239032 1.35562i
\(438\) 1.39282 1.77893i 0.0665513 0.0850007i
\(439\) −20.2261 16.9717i −0.965340 0.810016i 0.0164739 0.999864i \(-0.494756\pi\)
−0.981813 + 0.189848i \(0.939200\pi\)
\(440\) 17.1475 29.7004i 0.817476 1.41591i
\(441\) 20.9583 + 1.32250i 0.998015 + 0.0629764i
\(442\) −0.278217 0.481886i −0.0132334 0.0229210i
\(443\) 5.56324 31.5507i 0.264318 1.49902i −0.506654 0.862150i \(-0.669118\pi\)
0.770971 0.636870i \(-0.219771\pi\)
\(444\) 2.54016 0.537186i 0.120551 0.0254937i
\(445\) 1.37452 + 0.500286i 0.0651587 + 0.0237158i
\(446\) 19.7679 16.5873i 0.936039 0.785430i
\(447\) 14.4112 + 16.0386i 0.681628 + 0.758599i
\(448\) 12.9697 6.39704i 0.612762 0.302232i
\(449\) 0.717585 + 1.24289i 0.0338649 + 0.0586558i 0.882461 0.470385i \(-0.155885\pi\)
−0.848596 + 0.529041i \(0.822552\pi\)
\(450\) 32.0087 + 9.24994i 1.50890 + 0.436046i
\(451\) −1.98323 3.43505i −0.0933864 0.161750i
\(452\) 0.828116 4.69648i 0.0389513 0.220904i
\(453\) 0.973692 + 2.41716i 0.0457480 + 0.113568i
\(454\) −3.09365 + 2.59588i −0.145192 + 0.121831i
\(455\) 0.994715 + 0.243334i 0.0466330 + 0.0114077i
\(456\) −24.7126 13.1727i −1.15727 0.616868i
\(457\) 27.2688 9.92502i 1.27558 0.464273i 0.386611 0.922243i \(-0.373646\pi\)
0.888968 + 0.457970i \(0.151423\pi\)
\(458\) 0.924052 1.60051i 0.0431781 0.0747867i
\(459\) 1.68283 + 16.5028i 0.0785477 + 0.770286i
\(460\) 3.39148 + 5.87422i 0.158129 + 0.273887i
\(461\) −5.23302 + 29.6779i −0.243726 + 1.38224i 0.579707 + 0.814825i \(0.303167\pi\)
−0.823433 + 0.567414i \(0.807944\pi\)
\(462\) 22.9476 18.0546i 1.06762 0.839974i
\(463\) −35.8106 13.0340i −1.66426 0.605740i −0.673235 0.739429i \(-0.735096\pi\)
−0.991023 + 0.133688i \(0.957318\pi\)
\(464\) 42.1019 + 15.3239i 1.95453 + 0.711392i
\(465\) 9.37247 + 23.2669i 0.434638 + 1.07897i
\(466\) −5.55964 + 31.5303i −0.257546 + 1.46061i
\(467\) −15.8593 −0.733883 −0.366941 0.930244i \(-0.619595\pi\)
−0.366941 + 0.930244i \(0.619595\pi\)
\(468\) 0.121967 + 0.0889998i 0.00563792 + 0.00411402i
\(469\) −2.99054 + 6.79776i −0.138090 + 0.313892i
\(470\) −23.7584 19.9356i −1.09589 0.919562i
\(471\) −11.8918 + 2.51485i −0.547947 + 0.115878i
\(472\) 14.4898 + 5.27387i 0.666949 + 0.242750i
\(473\) 28.1625 + 10.2503i 1.29491 + 0.471310i
\(474\) 3.93312 + 4.37726i 0.180654 + 0.201054i
\(475\) −36.2414 30.4101i −1.66287 1.39531i
\(476\) −2.25854 3.07982i −0.103520 0.141163i
\(477\) −12.1857 + 24.8539i −0.557944 + 1.13798i
\(478\) 12.5676 0.574827
\(479\) −0.130226 + 0.738549i −0.00595019 + 0.0337452i −0.987638 0.156750i \(-0.949898\pi\)
0.981688 + 0.190495i \(0.0610094\pi\)
\(480\) 14.9811 + 2.12124i 0.683791 + 0.0968209i
\(481\) −0.346738 0.126202i −0.0158099 0.00575433i
\(482\) 27.8726 + 10.1448i 1.26956 + 0.462082i
\(483\) −2.81774 19.5667i −0.128212 0.890314i
\(484\) 0.436249 2.47409i 0.0198295 0.112459i
\(485\) 18.3119 + 31.7171i 0.831500 + 1.44020i
\(486\) −12.0959 21.2030i −0.548683 0.961785i
\(487\) −6.90405 + 11.9582i −0.312852 + 0.541876i −0.978979 0.203963i \(-0.934618\pi\)
0.666126 + 0.745839i \(0.267951\pi\)
\(488\) −8.80090 + 3.20326i −0.398398 + 0.145005i
\(489\) 33.0465 20.6023i 1.49442 0.931670i
\(490\) 37.7924 + 4.97029i 1.70729 + 0.224535i
\(491\) −18.7898 + 15.7665i −0.847974 + 0.711534i −0.959342 0.282245i \(-0.908921\pi\)
0.111369 + 0.993779i \(0.464477\pi\)
\(492\) 0.470653 0.601128i 0.0212187 0.0271009i
\(493\) −5.28472 + 29.9712i −0.238012 + 1.34983i
\(494\) −0.581332 1.00690i −0.0261554 0.0453024i
\(495\) −42.3503 + 2.87351i −1.90350 + 0.129155i
\(496\) 9.78662 + 16.9509i 0.439432 + 0.761119i
\(497\) −1.52280 + 0.751088i −0.0683068 + 0.0336909i
\(498\) 25.4206 5.37588i 1.13913 0.240899i
\(499\) 25.2424 21.1809i 1.13001 0.948188i 0.130940 0.991390i \(-0.458201\pi\)
0.999066 + 0.0432027i \(0.0137561\pi\)
\(500\) 3.09148 + 1.12521i 0.138255 + 0.0503208i
\(501\) 1.05623 + 1.17550i 0.0471890 + 0.0525177i
\(502\) −5.17894 + 29.3712i −0.231148 + 1.31090i
\(503\) −6.42750 11.1328i −0.286588 0.496385i 0.686405 0.727219i \(-0.259188\pi\)
−0.972993 + 0.230834i \(0.925854\pi\)
\(504\) −16.6836 9.57978i −0.743149 0.426717i
\(505\) 14.6648 25.4002i 0.652576 1.13029i
\(506\) −21.0558 17.6679i −0.936043 0.785434i
\(507\) 8.40530 + 20.8659i 0.373293 + 0.926686i
\(508\) −0.283465 1.60761i −0.0125767 0.0713260i
\(509\) 3.01173 + 17.0804i 0.133493 + 0.757074i 0.975898 + 0.218229i \(0.0700280\pi\)
−0.842405 + 0.538845i \(0.818861\pi\)
\(510\) 1.01974 + 30.0929i 0.0451551 + 1.33254i
\(511\) −1.97655 + 0.974891i −0.0874374 + 0.0431267i
\(512\) −10.9766 −0.485103
\(513\) 3.51625 + 34.4825i 0.155246 + 1.52244i
\(514\) 13.9052 24.0846i 0.613333 1.06232i
\(515\) 14.1665 + 11.8871i 0.624252 + 0.523810i
\(516\) 0.195365 + 5.76528i 0.00860048 + 0.253802i
\(517\) 21.7769 + 7.92615i 0.957747 + 0.348592i
\(518\) −13.3415 3.26369i −0.586190 0.143398i
\(519\) 4.68857 + 0.663876i 0.205806 + 0.0291409i
\(520\) −0.718659 0.603027i −0.0315153 0.0264445i
\(521\) 3.73429 + 6.46798i 0.163602 + 0.283367i 0.936158 0.351580i \(-0.114355\pi\)
−0.772556 + 0.634947i \(0.781022\pi\)
\(522\) −10.7445 43.4763i −0.470274 1.90291i
\(523\) −21.2770 + 36.8528i −0.930378 + 1.61146i −0.147702 + 0.989032i \(0.547188\pi\)
−0.782676 + 0.622430i \(0.786146\pi\)
\(524\) −5.36336 4.50039i −0.234299 0.196601i
\(525\) −24.2267 21.6653i −1.05734 0.945549i
\(526\) −7.50382 42.5563i −0.327182 1.85554i
\(527\) −10.1848 + 8.54606i −0.443657 + 0.372272i
\(528\) −32.4060 + 6.85312i −1.41029 + 0.298244i
\(529\) 4.12598 1.50173i 0.179390 0.0652928i
\(530\) −25.1219 + 43.5123i −1.09122 + 1.89005i
\(531\) −4.57890 18.5279i −0.198707 0.804044i
\(532\) −4.71920 6.43526i −0.204603 0.279004i
\(533\) −0.101959 + 0.0371101i −0.00441634 + 0.00160741i
\(534\) −0.426296 1.05827i −0.0184476 0.0457957i
\(535\) −4.29592 24.3634i −0.185729 1.05332i
\(536\) 5.21180 4.37322i 0.225116 0.188894i
\(537\) 0.144843 + 4.27435i 0.00625044 + 0.184452i
\(538\) −4.54207 + 25.7594i −0.195823 + 1.11056i
\(539\) −27.8064 + 6.16845i −1.19771 + 0.265694i
\(540\) −3.55884 7.35447i −0.153148 0.316486i
\(541\) −17.6681 30.6020i −0.759611 1.31568i −0.943049 0.332653i \(-0.892056\pi\)
0.183438 0.983031i \(-0.441277\pi\)
\(542\) 15.0068 + 12.5922i 0.644598 + 0.540882i
\(543\) −35.6059 18.9792i −1.52800 0.814475i
\(544\) 1.39262 + 7.89793i 0.0597080 + 0.338621i
\(545\) −35.9450 + 30.1614i −1.53972 + 1.29197i
\(546\) −0.377375 0.703960i −0.0161502 0.0301267i
\(547\) 6.10255 2.22115i 0.260926 0.0949694i −0.208245 0.978077i \(-0.566775\pi\)
0.469171 + 0.883107i \(0.344553\pi\)
\(548\) −6.88682 −0.294190
\(549\) 9.36414 + 6.83305i 0.399652 + 0.291627i
\(550\) −45.1898 −1.92690
\(551\) −11.0424 + 62.6245i −0.470421 + 2.66789i
\(552\) −5.61415 + 17.2180i −0.238954 + 0.732849i
\(553\) −1.60669 5.51091i −0.0683232 0.234348i
\(554\) 2.90421 + 16.4706i 0.123388 + 0.699768i
\(555\) 13.3453 + 14.8522i 0.566475 + 0.630443i
\(556\) 0.621699 0.226280i 0.0263659 0.00959641i
\(557\) 7.80661 0.330777 0.165388 0.986229i \(-0.447112\pi\)
0.165388 + 0.986229i \(0.447112\pi\)
\(558\) 8.61289 17.5668i 0.364613 0.743663i
\(559\) 0.409915 0.709993i 0.0173375 0.0300295i
\(560\) −35.9548 24.0207i −1.51937 1.01506i
\(561\) −8.40668 20.8693i −0.354930 0.881103i
\(562\) 16.5276 + 6.01556i 0.697176 + 0.253751i
\(563\) −29.0794 + 24.4005i −1.22555 + 1.02836i −0.227034 + 0.973887i \(0.572903\pi\)
−0.998515 + 0.0544708i \(0.982653\pi\)
\(564\) 0.151068 + 4.45805i 0.00636111 + 0.187718i
\(565\) 34.4636 12.5437i 1.44989 0.527718i
\(566\) −13.8399 −0.581734
\(567\) 1.66812 + 23.7533i 0.0700543 + 0.997543i
\(568\) 1.55552 0.0652682
\(569\) −1.14497 + 0.416735i −0.0479996 + 0.0174704i −0.365908 0.930651i \(-0.619242\pi\)
0.317909 + 0.948121i \(0.397019\pi\)
\(570\) 2.13075 + 62.8788i 0.0892472 + 2.63370i
\(571\) 14.5897 12.2422i 0.610558 0.512319i −0.284261 0.958747i \(-0.591748\pi\)
0.894820 + 0.446427i \(0.147304\pi\)
\(572\) −0.192433 0.0700400i −0.00804604 0.00292852i
\(573\) −12.2288 30.3576i −0.510865 1.26821i
\(574\) −3.62214 + 1.78654i −0.151185 + 0.0745688i
\(575\) −15.2975 + 26.4961i −0.637952 + 1.10496i
\(576\) 9.14145 + 13.6133i 0.380894 + 0.567222i
\(577\) 40.9761 1.70586 0.852928 0.522029i \(-0.174825\pi\)
0.852928 + 0.522029i \(0.174825\pi\)
\(578\) 10.0185 3.64643i 0.416714 0.151671i
\(579\) −4.53868 5.05120i −0.188621 0.209921i
\(580\) −2.60289 14.7617i −0.108079 0.612946i
\(581\) −24.6195 6.02260i −1.02139 0.249860i
\(582\) 8.85534 27.1584i 0.367066 1.12575i
\(583\) 6.51929 36.9727i 0.270001 1.53125i
\(584\) 2.01902 0.0835477
\(585\) −0.123760 + 1.15454i −0.00511683 + 0.0477345i
\(586\) −20.2589 −0.836888
\(587\) 9.19965 3.34840i 0.379710 0.138203i −0.145112 0.989415i \(-0.546354\pi\)
0.524822 + 0.851212i \(0.324132\pi\)
\(588\) −3.10112 4.52086i −0.127888 0.186437i
\(589\) −21.2810 + 17.8569i −0.876870 + 0.735781i
\(590\) −6.01560 34.1162i −0.247658 1.40454i
\(591\) −16.0515 8.55603i −0.660272 0.351948i
\(592\) 11.9355 + 10.0151i 0.490546 + 0.411617i
\(593\) −7.91173 13.7035i −0.324896 0.562736i 0.656595 0.754243i \(-0.271996\pi\)
−0.981491 + 0.191507i \(0.938663\pi\)
\(594\) 23.7446 + 23.0726i 0.974254 + 0.946678i
\(595\) 11.8275 26.8849i 0.484879 1.10217i
\(596\) 0.977462 5.54346i 0.0400384 0.227069i
\(597\) −0.642802 18.9692i −0.0263081 0.776359i
\(598\) −0.575982 + 0.483306i −0.0235537 + 0.0197639i
\(599\) 2.97735 + 16.8854i 0.121651 + 0.689918i 0.983241 + 0.182312i \(0.0583582\pi\)
−0.861589 + 0.507606i \(0.830531\pi\)
\(600\) 11.1253 + 27.6181i 0.454187 + 1.12750i
\(601\) 37.5176 13.6553i 1.53037 0.557010i 0.566660 0.823952i \(-0.308235\pi\)
0.963713 + 0.266941i \(0.0860130\pi\)
\(602\) 12.2885 27.9328i 0.500841 1.13845i
\(603\) −8.08984 2.33782i −0.329444 0.0952035i
\(604\) 0.340148 0.589154i 0.0138404 0.0239723i
\(605\) 18.1553 6.60800i 0.738119 0.268653i
\(606\) −22.3814 + 4.73316i −0.909183 + 0.192271i
\(607\) −27.7291 + 23.2675i −1.12549 + 0.944398i −0.998869 0.0475534i \(-0.984858\pi\)
−0.126621 + 0.991951i \(0.540413\pi\)
\(608\) 2.90986 + 16.5027i 0.118011 + 0.669271i
\(609\) −8.93753 + 42.7617i −0.362167 + 1.73279i
\(610\) 16.1186 + 13.5251i 0.652621 + 0.547614i
\(611\) 0.316970 0.549008i 0.0128232 0.0222105i
\(612\) 3.12136 3.00182i 0.126173 0.121342i
\(613\) −2.84968 4.93580i −0.115098 0.199355i 0.802721 0.596355i \(-0.203385\pi\)
−0.917819 + 0.397000i \(0.870051\pi\)
\(614\) 21.7296 + 18.2333i 0.876935 + 0.735836i
\(615\) 5.81338 + 0.823142i 0.234418 + 0.0331923i
\(616\) 25.3457 + 6.20026i 1.02121 + 0.249816i
\(617\) −9.77727 3.55864i −0.393618 0.143265i 0.137626 0.990484i \(-0.456053\pi\)
−0.531244 + 0.847219i \(0.678275\pi\)
\(618\) −0.488505 14.4159i −0.0196506 0.579892i
\(619\) −28.4956 23.9107i −1.14534 0.961051i −0.145735 0.989324i \(-0.546555\pi\)
−0.999600 + 0.0282731i \(0.990999\pi\)
\(620\) 3.27417 5.67103i 0.131494 0.227754i
\(621\) 21.5661 6.11171i 0.865417 0.245255i
\(622\) −28.4880 −1.14226
\(623\) −0.0727134 + 1.11054i −0.00291320 + 0.0444926i
\(624\) 0.0306861 + 0.905553i 0.00122843 + 0.0362511i
\(625\) −1.76439 10.0063i −0.0705755 0.400254i
\(626\) −9.01944 51.1518i −0.360489 2.04444i
\(627\) −17.5657 43.6062i −0.701506 1.74147i
\(628\) 2.43077 + 2.03966i 0.0969983 + 0.0813912i
\(629\) −5.29167 + 9.16544i −0.210993 + 0.365450i
\(630\) 0.102200 + 43.2214i 0.00407173 + 1.72198i
\(631\) 2.45359 + 4.24974i 0.0976759 + 0.169180i 0.910722 0.413019i \(-0.135526\pi\)
−0.813046 + 0.582199i \(0.802192\pi\)
\(632\) −0.913183 + 5.17892i −0.0363245 + 0.206006i
\(633\) 11.2210 + 12.4881i 0.445996 + 0.496359i
\(634\) 13.2634 + 4.82750i 0.526759 + 0.191724i
\(635\) 9.61692 8.06956i 0.381636 0.320231i
\(636\) 7.06989 1.49512i 0.280340 0.0592854i
\(637\) 0.0340901 + 0.778391i 0.00135070 + 0.0308410i
\(638\) 30.3705 + 52.6033i 1.20238 + 2.08259i
\(639\) −1.07331 1.59837i −0.0424596 0.0632304i
\(640\) 23.6177 + 40.9071i 0.933573 + 1.61700i
\(641\) −1.54675 + 8.77204i −0.0610929 + 0.346475i 0.938905 + 0.344178i \(0.111842\pi\)
−0.999997 + 0.00229706i \(0.999269\pi\)
\(642\) −11.8955 + 15.1932i −0.469478 + 0.599627i
\(643\) −20.7057 + 17.3741i −0.816553 + 0.685169i −0.952162 0.305593i \(-0.901145\pi\)
0.135609 + 0.990762i \(0.456701\pi\)
\(644\) −3.56849 + 3.72819i −0.140618 + 0.146911i
\(645\) −37.6464 + 23.4701i −1.48233 + 0.924132i
\(646\) −31.3362 + 11.4055i −1.23291 + 0.448742i
\(647\) −22.8442 + 39.5674i −0.898100 + 1.55555i −0.0681793 + 0.997673i \(0.521719\pi\)
−0.829921 + 0.557882i \(0.811614\pi\)
\(648\) 8.25528 20.1919i 0.324298 0.793214i
\(649\) 12.9428 + 22.4175i 0.508048 + 0.879965i
\(650\) −0.214659 + 1.21739i −0.00841961 + 0.0477500i
\(651\) −14.9989 + 11.8007i −0.587855 + 0.462508i
\(652\) −9.55326 3.47710i −0.374135 0.136174i
\(653\) 28.1735 + 10.2543i 1.10251 + 0.401282i 0.828242 0.560371i \(-0.189341\pi\)
0.274271 + 0.961653i \(0.411564\pi\)
\(654\) 36.2373 + 5.13099i 1.41699 + 0.200638i
\(655\) 9.34990 53.0259i 0.365331 2.07189i
\(656\) 4.58154 0.178879
\(657\) −1.39313 2.07463i −0.0543512 0.0809392i
\(658\) 9.50216 21.5992i 0.370433 0.842026i
\(659\) −4.49499 3.77174i −0.175100 0.146926i 0.551026 0.834488i \(-0.314237\pi\)
−0.726126 + 0.687562i \(0.758681\pi\)
\(660\) 7.40638 + 8.24273i 0.288293 + 0.320848i
\(661\) 21.4794 + 7.81787i 0.835453 + 0.304080i 0.724095 0.689700i \(-0.242258\pi\)
0.111358 + 0.993780i \(0.464480\pi\)
\(662\) −35.0716 12.7650i −1.36310 0.496127i
\(663\) −0.602141 + 0.127339i −0.0233852 + 0.00494544i
\(664\) 17.7870 + 14.9251i 0.690271 + 0.579206i
\(665\) 24.7134 56.1757i 0.958345 2.17840i
\(666\) 1.65991 15.4852i 0.0643201 0.600038i
\(667\) 41.1238 1.59232
\(668\) 0.0716404 0.406293i 0.00277185 0.0157199i
\(669\) −10.6649 26.4752i −0.412328 1.02359i
\(670\) −14.3632 5.22777i −0.554899 0.201967i
\(671\) −14.7743 5.37740i −0.570354 0.207592i
\(672\) 1.64088 + 11.3944i 0.0632981 + 0.439549i
\(673\) −1.92608 + 10.9233i −0.0742449 + 0.421064i 0.924918 + 0.380166i \(0.124133\pi\)
−0.999163 + 0.0408981i \(0.986978\pi\)
\(674\) −10.4397 18.0821i −0.402122 0.696496i
\(675\) 20.7024 30.4883i 0.796834 1.17349i
\(676\) 2.93630 5.08582i 0.112935 0.195608i
\(677\) 42.8729 15.6045i 1.64774 0.599728i 0.659372 0.751816i \(-0.270822\pi\)
0.988367 + 0.152088i \(0.0485998\pi\)
\(678\) −25.2437 13.4558i −0.969477 0.516765i
\(679\) −19.2676 + 20.1299i −0.739423 + 0.772515i
\(680\) −20.6125 + 17.2959i −0.790452 + 0.663268i
\(681\) 1.66904 + 4.14332i 0.0639576 + 0.158773i
\(682\) −4.60786 + 26.1325i −0.176444 + 1.00066i
\(683\) 4.41005 + 7.63842i 0.168746 + 0.292276i 0.937979 0.346692i \(-0.112695\pi\)
−0.769233 + 0.638968i \(0.779362\pi\)
\(684\) 6.52205 6.27228i 0.249377 0.239827i
\(685\) −26.4815 45.8673i −1.01181 1.75250i
\(686\) 4.41760 + 28.6632i 0.168665 + 1.09437i
\(687\) −1.36623 1.52051i −0.0521249 0.0580110i
\(688\) −26.5185 + 22.2517i −1.01101 + 0.848336i
\(689\) −0.965058 0.351252i −0.0367658 0.0133816i
\(690\) 39.8065 8.41817i 1.51541 0.320474i
\(691\) −2.04360 + 11.5898i −0.0777423 + 0.440898i 0.920946 + 0.389691i \(0.127418\pi\)
−0.998688 + 0.0512076i \(0.983693\pi\)
\(692\) −0.618104 1.07059i −0.0234968 0.0406976i
\(693\) −11.1176 30.3221i −0.422323 1.15184i
\(694\) 20.0029 34.6460i 0.759300 1.31515i
\(695\) 3.89764 + 3.27051i 0.147846 + 0.124058i
\(696\) 24.6720 31.5116i 0.935190 1.19444i
\(697\) 0.540402 + 3.06477i 0.0204692 + 0.116087i
\(698\) −0.486834 2.76097i −0.0184269 0.104504i
\(699\) 31.2506 + 16.6577i 1.18201 + 0.630051i
\(700\) −0.554358 + 8.46659i −0.0209528 + 0.320007i
\(701\) 26.9258 1.01698 0.508488 0.861069i \(-0.330205\pi\)
0.508488 + 0.861069i \(0.330205\pi\)
\(702\) 0.734353 0.530070i 0.0277164 0.0200062i
\(703\) −11.0569 + 19.1511i −0.417019 + 0.722298i
\(704\) −17.0372 14.2959i −0.642112 0.538796i
\(705\) −29.1104 + 18.1484i −1.09636 + 0.683509i
\(706\) −2.66981 0.971731i −0.100480 0.0365716i
\(707\) 21.6761 + 5.30256i 0.815212 + 0.199423i
\(708\) −3.07154 + 3.92303i −0.115436 + 0.147437i
\(709\) −0.959978 0.805517i −0.0360527 0.0302518i 0.624583 0.780958i \(-0.285269\pi\)
−0.660636 + 0.750706i \(0.729713\pi\)
\(710\) −1.74734 3.02648i −0.0655764 0.113582i
\(711\) 5.95167 2.63513i 0.223205 0.0988253i
\(712\) 0.509778 0.882961i 0.0191047 0.0330904i
\(713\) 13.7624 + 11.5480i 0.515405 + 0.432477i
\(714\) −21.7636 + 7.15328i −0.814484 + 0.267705i
\(715\) −0.273476 1.55096i −0.0102274 0.0580025i
\(716\) 0.855291 0.717674i 0.0319637 0.0268207i
\(717\) 4.30921 13.2159i 0.160930 0.493557i
\(718\) 22.8938 8.33266i 0.854389 0.310972i
\(719\) 21.1406 36.6166i 0.788411 1.36557i −0.138528 0.990358i \(-0.544237\pi\)
0.926940 0.375210i \(-0.122429\pi\)
\(720\) 21.5844 44.0235i 0.804402 1.64066i
\(721\) −5.66591 + 12.8791i −0.211010 + 0.479643i
\(722\) −37.5183 + 13.6555i −1.39629 + 0.508206i
\(723\) 20.2252 25.8320i 0.752182 0.960702i
\(724\) 1.82910 + 10.3733i 0.0679778 + 0.385521i
\(725\) 51.7930 43.4595i 1.92354 1.61404i
\(726\) −13.2983 7.08845i −0.493546 0.263077i
\(727\) −0.858198 + 4.86709i −0.0318288 + 0.180510i −0.996578 0.0826623i \(-0.973658\pi\)
0.964749 + 0.263172i \(0.0847688\pi\)
\(728\) 0.287428 0.653349i 0.0106528 0.0242147i
\(729\) −26.4443 + 5.44982i −0.979417 + 0.201845i
\(730\) −2.26799 3.92828i −0.0839422 0.145392i
\(731\) −18.0129 15.1146i −0.666232 0.559035i
\(732\) −0.102490 3.02451i −0.00378815 0.111789i
\(733\) 5.75297 + 32.6267i 0.212491 + 1.20510i 0.885208 + 0.465196i \(0.154016\pi\)
−0.672717 + 0.739900i \(0.734873\pi\)
\(734\) 28.4879 23.9042i 1.05151 0.882319i
\(735\) 18.1851 38.0378i 0.670766 1.40304i
\(736\) 10.1833 3.70642i 0.375362 0.136621i
\(737\) 11.4212 0.420707
\(738\) −2.55299 3.80188i −0.0939769 0.139949i
\(739\) 32.2809 1.18747 0.593736 0.804660i \(-0.297652\pi\)
0.593736 + 0.804660i \(0.297652\pi\)
\(740\) 0.905161 5.13342i 0.0332744 0.188708i
\(741\) −1.25817 + 0.266074i −0.0462200 + 0.00977447i
\(742\) −37.1326 9.08365i −1.36318 0.333471i
\(743\) −5.25887 29.8245i −0.192929 1.09416i −0.915337 0.402689i \(-0.868076\pi\)
0.722408 0.691467i \(-0.243035\pi\)
\(744\) 17.1055 3.61741i 0.627116 0.132621i
\(745\) 40.6789 14.8059i 1.49036 0.542446i
\(746\) 31.6959 1.16047
\(747\) 3.06309 28.5753i 0.112073 1.04552i
\(748\) −2.93678 + 5.08665i −0.107379 + 0.185986i
\(749\) 16.8809 8.32617i 0.616816 0.304232i
\(750\) 12.1655 15.5381i 0.444223 0.567370i
\(751\) −11.5075 4.18837i −0.419913 0.152836i 0.123417 0.992355i \(-0.460615\pi\)
−0.543330 + 0.839519i \(0.682837\pi\)
\(752\) −20.5056 + 17.2063i −0.747764 + 0.627448i
\(753\) 29.1107 + 15.5170i 1.06085 + 0.565472i
\(754\) 1.56137 0.568293i 0.0568618 0.0206960i
\(755\) 5.23181 0.190405
\(756\) 4.61407 4.16566i 0.167812 0.151504i
\(757\) −1.90478 −0.0692306 −0.0346153 0.999401i \(-0.511021\pi\)
−0.0346153 + 0.999401i \(0.511021\pi\)
\(758\) −12.9142 + 4.70038i −0.469064 + 0.170725i
\(759\) −25.7990 + 16.0840i −0.936445 + 0.583812i
\(760\) −43.0696 + 36.1397i −1.56230 + 1.31092i
\(761\) −18.4040 6.69851i −0.667145 0.242821i −0.0138268 0.999904i \(-0.504401\pi\)
−0.653318 + 0.757084i \(0.726624\pi\)
\(762\) −9.69511 1.37277i −0.351217 0.0497303i
\(763\) −29.6855 19.8324i −1.07469 0.717980i
\(764\) −4.27199 + 7.39931i −0.154555 + 0.267698i
\(765\) 31.9950 + 9.24599i 1.15678 + 0.334290i
\(766\) −3.69843 −0.133630
\(767\) 0.665396 0.242185i 0.0240261 0.00874478i