Properties

Label 189.2.w.a.25.2
Level $189$
Weight $2$
Character 189.25
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(25,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 25.2
Character \(\chi\) \(=\) 189.25
Dual form 189.2.w.a.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28724 + 0.832486i) q^{2} +(1.36942 - 1.06052i) q^{3} +(3.00633 - 2.52261i) q^{4} +(4.14290 + 1.50789i) q^{5} +(-2.24932 + 3.56567i) q^{6} +(-1.33708 - 2.28303i) q^{7} +(-2.34212 + 4.05668i) q^{8} +(0.750612 - 2.90458i) q^{9} +O(q^{10})\) \(q+(-2.28724 + 0.832486i) q^{2} +(1.36942 - 1.06052i) q^{3} +(3.00633 - 2.52261i) q^{4} +(4.14290 + 1.50789i) q^{5} +(-2.24932 + 3.56567i) q^{6} +(-1.33708 - 2.28303i) q^{7} +(-2.34212 + 4.05668i) q^{8} +(0.750612 - 2.90458i) q^{9} -10.7311 q^{10} +(-1.59639 + 0.581040i) q^{11} +(1.44165 - 6.64277i) q^{12} +(-0.287177 - 1.62866i) q^{13} +(4.95882 + 4.10872i) q^{14} +(7.27250 - 2.32867i) q^{15} +(0.616906 - 3.49865i) q^{16} -2.01514 q^{17} +(0.701196 + 7.26834i) q^{18} +1.22715 q^{19} +(16.2587 - 5.91770i) q^{20} +(-4.25221 - 1.70842i) q^{21} +(3.16762 - 2.65795i) q^{22} +(0.431306 + 2.44606i) q^{23} +(1.09483 + 8.03915i) q^{24} +(11.0596 + 9.28013i) q^{25} +(2.01268 + 3.48607i) q^{26} +(-2.05245 - 4.77362i) q^{27} +(-9.77890 - 3.49058i) q^{28} +(-0.830069 + 4.70756i) q^{29} +(-14.6953 + 11.3805i) q^{30} +(1.60479 - 1.34658i) q^{31} +(-0.125258 - 0.710375i) q^{32} +(-1.56993 + 2.48869i) q^{33} +(4.60910 - 1.67757i) q^{34} +(-2.09685 - 11.4745i) q^{35} +(-5.07054 - 10.6256i) q^{36} +(0.0522030 - 0.0904182i) q^{37} +(-2.80678 + 1.02159i) q^{38} +(-2.12049 - 1.92577i) q^{39} +(-15.8202 + 13.2747i) q^{40} +(0.326280 + 1.85043i) q^{41} +(11.1481 + 0.367645i) q^{42} +(-0.0669255 - 0.0561572i) q^{43} +(-3.33355 + 5.77388i) q^{44} +(7.48949 - 10.9015i) q^{45} +(-3.02281 - 5.23566i) q^{46} +(-7.40942 - 6.21724i) q^{47} +(-2.86557 - 5.44535i) q^{48} +(-3.42441 + 6.10520i) q^{49} +(-33.0216 - 12.0189i) q^{50} +(-2.75957 + 2.13709i) q^{51} +(-4.97184 - 4.17187i) q^{52} +(-3.79066 + 6.56561i) q^{53} +(8.66842 + 9.20976i) q^{54} -7.48984 q^{55} +(12.3931 - 0.0769934i) q^{56} +(1.68048 - 1.30141i) q^{57} +(-2.02041 - 11.4583i) q^{58} +(1.59815 + 9.06357i) q^{59} +(15.9892 - 25.3464i) q^{60} +(5.49388 + 4.60992i) q^{61} +(-2.54952 + 4.41590i) q^{62} +(-7.63486 + 2.17000i) q^{63} +(4.43049 + 7.67384i) q^{64} +(1.26610 - 7.18042i) q^{65} +(1.51900 - 6.99916i) q^{66} +(-0.479340 - 0.174466i) q^{67} +(-6.05817 + 5.08341i) q^{68} +(3.18472 + 2.89227i) q^{69} +(14.3484 + 24.4993i) q^{70} +(-1.19676 - 2.07284i) q^{71} +(10.0249 + 9.84788i) q^{72} +(2.85081 + 4.93775i) q^{73} +(-0.0441287 + 0.250266i) q^{74} +(24.9870 + 0.979465i) q^{75} +(3.68922 - 3.09562i) q^{76} +(3.46104 + 2.86771i) q^{77} +(6.45324 + 2.63940i) q^{78} +(-9.96570 + 3.62722i) q^{79} +(7.83135 - 13.5643i) q^{80} +(-7.87316 - 4.36042i) q^{81} +(-2.28673 - 3.96074i) q^{82} +(1.58757 - 9.00355i) q^{83} +(-17.0932 + 5.59061i) q^{84} +(-8.34850 - 3.03861i) q^{85} +(0.199825 + 0.0727302i) q^{86} +(3.85573 + 7.32691i) q^{87} +(1.38186 - 7.83693i) q^{88} -8.73494 q^{89} +(-8.05487 + 31.1693i) q^{90} +(-3.33430 + 2.83330i) q^{91} +(7.46710 + 6.26564i) q^{92} +(0.769559 - 3.54593i) q^{93} +(22.1229 + 8.05207i) q^{94} +(5.08396 + 1.85041i) q^{95} +(-0.924896 - 0.839962i) q^{96} +(-10.7707 - 9.03773i) q^{97} +(2.74994 - 16.8148i) q^{98} +(0.489405 + 5.07299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 3 q^{11} - 3 q^{12} - 12 q^{13} + 15 q^{14} - 9 q^{16} - 54 q^{17} - 3 q^{18} - 6 q^{19} - 18 q^{20} - 21 q^{21} - 12 q^{22} + 45 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 57 q^{30} - 3 q^{31} + 51 q^{32} + 15 q^{33} - 18 q^{34} - 12 q^{35} - 60 q^{36} + 3 q^{37} - 57 q^{38} - 66 q^{39} - 66 q^{40} + 33 q^{42} - 12 q^{43} + 3 q^{44} + 33 q^{45} + 3 q^{46} - 21 q^{47} + 90 q^{48} + 12 q^{49} - 39 q^{50} - 48 q^{51} + 9 q^{52} + 9 q^{53} - 63 q^{54} - 24 q^{55} + 57 q^{56} - 18 q^{57} - 3 q^{58} - 18 q^{59} + 81 q^{60} + 33 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} + 81 q^{65} + 69 q^{66} - 3 q^{67} + 6 q^{68} - 6 q^{69} - 42 q^{70} - 18 q^{71} - 105 q^{72} + 21 q^{73} - 93 q^{74} + 18 q^{75} - 24 q^{76} + 87 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} + 39 q^{81} - 6 q^{82} - 42 q^{83} - 36 q^{84} - 63 q^{85} + 159 q^{86} + 30 q^{87} + 57 q^{88} - 150 q^{89} - 39 q^{90} + 6 q^{91} - 66 q^{92} - 27 q^{93} + 33 q^{94} - 147 q^{95} + 81 q^{96} - 12 q^{97} + 99 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28724 + 0.832486i −1.61732 + 0.588657i −0.982869 0.184306i \(-0.940996\pi\)
−0.634452 + 0.772962i \(0.718774\pi\)
\(3\) 1.36942 1.06052i 0.790634 0.612289i
\(4\) 3.00633 2.52261i 1.50317 1.26131i
\(5\) 4.14290 + 1.50789i 1.85276 + 0.674349i 0.983747 + 0.179557i \(0.0574666\pi\)
0.869012 + 0.494792i \(0.164756\pi\)
\(6\) −2.24932 + 3.56567i −0.918280 + 1.45568i
\(7\) −1.33708 2.28303i −0.505371 0.862902i
\(8\) −2.34212 + 4.05668i −0.828066 + 1.43425i
\(9\) 0.750612 2.90458i 0.250204 0.968193i
\(10\) −10.7311 −3.39347
\(11\) −1.59639 + 0.581040i −0.481331 + 0.175190i −0.571278 0.820756i \(-0.693552\pi\)
0.0899475 + 0.995947i \(0.471330\pi\)
\(12\) 1.44165 6.64277i 0.416170 1.91760i
\(13\) −0.287177 1.62866i −0.0796487 0.451710i −0.998384 0.0568352i \(-0.981899\pi\)
0.918735 0.394875i \(-0.129212\pi\)
\(14\) 4.95882 + 4.10872i 1.32530 + 1.09810i
\(15\) 7.27250 2.32867i 1.87775 0.601261i
\(16\) 0.616906 3.49865i 0.154226 0.874661i
\(17\) −2.01514 −0.488743 −0.244371 0.969682i \(-0.578582\pi\)
−0.244371 + 0.969682i \(0.578582\pi\)
\(18\) 0.701196 + 7.26834i 0.165273 + 1.71316i
\(19\) 1.22715 0.281528 0.140764 0.990043i \(-0.455044\pi\)
0.140764 + 0.990043i \(0.455044\pi\)
\(20\) 16.2587 5.91770i 3.63556 1.32324i
\(21\) −4.25221 1.70842i −0.927909 0.372807i
\(22\) 3.16762 2.65795i 0.675340 0.566677i
\(23\) 0.431306 + 2.44606i 0.0899335 + 0.510038i 0.996183 + 0.0872940i \(0.0278220\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(24\) 1.09483 + 8.03915i 0.223480 + 1.64098i
\(25\) 11.0596 + 9.28013i 2.21193 + 1.85603i
\(26\) 2.01268 + 3.48607i 0.394720 + 0.683675i
\(27\) −2.05245 4.77362i −0.394995 0.918683i
\(28\) −9.77890 3.49058i −1.84804 0.659658i
\(29\) −0.830069 + 4.70756i −0.154140 + 0.874171i 0.805428 + 0.592694i \(0.201936\pi\)
−0.959568 + 0.281477i \(0.909176\pi\)
\(30\) −14.6953 + 11.3805i −2.68299 + 2.07778i
\(31\) 1.60479 1.34658i 0.288228 0.241852i −0.487196 0.873293i \(-0.661980\pi\)
0.775425 + 0.631440i \(0.217536\pi\)
\(32\) −0.125258 0.710375i −0.0221428 0.125578i
\(33\) −1.56993 + 2.48869i −0.273289 + 0.433225i
\(34\) 4.60910 1.67757i 0.790454 0.287702i
\(35\) −2.09685 11.4745i −0.354432 1.93955i
\(36\) −5.07054 10.6256i −0.845090 1.77094i
\(37\) 0.0522030 0.0904182i 0.00858212 0.0148647i −0.861702 0.507414i \(-0.830602\pi\)
0.870285 + 0.492549i \(0.163935\pi\)
\(38\) −2.80678 + 1.02159i −0.455321 + 0.165723i
\(39\) −2.12049 1.92577i −0.339550 0.308369i
\(40\) −15.8202 + 13.2747i −2.50139 + 2.09892i
\(41\) 0.326280 + 1.85043i 0.0509564 + 0.288988i 0.999628 0.0272749i \(-0.00868294\pi\)
−0.948672 + 0.316263i \(0.897572\pi\)
\(42\) 11.1481 + 0.367645i 1.72018 + 0.0567288i
\(43\) −0.0669255 0.0561572i −0.0102060 0.00856389i 0.637670 0.770309i \(-0.279898\pi\)
−0.647876 + 0.761745i \(0.724343\pi\)
\(44\) −3.33355 + 5.77388i −0.502552 + 0.870445i
\(45\) 7.48949 10.9015i 1.11647 1.62510i
\(46\) −3.02281 5.23566i −0.445689 0.771955i
\(47\) −7.40942 6.21724i −1.08078 0.906878i −0.0847902 0.996399i \(-0.527022\pi\)
−0.995985 + 0.0895208i \(0.971466\pi\)
\(48\) −2.86557 5.44535i −0.413609 0.785968i
\(49\) −3.42441 + 6.10520i −0.489201 + 0.872171i
\(50\) −33.0216 12.0189i −4.66995 1.69972i
\(51\) −2.75957 + 2.13709i −0.386417 + 0.299252i
\(52\) −4.97184 4.17187i −0.689470 0.578534i
\(53\) −3.79066 + 6.56561i −0.520687 + 0.901857i 0.479024 + 0.877802i \(0.340991\pi\)
−0.999711 + 0.0240545i \(0.992342\pi\)
\(54\) 8.66842 + 9.20976i 1.17962 + 1.25329i
\(55\) −7.48984 −1.00993
\(56\) 12.3931 0.0769934i 1.65610 0.0102887i
\(57\) 1.68048 1.30141i 0.222585 0.172376i
\(58\) −2.02041 11.4583i −0.265293 1.50455i
\(59\) 1.59815 + 9.06357i 0.208062 + 1.17998i 0.892549 + 0.450951i \(0.148915\pi\)
−0.684487 + 0.729025i \(0.739974\pi\)
\(60\) 15.9892 25.3464i 2.06420 3.27221i
\(61\) 5.49388 + 4.60992i 0.703420 + 0.590239i 0.922744 0.385413i \(-0.125941\pi\)
−0.219325 + 0.975652i \(0.570385\pi\)
\(62\) −2.54952 + 4.41590i −0.323790 + 0.560820i
\(63\) −7.63486 + 2.17000i −0.961902 + 0.273395i
\(64\) 4.43049 + 7.67384i 0.553811 + 0.959229i
\(65\) 1.26610 7.18042i 0.157041 0.890621i
\(66\) 1.51900 6.99916i 0.186976 0.861537i
\(67\) −0.479340 0.174466i −0.0585607 0.0213144i 0.312574 0.949894i \(-0.398809\pi\)
−0.371134 + 0.928579i \(0.621031\pi\)
\(68\) −6.05817 + 5.08341i −0.734661 + 0.616454i
\(69\) 3.18472 + 2.89227i 0.383395 + 0.348188i
\(70\) 14.3484 + 24.4993i 1.71496 + 2.92823i
\(71\) −1.19676 2.07284i −0.142029 0.246001i 0.786232 0.617932i \(-0.212029\pi\)
−0.928261 + 0.371931i \(0.878696\pi\)
\(72\) 10.0249 + 9.84788i 1.18145 + 1.16058i
\(73\) 2.85081 + 4.93775i 0.333662 + 0.577920i 0.983227 0.182386i \(-0.0583822\pi\)
−0.649565 + 0.760306i \(0.725049\pi\)
\(74\) −0.0441287 + 0.250266i −0.00512985 + 0.0290928i
\(75\) 24.9870 + 0.979465i 2.88525 + 0.113099i
\(76\) 3.68922 3.09562i 0.423183 0.355092i
\(77\) 3.46104 + 2.86771i 0.394422 + 0.326806i
\(78\) 6.45324 + 2.63940i 0.730685 + 0.298854i
\(79\) −9.96570 + 3.62722i −1.12123 + 0.408094i −0.835100 0.550098i \(-0.814591\pi\)
−0.286128 + 0.958191i \(0.592368\pi\)
\(80\) 7.83135 13.5643i 0.875571 1.51653i
\(81\) −7.87316 4.36042i −0.874796 0.484491i
\(82\) −2.28673 3.96074i −0.252528 0.437391i
\(83\) 1.58757 9.00355i 0.174258 0.988268i −0.764738 0.644341i \(-0.777132\pi\)
0.938996 0.343927i \(-0.111757\pi\)
\(84\) −17.0932 + 5.59061i −1.86502 + 0.609986i
\(85\) −8.34850 3.03861i −0.905522 0.329583i
\(86\) 0.199825 + 0.0727302i 0.0215476 + 0.00784270i
\(87\) 3.85573 + 7.32691i 0.413377 + 0.785528i
\(88\) 1.38186 7.83693i 0.147307 0.835419i
\(89\) −8.73494 −0.925902 −0.462951 0.886384i \(-0.653209\pi\)
−0.462951 + 0.886384i \(0.653209\pi\)
\(90\) −8.05487 + 31.1693i −0.849058 + 3.28553i
\(91\) −3.33430 + 2.83330i −0.349530 + 0.297010i
\(92\) 7.46710 + 6.26564i 0.778499 + 0.653238i
\(93\) 0.769559 3.54593i 0.0797996 0.367696i
\(94\) 22.1229 + 8.05207i 2.28180 + 0.830507i
\(95\) 5.08396 + 1.85041i 0.521603 + 0.189848i
\(96\) −0.924896 0.839962i −0.0943968 0.0857283i
\(97\) −10.7707 9.03773i −1.09360 0.917642i −0.0966250 0.995321i \(-0.530805\pi\)
−0.996978 + 0.0776786i \(0.975249\pi\)
\(98\) 2.74994 16.8148i 0.277786 1.69855i
\(99\) 0.489405 + 5.07299i 0.0491870 + 0.509854i
\(100\) 56.6590 5.66590
\(101\) −0.279180 + 1.58331i −0.0277795 + 0.157545i −0.995542 0.0943192i \(-0.969933\pi\)
0.967763 + 0.251864i \(0.0810437\pi\)
\(102\) 4.53269 7.18532i 0.448803 0.711453i
\(103\) −11.4443 4.16538i −1.12764 0.410427i −0.290205 0.956964i \(-0.593724\pi\)
−0.837435 + 0.546537i \(0.815946\pi\)
\(104\) 7.27957 + 2.64955i 0.713821 + 0.259810i
\(105\) −15.0404 13.4897i −1.46779 1.31646i
\(106\) 3.20435 18.1728i 0.311234 1.76510i
\(107\) 2.97716 + 5.15660i 0.287813 + 0.498507i 0.973288 0.229590i \(-0.0737384\pi\)
−0.685474 + 0.728097i \(0.740405\pi\)
\(108\) −18.2123 9.17354i −1.75248 0.882724i
\(109\) 7.62851 13.2130i 0.730679 1.26557i −0.225915 0.974147i \(-0.572537\pi\)
0.956594 0.291426i \(-0.0941296\pi\)
\(110\) 17.1310 6.23519i 1.63338 0.594502i
\(111\) −0.0244023 0.179182i −0.00231616 0.0170072i
\(112\) −8.81235 + 3.26957i −0.832689 + 0.308946i
\(113\) 11.1903 9.38981i 1.05270 0.883319i 0.0593243 0.998239i \(-0.481105\pi\)
0.993375 + 0.114919i \(0.0366610\pi\)
\(114\) −2.76025 + 4.37562i −0.258521 + 0.409814i
\(115\) −1.90153 + 10.7841i −0.177319 + 1.00562i
\(116\) 9.37987 + 16.2464i 0.870899 + 1.50844i
\(117\) −4.94614 0.388365i −0.457271 0.0359043i
\(118\) −11.2006 19.4001i −1.03110 1.78592i
\(119\) 2.69441 + 4.60061i 0.246996 + 0.421737i
\(120\) −7.58641 + 34.9562i −0.692542 + 3.19105i
\(121\) −6.21562 + 5.21553i −0.565057 + 0.474139i
\(122\) −16.4035 5.97039i −1.48510 0.540533i
\(123\) 2.40922 + 2.18798i 0.217232 + 0.197284i
\(124\) 1.42763 8.09651i 0.128205 0.727088i
\(125\) 20.8035 + 36.0327i 1.86072 + 3.22287i
\(126\) 15.6562 11.3192i 1.39477 1.00840i
\(127\) −1.82647 + 3.16354i −0.162073 + 0.280719i −0.935612 0.353030i \(-0.885151\pi\)
0.773539 + 0.633749i \(0.218485\pi\)
\(128\) −15.4168 12.9362i −1.36267 1.14341i
\(129\) −0.151205 0.00592707i −0.0133128 0.000521850i
\(130\) 3.08172 + 17.4773i 0.270285 + 1.53286i
\(131\) −1.76067 9.98525i −0.153830 0.872415i −0.959847 0.280523i \(-0.909492\pi\)
0.806017 0.591892i \(-0.201619\pi\)
\(132\) 1.55827 + 11.4421i 0.135630 + 0.995910i
\(133\) −1.64080 2.80162i −0.142276 0.242931i
\(134\) 1.24160 0.107258
\(135\) −1.30500 22.8715i −0.112316 1.96846i
\(136\) 4.71970 8.17477i 0.404711 0.700981i
\(137\) −6.15379 5.16364i −0.525754 0.441160i 0.340878 0.940107i \(-0.389276\pi\)
−0.866632 + 0.498948i \(0.833720\pi\)
\(138\) −9.69198 3.96407i −0.825036 0.337444i
\(139\) 18.3985 + 6.69650i 1.56054 + 0.567990i 0.970860 0.239647i \(-0.0770318\pi\)
0.589680 + 0.807637i \(0.299254\pi\)
\(140\) −35.2496 29.2066i −2.97913 2.46841i
\(141\) −16.7401 0.656195i −1.40977 0.0552616i
\(142\) 4.46288 + 3.74480i 0.374517 + 0.314257i
\(143\) 1.40477 + 2.43313i 0.117473 + 0.203468i
\(144\) −9.69904 4.41798i −0.808253 0.368165i
\(145\) −10.5374 + 18.2513i −0.875081 + 1.51568i
\(146\) −10.6311 8.92054i −0.879835 0.738269i
\(147\) 1.78521 + 11.9922i 0.147242 + 0.989101i
\(148\) −0.0711505 0.403515i −0.00584854 0.0331687i
\(149\) 3.72623 3.12668i 0.305264 0.256147i −0.477267 0.878758i \(-0.658373\pi\)
0.782531 + 0.622611i \(0.213928\pi\)
\(150\) −57.9665 + 18.5610i −4.73295 + 1.51550i
\(151\) −7.16669 + 2.60846i −0.583217 + 0.212274i −0.616744 0.787164i \(-0.711548\pi\)
0.0335263 + 0.999438i \(0.489326\pi\)
\(152\) −2.87414 + 4.97816i −0.233124 + 0.403782i
\(153\) −1.51259 + 5.85313i −0.122285 + 0.473197i
\(154\) −10.3036 3.67786i −0.830284 0.296370i
\(155\) 8.67896 3.15888i 0.697111 0.253728i
\(156\) −11.2329 0.440317i −0.899348 0.0352536i
\(157\) 1.49158 + 8.45920i 0.119041 + 0.675117i 0.984670 + 0.174430i \(0.0558083\pi\)
−0.865628 + 0.500687i \(0.833081\pi\)
\(158\) 19.7743 16.5926i 1.57316 1.32004i
\(159\) 1.77194 + 13.0111i 0.140524 + 1.03185i
\(160\) 0.552236 3.13189i 0.0436581 0.247597i
\(161\) 5.00772 4.25527i 0.394663 0.335362i
\(162\) 21.6378 + 3.41902i 1.70002 + 0.268623i
\(163\) −7.99629 13.8500i −0.626318 1.08481i −0.988284 0.152623i \(-0.951228\pi\)
0.361967 0.932191i \(-0.382105\pi\)
\(164\) 5.64881 + 4.73992i 0.441098 + 0.370125i
\(165\) −10.2567 + 7.94309i −0.798484 + 0.618369i
\(166\) 3.86419 + 21.9149i 0.299919 + 1.70092i
\(167\) −9.70167 + 8.14067i −0.750738 + 0.629944i −0.935698 0.352802i \(-0.885229\pi\)
0.184960 + 0.982746i \(0.440784\pi\)
\(168\) 16.8897 13.2485i 1.30307 1.02215i
\(169\) 9.64593 3.51083i 0.741994 0.270064i
\(170\) 21.6246 1.65853
\(171\) 0.921114 3.56436i 0.0704393 0.272573i
\(172\) −0.342863 −0.0261431
\(173\) −2.14265 + 12.1516i −0.162903 + 0.923867i 0.788298 + 0.615294i \(0.210963\pi\)
−0.951201 + 0.308573i \(0.900149\pi\)
\(174\) −14.9185 13.5486i −1.13097 1.02711i
\(175\) 6.39911 37.6577i 0.483727 2.84666i
\(176\) 1.04803 + 5.94366i 0.0789981 + 0.448020i
\(177\) 11.8006 + 10.7169i 0.886987 + 0.805535i
\(178\) 19.9789 7.27172i 1.49748 0.545038i
\(179\) −19.8073 −1.48047 −0.740235 0.672348i \(-0.765286\pi\)
−0.740235 + 0.672348i \(0.765286\pi\)
\(180\) −4.98442 51.6667i −0.371517 3.85101i
\(181\) −5.38722 + 9.33094i −0.400429 + 0.693564i −0.993778 0.111382i \(-0.964472\pi\)
0.593349 + 0.804946i \(0.297806\pi\)
\(182\) 5.26766 9.25618i 0.390465 0.686113i
\(183\) 12.4123 + 0.486550i 0.917545 + 0.0359668i
\(184\) −10.9330 3.97930i −0.805994 0.293358i
\(185\) 0.352612 0.295877i 0.0259246 0.0217533i
\(186\) 1.19177 + 8.75103i 0.0873851 + 0.641657i
\(187\) 3.21695 1.17088i 0.235247 0.0856229i
\(188\) −37.9589 −2.76843
\(189\) −8.15399 + 11.0685i −0.593116 + 0.805117i
\(190\) −13.1687 −0.955355
\(191\) 0.689206 0.250851i 0.0498692 0.0181509i −0.316965 0.948437i \(-0.602664\pi\)
0.366834 + 0.930286i \(0.380442\pi\)
\(192\) 14.2054 + 5.81008i 1.02519 + 0.419307i
\(193\) −0.230517 + 0.193427i −0.0165930 + 0.0139232i −0.651046 0.759038i \(-0.725670\pi\)
0.634453 + 0.772961i \(0.281225\pi\)
\(194\) 32.1590 + 11.7049i 2.30888 + 0.840365i
\(195\) −5.88113 11.1757i −0.421156 0.800310i
\(196\) 5.10613 + 26.9927i 0.364724 + 1.92805i
\(197\) 0.0823022 0.142552i 0.00586379 0.0101564i −0.863079 0.505070i \(-0.831467\pi\)
0.868942 + 0.494913i \(0.164800\pi\)
\(198\) −5.34258 11.1957i −0.379680 0.795644i
\(199\) 21.0232 1.49029 0.745147 0.666900i \(-0.232379\pi\)
0.745147 + 0.666900i \(0.232379\pi\)
\(200\) −63.5495 + 23.1301i −4.49363 + 1.63555i
\(201\) −0.841440 + 0.269432i −0.0593506 + 0.0190042i
\(202\) −0.679532 3.85382i −0.0478117 0.271154i
\(203\) 11.8573 4.39933i 0.832222 0.308773i
\(204\) −2.90513 + 13.3861i −0.203400 + 0.937214i
\(205\) −1.43850 + 8.15812i −0.100469 + 0.569788i
\(206\) 29.6434 2.06536
\(207\) 7.42851 + 0.583277i 0.516317 + 0.0405405i
\(208\) −5.87528 −0.407377
\(209\) −1.95902 + 0.713024i −0.135508 + 0.0493209i
\(210\) 45.6308 + 18.3332i 3.14883 + 1.26511i
\(211\) 13.7612 11.5470i 0.947360 0.794929i −0.0314909 0.999504i \(-0.510026\pi\)
0.978851 + 0.204575i \(0.0655811\pi\)
\(212\) 5.16652 + 29.3008i 0.354838 + 2.01238i
\(213\) −3.83715 1.56941i −0.262917 0.107534i
\(214\) −11.1023 9.31592i −0.758936 0.636823i
\(215\) −0.192587 0.333570i −0.0131343 0.0227493i
\(216\) 24.1721 + 2.85427i 1.64471 + 0.194209i
\(217\) −5.22001 1.86328i −0.354357 0.126488i
\(218\) −6.44860 + 36.5718i −0.436754 + 2.47696i
\(219\) 9.14052 + 3.73851i 0.617659 + 0.252625i
\(220\) −22.5169 + 18.8939i −1.51809 + 1.27383i
\(221\) 0.578702 + 3.28198i 0.0389277 + 0.220770i
\(222\) 0.204981 + 0.389518i 0.0137574 + 0.0261427i
\(223\) 16.3989 5.96872i 1.09815 0.399695i 0.271518 0.962433i \(-0.412474\pi\)
0.826635 + 0.562739i \(0.190252\pi\)
\(224\) −1.45432 + 1.23580i −0.0971711 + 0.0825704i
\(225\) 35.2564 25.1578i 2.35042 1.67719i
\(226\) −17.7781 + 30.7925i −1.18258 + 2.04829i
\(227\) −6.27785 + 2.28495i −0.416675 + 0.151657i −0.541846 0.840478i \(-0.682274\pi\)
0.125171 + 0.992135i \(0.460052\pi\)
\(228\) 1.76913 8.15168i 0.117163 0.539858i
\(229\) 5.41463 4.54342i 0.357809 0.300238i −0.446108 0.894979i \(-0.647190\pi\)
0.803917 + 0.594742i \(0.202746\pi\)
\(230\) −4.62838 26.2488i −0.305186 1.73080i
\(231\) 7.78086 + 0.256600i 0.511943 + 0.0168831i
\(232\) −17.1529 14.3930i −1.12614 0.944947i
\(233\) 6.49834 11.2554i 0.425720 0.737369i −0.570767 0.821112i \(-0.693354\pi\)
0.996487 + 0.0837429i \(0.0266875\pi\)
\(234\) 11.6363 3.22931i 0.760689 0.211107i
\(235\) −21.3215 36.9300i −1.39086 2.40905i
\(236\) 27.6684 + 23.2166i 1.80106 + 1.51127i
\(237\) −9.80048 + 15.5360i −0.636610 + 1.00917i
\(238\) −9.99270 8.27963i −0.647730 0.536689i
\(239\) 3.83022 + 1.39408i 0.247756 + 0.0901758i 0.462913 0.886404i \(-0.346804\pi\)
−0.215157 + 0.976579i \(0.569026\pi\)
\(240\) −3.66076 26.8805i −0.236301 1.73513i
\(241\) 0.421200 + 0.353428i 0.0271318 + 0.0227663i 0.656253 0.754541i \(-0.272141\pi\)
−0.629121 + 0.777307i \(0.716585\pi\)
\(242\) 9.87475 17.1036i 0.634773 1.09946i
\(243\) −15.4060 + 2.37838i −0.988292 + 0.152573i
\(244\) 28.1455 1.80183
\(245\) −23.3929 + 20.1296i −1.49452 + 1.28603i
\(246\) −7.33192 2.99879i −0.467466 0.191196i
\(247\) −0.352410 1.99862i −0.0224233 0.127169i
\(248\) 1.70402 + 9.66396i 0.108205 + 0.613662i
\(249\) −7.37436 14.0133i −0.467331 0.888055i
\(250\) −77.5793 65.0968i −4.90655 4.11708i
\(251\) 9.82691 17.0207i 0.620269 1.07434i −0.369167 0.929363i \(-0.620357\pi\)
0.989435 0.144974i \(-0.0463099\pi\)
\(252\) −17.4788 + 25.7835i −1.10106 + 1.62421i
\(253\) −2.10979 3.65426i −0.132641 0.229742i
\(254\) 1.54397 8.75628i 0.0968772 0.549418i
\(255\) −14.6551 + 4.69260i −0.917737 + 0.293862i
\(256\) 29.3779 + 10.6927i 1.83612 + 0.668292i
\(257\) 23.1573 19.4313i 1.44451 1.21209i 0.508045 0.861330i \(-0.330368\pi\)
0.936466 0.350759i \(-0.114076\pi\)
\(258\) 0.350775 0.112319i 0.0218383 0.00699269i
\(259\) −0.276227 + 0.00171608i −0.0171639 + 0.000106632i
\(260\) −14.3071 24.7806i −0.887287 1.53683i
\(261\) 13.0504 + 5.94455i 0.807800 + 0.367958i
\(262\) 12.3396 + 21.3729i 0.762346 + 1.32042i
\(263\) −3.94210 + 22.3567i −0.243080 + 1.37858i 0.581829 + 0.813311i \(0.302337\pi\)
−0.824909 + 0.565265i \(0.808774\pi\)
\(264\) −6.41884 12.1975i −0.395052 0.750705i
\(265\) −25.6045 + 21.4848i −1.57287 + 1.31980i
\(266\) 6.08522 + 5.04201i 0.373109 + 0.309146i
\(267\) −11.9618 + 9.26354i −0.732049 + 0.566920i
\(268\) −1.88116 + 0.684687i −0.114910 + 0.0418239i
\(269\) 12.4812 21.6180i 0.760990 1.31807i −0.181350 0.983419i \(-0.558047\pi\)
0.942341 0.334655i \(-0.108620\pi\)
\(270\) 22.0250 + 51.2261i 1.34040 + 3.11752i
\(271\) 8.27455 + 14.3319i 0.502643 + 0.870604i 0.999995 + 0.00305482i \(0.000972379\pi\)
−0.497352 + 0.867549i \(0.665694\pi\)
\(272\) −1.24315 + 7.05025i −0.0753770 + 0.427484i
\(273\) −1.56130 + 7.41605i −0.0944940 + 0.448839i
\(274\) 18.3738 + 6.68753i 1.11000 + 0.404009i
\(275\) −23.0476 8.38866i −1.38983 0.505855i
\(276\) 16.8704 + 0.661303i 1.01548 + 0.0398057i
\(277\) −3.41805 + 19.3847i −0.205371 + 1.16471i 0.691485 + 0.722391i \(0.256957\pi\)
−0.896856 + 0.442323i \(0.854154\pi\)
\(278\) −47.6564 −2.85824
\(279\) −2.70667 5.67199i −0.162044 0.339573i
\(280\) 51.4595 + 18.3685i 3.07529 + 1.09773i
\(281\) −21.0434 17.6575i −1.25535 1.05336i −0.996162 0.0875320i \(-0.972102\pi\)
−0.259184 0.965828i \(-0.583454\pi\)
\(282\) 38.8348 12.4350i 2.31258 0.740494i
\(283\) −1.42458 0.518505i −0.0846826 0.0308219i 0.299331 0.954149i \(-0.403236\pi\)
−0.384014 + 0.923327i \(0.625459\pi\)
\(284\) −8.82683 3.21270i −0.523776 0.190639i
\(285\) 8.92445 2.85763i 0.528639 0.169272i
\(286\) −5.23858 4.39569i −0.309764 0.259923i
\(287\) 3.78831 3.21908i 0.223617 0.190016i
\(288\) −2.15736 0.169393i −0.127124 0.00998159i
\(289\) −12.9392 −0.761131
\(290\) 8.90754 50.5172i 0.523069 2.96647i
\(291\) −24.3343 0.953881i −1.42650 0.0559175i
\(292\) 21.0265 + 7.65302i 1.23048 + 0.447859i
\(293\) 18.7630 + 6.82919i 1.09615 + 0.398965i 0.825895 0.563824i \(-0.190670\pi\)
0.270253 + 0.962789i \(0.412893\pi\)
\(294\) −14.0665 25.9429i −0.820378 1.51302i
\(295\) −7.04589 + 39.9592i −0.410228 + 2.32652i
\(296\) 0.244532 + 0.423541i 0.0142131 + 0.0246178i
\(297\) 6.05018 + 6.42802i 0.351067 + 0.372992i
\(298\) −5.91985 + 10.2535i −0.342928 + 0.593968i
\(299\) 3.85994 1.40490i 0.223226 0.0812477i
\(300\) 77.5899 60.0878i 4.47966 3.46917i
\(301\) −0.0387232 + 0.227880i −0.00223197 + 0.0131348i
\(302\) 14.2204 11.9323i 0.818293 0.686629i
\(303\) 1.29681 + 2.46429i 0.0744998 + 0.141570i
\(304\) 0.757036 4.29337i 0.0434190 0.246241i
\(305\) 15.8093 + 27.3826i 0.905240 + 1.56792i
\(306\) −1.41301 14.6467i −0.0807762 0.837296i
\(307\) 2.11155 + 3.65731i 0.120512 + 0.208734i 0.919970 0.391989i \(-0.128213\pi\)
−0.799457 + 0.600723i \(0.794880\pi\)
\(308\) 17.6391 0.109585i 1.00508 0.00624418i
\(309\) −20.0895 + 6.43271i −1.14285 + 0.365944i
\(310\) −17.2211 + 14.4502i −0.978093 + 0.820718i
\(311\) −18.0907 6.58449i −1.02583 0.373372i −0.226340 0.974048i \(-0.572676\pi\)
−0.799492 + 0.600676i \(0.794898\pi\)
\(312\) 12.7787 4.09177i 0.723450 0.231651i
\(313\) −1.07315 + 6.08614i −0.0606580 + 0.344009i 0.939341 + 0.342983i \(0.111437\pi\)
−0.999999 + 0.00102536i \(0.999674\pi\)
\(314\) −10.4538 18.1065i −0.589940 1.02181i
\(315\) −34.9026 2.52244i −1.96654 0.142123i
\(316\) −20.8101 + 36.0442i −1.17066 + 2.02764i
\(317\) −12.7795 10.7232i −0.717766 0.602277i 0.209000 0.977916i \(-0.432979\pi\)
−0.926766 + 0.375638i \(0.877424\pi\)
\(318\) −14.8844 28.2844i −0.834678 1.58611i
\(319\) −1.41016 7.99742i −0.0789538 0.447769i
\(320\) 6.78376 + 38.4726i 0.379223 + 2.15068i
\(321\) 9.54564 + 3.90421i 0.532786 + 0.217912i
\(322\) −7.91139 + 13.9017i −0.440884 + 0.774709i
\(323\) −2.47288 −0.137595
\(324\) −34.6690 + 6.75206i −1.92605 + 0.375114i
\(325\) 11.9381 20.6775i 0.662209 1.14698i
\(326\) 29.8193 + 25.0214i 1.65154 + 1.38581i
\(327\) −3.56594 26.1842i −0.197197 1.44799i
\(328\) −8.27078 3.01032i −0.456677 0.166217i
\(329\) −4.28710 + 25.2289i −0.236355 + 1.39091i
\(330\) 16.8470 26.7063i 0.927398 1.47013i
\(331\) 3.93601 + 3.30271i 0.216343 + 0.181533i 0.744518 0.667602i \(-0.232679\pi\)
−0.528175 + 0.849135i \(0.677124\pi\)
\(332\) −17.9397 31.0725i −0.984569 1.70532i
\(333\) −0.223443 0.219497i −0.0122446 0.0120283i
\(334\) 15.4130 26.6962i 0.843364 1.46075i
\(335\) −1.72278 1.44558i −0.0941256 0.0789807i
\(336\) −8.60036 + 13.8231i −0.469188 + 0.754109i
\(337\) −2.93173 16.6267i −0.159701 0.905712i −0.954361 0.298656i \(-0.903462\pi\)
0.794659 0.607055i \(-0.207649\pi\)
\(338\) −19.1398 + 16.0602i −1.04107 + 0.873560i
\(339\) 5.36621 24.7261i 0.291453 1.34294i
\(340\) −32.7636 + 11.9250i −1.77686 + 0.646722i
\(341\) −1.77946 + 3.08211i −0.0963631 + 0.166906i
\(342\) 0.860473 + 8.91934i 0.0465290 + 0.482303i
\(343\) 18.5170 0.345152i 0.999826 0.0186365i
\(344\) 0.384560 0.139968i 0.0207341 0.00754658i
\(345\) 8.83274 + 16.7846i 0.475539 + 0.903651i
\(346\) −5.21527 29.5773i −0.280375 1.59008i
\(347\) 15.7584 13.2228i 0.845953 0.709839i −0.112941 0.993602i \(-0.536027\pi\)
0.958895 + 0.283763i \(0.0915828\pi\)
\(348\) 30.0745 + 12.3006i 1.61216 + 0.659383i
\(349\) 1.54107 8.73983i 0.0824914 0.467832i −0.915378 0.402595i \(-0.868108\pi\)
0.997870 0.0652375i \(-0.0207805\pi\)
\(350\) 16.7132 + 91.4593i 0.893361 + 4.88871i
\(351\) −7.18520 + 4.71363i −0.383518 + 0.251595i
\(352\) 0.612718 + 1.06126i 0.0326580 + 0.0565653i
\(353\) 14.7212 + 12.3526i 0.783533 + 0.657462i 0.944136 0.329557i \(-0.106899\pi\)
−0.160603 + 0.987019i \(0.551344\pi\)
\(354\) −35.9125 14.6884i −1.90873 0.780678i
\(355\) −1.83242 10.3922i −0.0972547 0.551559i
\(356\) −26.2601 + 22.0349i −1.39178 + 1.16784i
\(357\) 8.56879 + 3.44269i 0.453509 + 0.182207i
\(358\) 45.3041 16.4893i 2.39440 0.871489i
\(359\) 18.2156 0.961382 0.480691 0.876890i \(-0.340386\pi\)
0.480691 + 0.876890i \(0.340386\pi\)
\(360\) 26.6827 + 55.9152i 1.40630 + 2.94699i
\(361\) −17.4941 −0.920742
\(362\) 4.55397 25.8269i 0.239352 1.35743i
\(363\) −2.98064 + 13.7340i −0.156443 + 0.720848i
\(364\) −2.87671 + 16.9290i −0.150781 + 0.887319i
\(365\) 4.36503 + 24.7553i 0.228476 + 1.29575i
\(366\) −28.7949 + 9.22022i −1.50514 + 0.481949i
\(367\) 10.6267 3.86779i 0.554708 0.201897i −0.0494292 0.998778i \(-0.515740\pi\)
0.604137 + 0.796881i \(0.293518\pi\)
\(368\) 8.82396 0.459981
\(369\) 5.61962 + 0.441245i 0.292546 + 0.0229703i
\(370\) −0.560194 + 0.970285i −0.0291231 + 0.0504427i
\(371\) 20.0579 0.124612i 1.04135 0.00646951i
\(372\) −6.63145 12.6015i −0.343825 0.653359i
\(373\) −9.68068 3.52348i −0.501247 0.182439i 0.0790080 0.996874i \(-0.474825\pi\)
−0.580255 + 0.814435i \(0.697047\pi\)
\(374\) −6.38320 + 5.35614i −0.330067 + 0.276959i
\(375\) 66.7020 + 27.2814i 3.44448 + 1.40881i
\(376\) 42.5751 15.4961i 2.19565 0.799150i
\(377\) 7.90541 0.407149
\(378\) 9.43571 32.1044i 0.485321 1.65127i
\(379\) 5.25188 0.269771 0.134885 0.990861i \(-0.456933\pi\)
0.134885 + 0.990861i \(0.456933\pi\)
\(380\) 19.9519 7.26191i 1.02351 0.372528i
\(381\) 0.853783 + 6.26921i 0.0437406 + 0.321181i
\(382\) −1.36755 + 1.14751i −0.0699699 + 0.0587117i
\(383\) 9.64303 + 3.50977i 0.492736 + 0.179341i 0.576424 0.817151i \(-0.304448\pi\)
−0.0836882 + 0.996492i \(0.526670\pi\)
\(384\) −34.8311 1.36535i −1.77747 0.0696750i
\(385\) 10.0145 + 17.0995i 0.510389 + 0.871471i
\(386\) 0.366223 0.634316i 0.0186402 0.0322858i
\(387\) −0.213348 + 0.152238i −0.0108451 + 0.00773871i
\(388\) −55.1791 −2.80129
\(389\) 22.0233 8.01583i 1.11663 0.406419i 0.283206 0.959059i \(-0.408602\pi\)
0.833420 + 0.552640i \(0.186380\pi\)
\(390\) 22.7552 + 20.6655i 1.15225 + 1.04644i
\(391\) −0.869141 4.92914i −0.0439543 0.249277i
\(392\) −16.7464 28.1909i −0.845822 1.42385i
\(393\) −13.0006 11.8068i −0.655794 0.595572i
\(394\) −0.0695724 + 0.394565i −0.00350501 + 0.0198779i
\(395\) −46.7563 −2.35256
\(396\) 14.2685 + 14.0165i 0.717018 + 0.704356i
\(397\) 9.31761 0.467638 0.233819 0.972280i \(-0.424878\pi\)
0.233819 + 0.972280i \(0.424878\pi\)
\(398\) −48.0850 + 17.5015i −2.41028 + 0.877272i
\(399\) −5.21811 2.09648i −0.261232 0.104956i
\(400\) 39.2906 32.9687i 1.96453 1.64844i
\(401\) −3.64667 20.6813i −0.182106 1.03277i −0.929618 0.368525i \(-0.879863\pi\)
0.747512 0.664248i \(-0.231248\pi\)
\(402\) 1.70028 1.31674i 0.0848020 0.0656731i
\(403\) −2.65398 2.22695i −0.132204 0.110933i
\(404\) 3.15477 + 5.46421i 0.156955 + 0.271855i
\(405\) −26.0427 29.9366i −1.29407 1.48756i
\(406\) −23.4582 + 19.9334i −1.16421 + 0.989278i
\(407\) −0.0307999 + 0.174675i −0.00152670 + 0.00865832i
\(408\) −2.20622 16.2000i −0.109224 0.802019i
\(409\) −13.4736 + 11.3057i −0.666228 + 0.559032i −0.911946 0.410310i \(-0.865421\pi\)
0.245718 + 0.969341i \(0.420976\pi\)
\(410\) −3.50134 19.8571i −0.172919 0.980671i
\(411\) −13.9032 0.544993i −0.685796 0.0268825i
\(412\) −44.9130 + 16.3470i −2.21270 + 0.805358i
\(413\) 18.5555 15.7674i 0.913056 0.775862i
\(414\) −17.4763 + 4.85004i −0.858915 + 0.238366i
\(415\) 20.1535 34.9069i 0.989297 1.71351i
\(416\) −1.12099 + 0.408008i −0.0549611 + 0.0200042i
\(417\) 32.2970 10.3416i 1.58159 0.506429i
\(418\) 3.88715 3.26171i 0.190127 0.159535i
\(419\) 1.65839 + 9.40518i 0.0810175 + 0.459473i 0.998145 + 0.0608795i \(0.0193905\pi\)
−0.917128 + 0.398594i \(0.869498\pi\)
\(420\) −79.2455 2.61339i −3.86678 0.127520i
\(421\) −15.9204 13.3588i −0.775912 0.651068i 0.166303 0.986075i \(-0.446817\pi\)
−0.942216 + 0.335007i \(0.891261\pi\)
\(422\) −21.8624 + 37.8668i −1.06424 + 1.84333i
\(423\) −23.6201 + 16.8545i −1.14845 + 0.819495i
\(424\) −17.7564 30.7550i −0.862327 1.49359i
\(425\) −22.2867 18.7007i −1.08106 0.907119i
\(426\) 10.0830 + 0.395243i 0.488522 + 0.0191496i
\(427\) 3.17877 18.7065i 0.153831 0.905272i
\(428\) 21.9584 + 7.99222i 1.06140 + 0.386318i
\(429\) 4.50408 + 1.84219i 0.217459 + 0.0889418i
\(430\) 0.718183 + 0.602627i 0.0346339 + 0.0290613i
\(431\) 7.40874 12.8323i 0.356867 0.618111i −0.630569 0.776133i \(-0.717178\pi\)
0.987436 + 0.158022i \(0.0505118\pi\)
\(432\) −17.9674 + 4.23593i −0.864455 + 0.203801i
\(433\) 27.9812 1.34469 0.672346 0.740237i \(-0.265287\pi\)
0.672346 + 0.740237i \(0.265287\pi\)
\(434\) 13.4906 0.0838113i 0.647567 0.00402307i
\(435\) 4.92569 + 36.1687i 0.236169 + 1.73415i
\(436\) −10.3974 58.9663i −0.497943 2.82397i
\(437\) 0.529277 + 3.00168i 0.0253188 + 0.143590i
\(438\) −24.0188 0.941513i −1.14766 0.0449872i
\(439\) −3.01778 2.53222i −0.144031 0.120856i 0.567926 0.823080i \(-0.307746\pi\)
−0.711956 + 0.702224i \(0.752191\pi\)
\(440\) 17.5421 30.3839i 0.836288 1.44849i
\(441\) 15.1626 + 14.5291i 0.722030 + 0.691862i
\(442\) −4.05583 7.02491i −0.192916 0.334141i
\(443\) −2.56853 + 14.5669i −0.122035 + 0.692093i 0.860990 + 0.508621i \(0.169845\pi\)
−0.983025 + 0.183472i \(0.941266\pi\)
\(444\) −0.525369 0.477124i −0.0249329 0.0226433i
\(445\) −36.1879 13.1713i −1.71547 0.624381i
\(446\) −32.5393 + 27.3037i −1.54078 + 1.29287i
\(447\) 1.78687 8.23345i 0.0845162 0.389429i
\(448\) 11.5956 20.3755i 0.547841 0.962651i
\(449\) −17.2576 29.8910i −0.814436 1.41064i −0.909732 0.415195i \(-0.863713\pi\)
0.0952966 0.995449i \(-0.469620\pi\)
\(450\) −59.6961 + 86.8922i −2.81410 + 4.09614i
\(451\) −1.59604 2.76443i −0.0751547 0.130172i
\(452\) 9.95503 56.4578i 0.468245 2.65555i
\(453\) −7.04788 + 11.1725i −0.331138 + 0.524929i
\(454\) 12.4567 10.4524i 0.584623 0.490557i
\(455\) −18.0860 + 6.71028i −0.847883 + 0.314583i
\(456\) 1.34352 + 9.86525i 0.0629159 + 0.461983i
\(457\) −7.07716 + 2.57587i −0.331056 + 0.120494i −0.502200 0.864752i \(-0.667476\pi\)
0.171144 + 0.985246i \(0.445254\pi\)
\(458\) −8.60222 + 14.8995i −0.401955 + 0.696207i
\(459\) 4.13597 + 9.61950i 0.193051 + 0.449000i
\(460\) 21.4875 + 37.2175i 1.00186 + 1.73527i
\(461\) 4.04170 22.9216i 0.188241 1.06757i −0.733480 0.679711i \(-0.762105\pi\)
0.921721 0.387855i \(-0.126784\pi\)
\(462\) −18.0103 + 5.89056i −0.837915 + 0.274053i
\(463\) 20.3899 + 7.42131i 0.947599 + 0.344898i 0.769162 0.639054i \(-0.220674\pi\)
0.178437 + 0.983951i \(0.442896\pi\)
\(464\) 15.9580 + 5.80824i 0.740831 + 0.269641i
\(465\) 8.53508 13.5300i 0.395805 0.627439i
\(466\) −5.49323 + 31.1537i −0.254469 + 1.44317i
\(467\) −5.24028 −0.242491 −0.121246 0.992623i \(-0.538689\pi\)
−0.121246 + 0.992623i \(0.538689\pi\)
\(468\) −15.8494 + 11.3096i −0.732640 + 0.522788i
\(469\) 0.242609 + 1.32762i 0.0112026 + 0.0613038i
\(470\) 79.5111 + 66.7177i 3.66757 + 3.07746i
\(471\) 11.0137 + 10.0023i 0.507485 + 0.460883i
\(472\) −40.5111 14.7448i −1.86467 0.678685i
\(473\) 0.139469 + 0.0507626i 0.00641280 + 0.00233407i
\(474\) 9.48256 43.6932i 0.435548 2.00689i
\(475\) 13.5718 + 11.3881i 0.622718 + 0.522523i
\(476\) 19.7058 + 7.03401i 0.903216 + 0.322403i
\(477\) 16.2250 + 15.9385i 0.742893 + 0.729774i
\(478\) −9.92117 −0.453784
\(479\) −4.33802 + 24.6021i −0.198209 + 1.12410i 0.709565 + 0.704640i \(0.248892\pi\)
−0.907774 + 0.419460i \(0.862220\pi\)
\(480\) −2.56517 4.87452i −0.117084 0.222490i
\(481\) −0.162252 0.0590550i −0.00739807 0.00269268i
\(482\) −1.25761 0.457732i −0.0572824 0.0208491i
\(483\) 2.34488 11.1380i 0.106696 0.506797i
\(484\) −5.52947 + 31.3592i −0.251340 + 1.42542i
\(485\) −30.9942 53.6835i −1.40737 2.43764i
\(486\) 33.2571 18.2651i 1.50857 0.828524i
\(487\) −17.4660 + 30.2521i −0.791462 + 1.37085i 0.133599 + 0.991035i \(0.457346\pi\)
−0.925062 + 0.379817i \(0.875987\pi\)
\(488\) −31.5683 + 11.4899i −1.42903 + 0.520125i
\(489\) −25.6384 10.4862i −1.15941 0.474203i
\(490\) 36.7476 65.5154i 1.66009 2.95968i
\(491\) −22.8167 + 19.1455i −1.02970 + 0.864023i −0.990815 0.135221i \(-0.956826\pi\)
−0.0388867 + 0.999244i \(0.512381\pi\)
\(492\) 12.7623 + 0.500271i 0.575371 + 0.0225540i
\(493\) 1.67270 9.48638i 0.0753348 0.427245i
\(494\) 2.46987 + 4.27793i 0.111125 + 0.192473i
\(495\) −5.62196 + 21.7548i −0.252688 + 0.977807i
\(496\) −3.72119 6.44530i −0.167086 0.289402i
\(497\) −3.13219 + 5.50380i −0.140498 + 0.246879i
\(498\) 28.5328 + 25.9126i 1.27858 + 1.16117i
\(499\) 21.2517 17.8323i 0.951358 0.798284i −0.0281677 0.999603i \(-0.508967\pi\)
0.979526 + 0.201319i \(0.0645228\pi\)
\(500\) 153.439 + 55.8472i 6.86199 + 2.49756i
\(501\) −4.65234 + 21.4368i −0.207851 + 0.957724i
\(502\) −8.30697 + 47.1111i −0.370758 + 2.10267i
\(503\) 6.49981 + 11.2580i 0.289812 + 0.501969i 0.973765 0.227557i \(-0.0730739\pi\)
−0.683953 + 0.729526i \(0.739741\pi\)
\(504\) 9.07879 36.0546i 0.404401 1.60600i
\(505\) −3.54407 + 6.13851i −0.157709 + 0.273160i
\(506\) 7.86772 + 6.60180i 0.349763 + 0.293486i
\(507\) 9.48602 15.0375i 0.421289 0.667837i
\(508\) 2.48941 + 14.1181i 0.110450 + 0.626390i
\(509\) 1.01315 + 5.74587i 0.0449072 + 0.254681i 0.998994 0.0448497i \(-0.0142809\pi\)
−0.954087 + 0.299531i \(0.903170\pi\)
\(510\) 29.6131 22.9332i 1.31129 1.01550i
\(511\) 7.46123 13.1107i 0.330065 0.579982i
\(512\) −35.8453 −1.58415
\(513\) −2.51867 5.85795i −0.111202 0.258635i
\(514\) −36.7899 + 63.7220i −1.62273 + 2.81066i
\(515\) −41.1316 34.5135i −1.81247 1.52085i
\(516\) −0.469523 + 0.363612i −0.0206696 + 0.0160071i
\(517\) 15.4408 + 5.62000i 0.679086 + 0.247167i
\(518\) 0.630368 0.233880i 0.0276968 0.0102761i
\(519\) 9.95275 + 18.9129i 0.436877 + 0.830184i
\(520\) 26.1633 + 21.9536i 1.14734 + 0.962729i
\(521\) 1.32942 + 2.30262i 0.0582428 + 0.100879i 0.893677 0.448712i \(-0.148117\pi\)
−0.835434 + 0.549591i \(0.814784\pi\)
\(522\) −34.7981 2.73230i −1.52307 0.119590i
\(523\) 5.25853 9.10805i 0.229940 0.398267i −0.727850 0.685736i \(-0.759480\pi\)
0.957790 + 0.287469i \(0.0928138\pi\)
\(524\) −30.4820 25.5775i −1.33161 1.11736i
\(525\) −31.1736 58.3555i −1.36053 2.54684i
\(526\) −9.59517 54.4169i −0.418369 2.37269i
\(527\) −3.23387 + 2.71354i −0.140870 + 0.118204i
\(528\) 7.73854 + 7.02791i 0.336777 + 0.305850i
\(529\) 15.8158 5.75647i 0.687642 0.250281i
\(530\) 40.6779 70.4561i 1.76693 3.06042i
\(531\) 27.5254 + 2.16126i 1.19450 + 0.0937907i
\(532\) −12.0002 4.28347i −0.520274 0.185712i
\(533\) 2.92002 1.06280i 0.126480 0.0460350i
\(534\) 19.6477 31.1459i 0.850237 1.34782i
\(535\) 4.55849 + 25.8525i 0.197081 + 1.11770i
\(536\) 1.83043 1.53591i 0.0790623 0.0663412i
\(537\) −27.1245 + 21.0060i −1.17051 + 0.906476i
\(538\) −10.5507 + 59.8359i −0.454873 + 2.57971i
\(539\) 1.91934 11.7360i 0.0826720 0.505506i
\(540\) −61.6191 65.4672i −2.65166 2.81726i
\(541\) −1.43075 2.47813i −0.0615128 0.106543i 0.833629 0.552325i \(-0.186259\pi\)
−0.895142 + 0.445782i \(0.852926\pi\)
\(542\) −30.8570 25.8921i −1.32542 1.11216i
\(543\) 2.51825 + 18.4912i 0.108069 + 0.793533i
\(544\) 0.252413 + 1.43150i 0.0108221 + 0.0613752i
\(545\) 51.5278 43.2370i 2.20721 1.85207i
\(546\) −2.60270 18.2620i −0.111385 0.781542i
\(547\) −18.7117 + 6.81050i −0.800054 + 0.291196i −0.709509 0.704696i \(-0.751083\pi\)
−0.0905454 + 0.995892i \(0.528861\pi\)
\(548\) −31.5262 −1.34673
\(549\) 17.5136 12.4972i 0.747464 0.533366i
\(550\) 59.6989 2.54557
\(551\) −1.01862 + 5.77688i −0.0433947 + 0.246103i
\(552\) −19.1920 + 6.14534i −0.816866 + 0.261563i
\(553\) 21.6060 + 17.9020i 0.918781 + 0.761272i
\(554\) −8.31962 47.1829i −0.353467 2.00461i
\(555\) 0.169091 0.779130i 0.00717753 0.0330722i
\(556\) 72.2046 26.2803i 3.06216 1.11453i
\(557\) −7.81797 −0.331258 −0.165629 0.986188i \(-0.552965\pi\)
−0.165629 + 0.986188i \(0.552965\pi\)
\(558\) 10.9126 + 10.7199i 0.461969 + 0.453811i
\(559\) −0.0722417 + 0.125126i −0.00305550 + 0.00529228i
\(560\) −41.4388 + 0.257442i −1.75111 + 0.0108789i
\(561\) 3.16362 5.01505i 0.133568 0.211736i
\(562\) 62.8310 + 22.8686i 2.65036 + 0.964653i
\(563\) −22.5238 + 18.8997i −0.949263 + 0.796526i −0.979173 0.203026i \(-0.934922\pi\)
0.0299102 + 0.999553i \(0.490478\pi\)
\(564\) −51.9815 + 40.2560i −2.18882 + 1.69508i
\(565\) 60.5192 22.0272i 2.54606 0.926691i
\(566\) 3.69000 0.155102
\(567\) 0.572133 + 23.8049i 0.0240273 + 0.999711i
\(568\) 11.2118 0.470438
\(569\) 36.6273 13.3313i 1.53550 0.558876i 0.570538 0.821271i \(-0.306735\pi\)
0.964960 + 0.262396i \(0.0845126\pi\)
\(570\) −18.0334 + 13.9656i −0.755336 + 0.584953i
\(571\) 32.5044 27.2745i 1.36027 1.14140i 0.384369 0.923180i \(-0.374419\pi\)
0.975899 0.218221i \(-0.0700253\pi\)
\(572\) 10.3610 + 3.77111i 0.433216 + 0.157678i
\(573\) 0.677780 1.07443i 0.0283147 0.0448851i
\(574\) −5.98491 + 10.5165i −0.249805 + 0.438951i
\(575\) −17.9296 + 31.0550i −0.747718 + 1.29508i
\(576\) 25.6148 7.10864i 1.06729 0.296193i
\(577\) 16.3385 0.680182 0.340091 0.940393i \(-0.389542\pi\)
0.340091 + 0.940393i \(0.389542\pi\)
\(578\) 29.5951 10.7717i 1.23099 0.448045i
\(579\) −0.110542 + 0.509350i −0.00459398 + 0.0211679i
\(580\) 14.3620 + 81.4510i 0.596350 + 3.38207i
\(581\) −22.6780 + 8.41405i −0.940844 + 0.349074i
\(582\) 56.4524 18.0762i 2.34003 0.749284i
\(583\) 2.23650 12.6838i 0.0926264 0.525311i
\(584\) −26.7078 −1.10518
\(585\) −19.9057 9.06720i −0.823001 0.374882i
\(586\) −48.6007 −2.00768
\(587\) −14.0004 + 5.09572i −0.577857 + 0.210323i −0.614380 0.789010i \(-0.710594\pi\)
0.0365232 + 0.999333i \(0.488372\pi\)
\(588\) 35.6186 + 31.5491i 1.46889 + 1.30106i
\(589\) 1.96932 1.65245i 0.0811443 0.0680882i
\(590\) −17.1499 97.2619i −0.706050 4.00421i
\(591\) −0.0384721 0.282496i −0.00158253 0.0116203i
\(592\) −0.284137 0.238419i −0.0116780 0.00979897i
\(593\) 2.55569 + 4.42658i 0.104950 + 0.181778i 0.913718 0.406350i \(-0.133199\pi\)
−0.808768 + 0.588128i \(0.799865\pi\)
\(594\) −19.1894 9.66571i −0.787352 0.396589i
\(595\) 4.22544 + 23.1227i 0.173226 + 0.947939i
\(596\) 3.31488 18.7996i 0.135783 0.770063i
\(597\) 28.7895 22.2954i 1.17828 0.912491i
\(598\) −7.65904 + 6.42670i −0.313202 + 0.262807i
\(599\) 0.609735 + 3.45798i 0.0249131 + 0.141289i 0.994727 0.102556i \(-0.0327022\pi\)
−0.969814 + 0.243845i \(0.921591\pi\)
\(600\) −62.4960 + 99.0701i −2.55139 + 4.04452i
\(601\) −30.0227 + 10.9274i −1.22465 + 0.445736i −0.871762 0.489929i \(-0.837023\pi\)
−0.352888 + 0.935666i \(0.614800\pi\)
\(602\) −0.101138 0.553451i −0.00412206 0.0225570i
\(603\) −0.866547 + 1.26133i −0.0352885 + 0.0513651i
\(604\) −14.9653 + 25.9207i −0.608930 + 1.05470i
\(605\) −33.6151 + 12.2349i −1.36665 + 0.497420i
\(606\) −5.01760 4.55683i −0.203826 0.185109i
\(607\) −34.2503 + 28.7394i −1.39017 + 1.16650i −0.424906 + 0.905238i \(0.639693\pi\)
−0.965269 + 0.261258i \(0.915863\pi\)
\(608\) −0.153711 0.871738i −0.00623380 0.0353536i
\(609\) 11.5721 18.5994i 0.468925 0.753687i
\(610\) −58.9553 49.4694i −2.38703 2.00296i
\(611\) −7.99798 + 13.8529i −0.323564 + 0.560429i
\(612\) 10.2178 + 21.4121i 0.413031 + 0.865533i
\(613\) 9.18932 + 15.9164i 0.371153 + 0.642856i 0.989743 0.142858i \(-0.0456291\pi\)
−0.618590 + 0.785714i \(0.712296\pi\)
\(614\) −7.87427 6.60730i −0.317780 0.266649i
\(615\) 6.68191 + 12.6974i 0.269441 + 0.512009i
\(616\) −19.7396 + 7.32381i −0.795330 + 0.295085i
\(617\) −20.3946 7.42304i −0.821057 0.298840i −0.102874 0.994694i \(-0.532804\pi\)
−0.718183 + 0.695854i \(0.755026\pi\)
\(618\) 40.5943 31.4373i 1.63294 1.26460i
\(619\) −13.6878 11.4854i −0.550159 0.461638i 0.324836 0.945770i \(-0.394691\pi\)
−0.874995 + 0.484132i \(0.839135\pi\)
\(620\) 18.1232 31.3903i 0.727845 1.26066i
\(621\) 10.7913 7.07930i 0.433040 0.284083i
\(622\) 46.8593 1.87889
\(623\) 11.6794 + 19.9421i 0.467923 + 0.798963i
\(624\) −8.04571 + 6.23083i −0.322086 + 0.249433i
\(625\) 19.3183 + 109.559i 0.772731 + 4.38237i
\(626\) −2.61208 14.8138i −0.104400 0.592079i
\(627\) −1.92654 + 3.05400i −0.0769386 + 0.121965i
\(628\) 25.8235 + 21.6685i 1.03047 + 0.864665i
\(629\) −0.105196 + 0.182205i −0.00419445 + 0.00726499i
\(630\) 81.9303 23.2865i 3.26418 0.927756i
\(631\) 21.1732 + 36.6731i 0.842892 + 1.45993i 0.887439 + 0.460925i \(0.152482\pi\)
−0.0445469 + 0.999007i \(0.514184\pi\)
\(632\) 8.62645 48.9230i 0.343142 1.94605i
\(633\) 6.59904 30.4067i 0.262288 1.20856i
\(634\) 38.1566 + 13.8879i 1.51539 + 0.551558i
\(635\) −12.3372 + 10.3521i −0.489585 + 0.410811i
\(636\) 38.1491 + 34.6458i 1.51271 + 1.37380i
\(637\) 10.9267 + 3.82394i 0.432933 + 0.151510i
\(638\) 9.88311 + 17.1180i 0.391276 + 0.677710i
\(639\) −6.91904 + 1.92018i −0.273713 + 0.0759610i
\(640\) −44.3638 76.8403i −1.75363 3.03738i
\(641\) 2.55039 14.4640i 0.100734 0.571292i −0.892104 0.451829i \(-0.850772\pi\)
0.992839 0.119463i \(-0.0381173\pi\)
\(642\) −25.0833 0.983242i −0.989961 0.0388055i
\(643\) −26.3594 + 22.1181i −1.03951 + 0.872254i −0.991952 0.126614i \(-0.959589\pi\)
−0.0475599 + 0.998868i \(0.515144\pi\)
\(644\) 4.32047 25.4253i 0.170250 1.00190i
\(645\) −0.617488 0.252555i −0.0243136 0.00994436i
\(646\) 5.65606 2.05864i 0.222535 0.0809960i
\(647\) 4.14092 7.17229i 0.162796 0.281972i −0.773074 0.634316i \(-0.781282\pi\)
0.935871 + 0.352344i \(0.114615\pi\)
\(648\) 36.1288 21.7262i 1.41927 0.853488i
\(649\) −7.81757 13.5404i −0.306867 0.531508i
\(650\) −10.0916 + 57.2326i −0.395827 + 2.24485i
\(651\) −9.12442 + 2.98429i −0.357614 + 0.116963i
\(652\) −58.9776 21.4661i −2.30974 0.840677i
\(653\) 25.4305 + 9.25595i 0.995173 + 0.362213i 0.787721 0.616032i \(-0.211261\pi\)
0.207452 + 0.978245i \(0.433483\pi\)
\(654\) 29.9542 + 56.9209i 1.17130 + 2.22578i
\(655\) 7.76239 44.0227i 0.303302 1.72011i
\(656\) 6.67527 0.260625
\(657\) 16.4819 4.57408i 0.643022 0.178452i
\(658\) −11.1971 61.2734i −0.436508 2.38868i
\(659\) −23.9829 20.1240i −0.934241 0.783921i 0.0423332 0.999104i \(-0.486521\pi\)
−0.976574 + 0.215183i \(0.930965\pi\)
\(660\) −10.7978 + 49.7533i −0.420302 + 1.93664i
\(661\) −24.3063 8.84677i −0.945406 0.344100i −0.177108 0.984191i \(-0.556674\pi\)
−0.768298 + 0.640092i \(0.778896\pi\)
\(662\) −11.7521 4.27740i −0.456756 0.166246i
\(663\) 4.27308 + 3.88068i 0.165953 + 0.150713i
\(664\) 32.8062 + 27.5277i 1.27313 + 1.06828i
\(665\) −2.57315 14.0810i −0.0997825 0.546036i
\(666\) 0.693794 + 0.316028i 0.0268840 + 0.0122458i
\(667\) −11.8730 −0.459723
\(668\) −8.63069 + 48.9471i −0.333932 + 1.89382i
\(669\) 16.1270 25.5650i 0.623508 0.988399i
\(670\) 5.14384 + 1.87220i 0.198724 + 0.0723295i
\(671\) −11.4489 4.16708i −0.441982 0.160868i
\(672\) −0.680992 + 3.23466i −0.0262698 + 0.124780i
\(673\) 0.973621 5.52168i 0.0375303 0.212845i −0.960275 0.279054i \(-0.909979\pi\)
0.997806 + 0.0662087i \(0.0210903\pi\)
\(674\) 20.5470 + 35.5885i 0.791441 + 1.37082i
\(675\) 21.6004 71.8415i 0.831402 2.76518i
\(676\) 20.1424 34.8876i 0.774707 1.34183i
\(677\) 18.7694 6.83149i 0.721365 0.262556i 0.0448601 0.998993i \(-0.485716\pi\)
0.676505 + 0.736438i \(0.263494\pi\)
\(678\) 8.31036 + 61.0218i 0.319157 + 2.34353i
\(679\) −6.23196 + 36.6741i −0.239161 + 1.40742i
\(680\) 31.8799 26.7504i 1.22254 1.02583i
\(681\) −6.17377 + 9.78681i −0.236579 + 0.375031i
\(682\) 1.50423 8.53090i 0.0575998 0.326665i
\(683\) 2.97946 + 5.16058i 0.114006 + 0.197464i 0.917382 0.398008i \(-0.130298\pi\)
−0.803376 + 0.595472i \(0.796965\pi\)
\(684\) −6.22231 13.0392i −0.237916 0.498568i
\(685\) −17.7083 30.6717i −0.676600 1.17190i
\(686\) −42.0655 + 16.2046i −1.60607 + 0.618695i
\(687\) 2.59653 11.9641i 0.0990638 0.456461i
\(688\) −0.237761 + 0.199505i −0.00906455 + 0.00760606i
\(689\) 11.7818 + 4.28821i 0.448850 + 0.163368i
\(690\) −34.1755 31.0372i −1.30104 1.18156i
\(691\) 0.448810 2.54533i 0.0170735 0.0968288i −0.975080 0.221853i \(-0.928790\pi\)
0.992154 + 0.125024i \(0.0399007\pi\)
\(692\) 24.2122 + 41.9367i 0.920409 + 1.59419i
\(693\) 10.9274 7.90034i 0.415097 0.300109i
\(694\) −25.0353 + 43.3624i −0.950326 + 1.64601i
\(695\) 66.1254 + 55.4858i 2.50828 + 2.10470i
\(696\) −38.7535 1.51910i −1.46895 0.0575814i
\(697\) −0.657499 3.72886i −0.0249046 0.141241i
\(698\) 3.75100 + 21.2730i 0.141977 + 0.805194i
\(699\) −3.03764 22.3050i −0.114894 0.843653i
\(700\) −75.7579 129.354i −2.86338 4.88912i
\(701\) −20.2397 −0.764442 −0.382221 0.924071i \(-0.624841\pi\)
−0.382221 + 0.924071i \(0.624841\pi\)
\(702\) 12.5102 16.7628i 0.472168 0.632670i
\(703\) 0.0640609 0.110957i 0.00241610 0.00418481i
\(704\) −11.5316 9.67617i −0.434614 0.364684i
\(705\) −68.3629 27.9608i −2.57470 1.05306i
\(706\) −43.9543 15.9981i −1.65424 0.602095i
\(707\) 3.98802 1.47964i 0.149985 0.0556477i
\(708\) 62.5112 + 2.45038i 2.34931 + 0.0920908i
\(709\) −23.2761 19.5309i −0.874151 0.733499i 0.0908173 0.995868i \(-0.471052\pi\)
−0.964968 + 0.262368i \(0.915497\pi\)
\(710\) 12.8425 + 22.2439i 0.481971 + 0.834797i
\(711\) 3.05517 + 31.6688i 0.114578 + 1.18767i
\(712\) 20.4583 35.4348i 0.766708 1.32798i
\(713\) 3.98596 + 3.34462i 0.149275 + 0.125257i
\(714\) −22.4649 0.740855i −0.840726 0.0277258i
\(715\) 2.15091 + 12.1984i 0.0804396 + 0.456195i
\(716\) −59.5474 + 49.9662i −2.22539 + 1.86733i
\(717\) 6.72361 2.15292i 0.251098 0.0804023i
\(718\) −41.6634 + 15.1642i −1.55486 + 0.565924i
\(719\) −11.4747 + 19.8748i −0.427935 + 0.741205i −0.996690 0.0813020i \(-0.974092\pi\)
0.568754 + 0.822507i \(0.307426\pi\)
\(720\) −33.5203 32.9283i −1.24923 1.22717i
\(721\) 5.79232 + 31.6971i 0.215717 + 1.18046i
\(722\) 40.0132 14.5636i 1.48914 0.542001i
\(723\) 0.951615 + 0.0373024i 0.0353909 + 0.00138729i
\(724\) 7.34257 + 41.6418i 0.272884 + 1.54760i
\(725\) −52.8670 + 44.3607i −1.96343 + 1.64751i
\(726\) −4.61595 33.8943i −0.171314 1.25793i
\(727\) 0.179865 1.02006i 0.00667081 0.0378320i −0.981291 0.192532i \(-0.938330\pi\)
0.987961 + 0.154700i \(0.0494411\pi\)
\(728\) −3.68442 20.1621i −0.136554 0.747258i
\(729\) −18.5749 + 19.5952i −0.687959 + 0.725750i
\(730\) −30.5923 52.9874i −1.13227 1.96115i
\(731\) 0.134864 + 0.113164i 0.00498813 + 0.00418554i
\(732\) 38.5429 29.8487i 1.42459 1.10324i
\(733\) −3.66981 20.8125i −0.135548 0.768729i −0.974477 0.224488i \(-0.927929\pi\)
0.838929 0.544241i \(-0.183182\pi\)
\(734\) −21.0858 + 17.6931i −0.778292 + 0.653065i
\(735\) −10.6870 + 52.3744i −0.394196 + 1.93186i
\(736\) 1.68359 0.612778i 0.0620581 0.0225873i
\(737\) 0.866587 0.0319211
\(738\) −13.2207 + 3.66902i −0.486662 + 0.135059i
\(739\) −4.65467 −0.171225 −0.0856123 0.996329i \(-0.527285\pi\)
−0.0856123 + 0.996329i \(0.527285\pi\)
\(740\) 0.313687 1.77901i 0.0115314 0.0653976i
\(741\) −2.60216 2.36321i −0.0955928 0.0868145i
\(742\) −45.7734 + 16.9829i −1.68040 + 0.623463i
\(743\) −6.06789 34.4127i −0.222609 1.26248i −0.867203 0.497955i \(-0.834084\pi\)
0.644593 0.764526i \(-0.277027\pi\)
\(744\) 12.5823 + 11.4269i 0.461289 + 0.418929i
\(745\) 20.1521 7.33475i 0.738314 0.268724i
\(746\) 25.0753 0.918070
\(747\) −24.9599 11.3694i −0.913234 0.415984i
\(748\) 6.71756 11.6352i 0.245618 0.425424i
\(749\) 7.79193 13.6918i 0.284711 0.500286i
\(750\) −175.275 6.87059i −6.40013 0.250879i
\(751\) −4.62606 1.68375i −0.168807 0.0614408i 0.256234 0.966615i \(-0.417518\pi\)
−0.425041 + 0.905174i \(0.639740\pi\)
\(752\) −26.3228 + 22.0875i −0.959895 + 0.805448i
\(753\) −4.59358 33.7301i −0.167399 1.22919i
\(754\) −18.0815 + 6.58114i −0.658491 + 0.239671i
\(755\) −33.6241 −1.22371
\(756\) 3.40801 + 53.8450i 0.123948 + 1.95832i
\(757\) 1.36584 0.0496424 0.0248212 0.999692i \(-0.492098\pi\)
0.0248212 + 0.999692i \(0.492098\pi\)
\(758\) −12.0123 + 4.37211i −0.436306 + 0.158802i
\(759\) −6.76459 2.76675i −0.245539 0.100427i
\(760\) −19.4138 + 16.2901i −0.704212 + 0.590904i
\(761\) −44.4299 16.1712i −1.61058 0.586204i −0.629027 0.777383i \(-0.716547\pi\)
−0.981555 + 0.191179i \(0.938769\pi\)
\(762\) −7.17184 13.6284i −0.259808 0.493705i
\(763\) −40.3655 + 0.250774i −1.46133 + 0.00907864i
\(764\) 1.43918 2.49274i 0.0520678 0.0901841i
\(765\) −15.0924 + 21.9681i −0.545665 + 0.794258i
\(766\) −24.9777 −0.902482
\(767\) 14.3026 5.20570i 0.516435 0.187967i
\(768\)