Properties

Label 189.2.w.a.25.12
Level $189$
Weight $2$
Character 189.25
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(25,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 25.12
Character \(\chi\) \(=\) 189.25
Dual form 189.2.w.a.121.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0303128 - 0.0110329i) q^{2} +(0.919170 + 1.46804i) q^{3} +(-1.53129 + 1.28491i) q^{4} +(-3.70820 - 1.34968i) q^{5} +(0.0440593 + 0.0343591i) q^{6} +(-2.47092 + 0.945798i) q^{7} +(-0.0644996 + 0.111717i) q^{8} +(-1.31025 + 2.69875i) q^{9} +O(q^{10})\) \(q+(0.0303128 - 0.0110329i) q^{2} +(0.919170 + 1.46804i) q^{3} +(-1.53129 + 1.28491i) q^{4} +(-3.70820 - 1.34968i) q^{5} +(0.0440593 + 0.0343591i) q^{6} +(-2.47092 + 0.945798i) q^{7} +(-0.0644996 + 0.111717i) q^{8} +(-1.31025 + 2.69875i) q^{9} -0.127297 q^{10} +(2.52713 - 0.919799i) q^{11} +(-3.29380 - 1.06694i) q^{12} +(0.841596 + 4.77293i) q^{13} +(-0.0644656 + 0.0559313i) q^{14} +(-1.42710 - 6.68435i) q^{15} +(0.693509 - 3.93308i) q^{16} +1.66370 q^{17} +(-0.00994232 + 0.0962625i) q^{18} -0.753482 q^{19} +(7.41255 - 2.69795i) q^{20} +(-3.65966 - 2.75805i) q^{21} +(0.0664561 - 0.0557633i) q^{22} +(0.770659 + 4.37062i) q^{23} +(-0.223290 + 0.00799880i) q^{24} +(8.09892 + 6.79580i) q^{25} +(0.0781705 + 0.135395i) q^{26} +(-5.16620 + 0.557106i) q^{27} +(2.56844 - 4.62320i) q^{28} +(0.0179486 - 0.101792i) q^{29} +(-0.117007 - 0.186876i) q^{30} +(-6.79480 + 5.70151i) q^{31} +(-0.0671723 - 0.380953i) q^{32} +(3.67316 + 2.86446i) q^{33} +(0.0504314 - 0.0183555i) q^{34} +(10.4392 - 0.172267i) q^{35} +(-1.46125 - 5.81612i) q^{36} +(-0.656616 + 1.13729i) q^{37} +(-0.0228401 + 0.00831312i) q^{38} +(-6.23325 + 5.62262i) q^{39} +(0.389959 - 0.327214i) q^{40} +(-0.311924 - 1.76901i) q^{41} +(-0.141364 - 0.0432274i) q^{42} +(2.26024 + 1.89657i) q^{43} +(-2.68791 + 4.65560i) q^{44} +(8.50112 - 8.23908i) q^{45} +(0.0715817 + 0.123983i) q^{46} +(-5.41229 - 4.54145i) q^{47} +(6.41136 - 2.59708i) q^{48} +(5.21093 - 4.67399i) q^{49} +(0.320478 + 0.116645i) q^{50} +(1.52922 + 2.44237i) q^{51} +(-7.42149 - 6.22737i) q^{52} +(1.43735 - 2.48957i) q^{53} +(-0.150455 + 0.0738858i) q^{54} -10.6125 q^{55} +(0.0537122 - 0.337047i) q^{56} +(-0.692577 - 1.10614i) q^{57} +(-0.000578989 - 0.00328361i) q^{58} +(-2.04118 - 11.5761i) q^{59} +(10.7741 + 8.40201i) q^{60} +(6.31104 + 5.29559i) q^{61} +(-0.143065 + 0.247795i) q^{62} +(0.685069 - 7.90763i) q^{63} +(3.98752 + 6.90658i) q^{64} +(3.32109 - 18.8349i) q^{65} +(0.142947 + 0.0463040i) q^{66} +(3.44392 + 1.25348i) q^{67} +(-2.54761 + 2.13770i) q^{68} +(-5.70786 + 5.14870i) q^{69} +(0.314541 - 0.120397i) q^{70} +(2.95503 + 5.11826i) q^{71} +(-0.216984 - 0.320445i) q^{72} +(-2.08581 - 3.61273i) q^{73} +(-0.00735617 + 0.0417189i) q^{74} +(-2.53219 + 18.1360i) q^{75} +(1.15380 - 0.968153i) q^{76} +(-5.37439 + 4.66291i) q^{77} +(-0.126913 + 0.239208i) q^{78} +(8.24914 - 3.00244i) q^{79} +(-7.88006 + 13.6487i) q^{80} +(-5.56647 - 7.07209i) q^{81} +(-0.0289726 - 0.0501821i) q^{82} +(-3.12320 + 17.7126i) q^{83} +(9.14785 - 0.478939i) q^{84} +(-6.16935 - 2.24546i) q^{85} +(0.0894389 + 0.0325531i) q^{86} +(0.165931 - 0.0672145i) q^{87} +(-0.0602419 + 0.341649i) q^{88} -9.24903 q^{89} +(0.166791 - 0.343542i) q^{90} +(-6.59374 - 10.9976i) q^{91} +(-6.79595 - 5.70248i) q^{92} +(-14.6156 - 4.73435i) q^{93} +(-0.214167 - 0.0779504i) q^{94} +(2.79406 + 1.01696i) q^{95} +(0.497509 - 0.448772i) q^{96} +(4.56635 + 3.83162i) q^{97} +(0.106390 - 0.199174i) q^{98} +(-0.828875 + 8.02525i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 3 q^{11} - 3 q^{12} - 12 q^{13} + 15 q^{14} - 9 q^{16} - 54 q^{17} - 3 q^{18} - 6 q^{19} - 18 q^{20} - 21 q^{21} - 12 q^{22} + 45 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 57 q^{30} - 3 q^{31} + 51 q^{32} + 15 q^{33} - 18 q^{34} - 12 q^{35} - 60 q^{36} + 3 q^{37} - 57 q^{38} - 66 q^{39} - 66 q^{40} + 33 q^{42} - 12 q^{43} + 3 q^{44} + 33 q^{45} + 3 q^{46} - 21 q^{47} + 90 q^{48} + 12 q^{49} - 39 q^{50} - 48 q^{51} + 9 q^{52} + 9 q^{53} - 63 q^{54} - 24 q^{55} + 57 q^{56} - 18 q^{57} - 3 q^{58} - 18 q^{59} + 81 q^{60} + 33 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} + 81 q^{65} + 69 q^{66} - 3 q^{67} + 6 q^{68} - 6 q^{69} - 42 q^{70} - 18 q^{71} - 105 q^{72} + 21 q^{73} - 93 q^{74} + 18 q^{75} - 24 q^{76} + 87 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} + 39 q^{81} - 6 q^{82} - 42 q^{83} - 36 q^{84} - 63 q^{85} + 159 q^{86} + 30 q^{87} + 57 q^{88} - 150 q^{89} - 39 q^{90} + 6 q^{91} - 66 q^{92} - 27 q^{93} + 33 q^{94} - 147 q^{95} + 81 q^{96} - 12 q^{97} + 99 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0303128 0.0110329i 0.0214344 0.00780147i −0.331281 0.943532i \(-0.607481\pi\)
0.352715 + 0.935731i \(0.385258\pi\)
\(3\) 0.919170 + 1.46804i 0.530683 + 0.847571i
\(4\) −1.53129 + 1.28491i −0.765646 + 0.642453i
\(5\) −3.70820 1.34968i −1.65836 0.603593i −0.668255 0.743932i \(-0.732959\pi\)
−0.990104 + 0.140339i \(0.955181\pi\)
\(6\) 0.0440593 + 0.0343591i 0.0179871 + 0.0140270i
\(7\) −2.47092 + 0.945798i −0.933921 + 0.357478i
\(8\) −0.0644996 + 0.111717i −0.0228040 + 0.0394978i
\(9\) −1.31025 + 2.69875i −0.436752 + 0.899582i
\(10\) −0.127297 −0.0402548
\(11\) 2.52713 0.919799i 0.761958 0.277330i 0.0683291 0.997663i \(-0.478233\pi\)
0.693628 + 0.720333i \(0.256011\pi\)
\(12\) −3.29380 1.06694i −0.950839 0.308000i
\(13\) 0.841596 + 4.77293i 0.233417 + 1.32377i 0.845923 + 0.533306i \(0.179050\pi\)
−0.612506 + 0.790466i \(0.709838\pi\)
\(14\) −0.0644656 + 0.0559313i −0.0172292 + 0.0149483i
\(15\) −1.42710 6.68435i −0.368475 1.72589i
\(16\) 0.693509 3.93308i 0.173377 0.983271i
\(17\) 1.66370 0.403507 0.201754 0.979436i \(-0.435336\pi\)
0.201754 + 0.979436i \(0.435336\pi\)
\(18\) −0.00994232 + 0.0962625i −0.00234343 + 0.0226893i
\(19\) −0.753482 −0.172861 −0.0864303 0.996258i \(-0.527546\pi\)
−0.0864303 + 0.996258i \(0.527546\pi\)
\(20\) 7.41255 2.69795i 1.65750 0.603279i
\(21\) −3.65966 2.75805i −0.798604 0.601857i
\(22\) 0.0664561 0.0557633i 0.0141685 0.0118888i
\(23\) 0.770659 + 4.37062i 0.160694 + 0.911338i 0.953394 + 0.301727i \(0.0975632\pi\)
−0.792701 + 0.609611i \(0.791326\pi\)
\(24\) −0.223290 + 0.00799880i −0.0455789 + 0.00163275i
\(25\) 8.09892 + 6.79580i 1.61978 + 1.35916i
\(26\) 0.0781705 + 0.135395i 0.0153305 + 0.0265532i
\(27\) −5.16620 + 0.557106i −0.994236 + 0.107215i
\(28\) 2.56844 4.62320i 0.485390 0.873703i
\(29\) 0.0179486 0.101792i 0.00333297 0.0189022i −0.983096 0.183091i \(-0.941390\pi\)
0.986429 + 0.164189i \(0.0525007\pi\)
\(30\) −0.117007 0.186876i −0.0213625 0.0341188i
\(31\) −6.79480 + 5.70151i −1.22038 + 1.02402i −0.221577 + 0.975143i \(0.571120\pi\)
−0.998805 + 0.0488790i \(0.984435\pi\)
\(32\) −0.0671723 0.380953i −0.0118745 0.0673436i
\(33\) 3.67316 + 2.86446i 0.639414 + 0.498639i
\(34\) 0.0504314 0.0183555i 0.00864892 0.00314795i
\(35\) 10.4392 0.172267i 1.76455 0.0291184i
\(36\) −1.46125 5.81612i −0.243542 0.969354i
\(37\) −0.656616 + 1.13729i −0.107947 + 0.186970i −0.914938 0.403593i \(-0.867761\pi\)
0.806991 + 0.590563i \(0.201094\pi\)
\(38\) −0.0228401 + 0.00831312i −0.00370516 + 0.00134857i
\(39\) −6.23325 + 5.62262i −0.998119 + 0.900340i
\(40\) 0.389959 0.327214i 0.0616579 0.0517371i
\(41\) −0.311924 1.76901i −0.0487143 0.276272i 0.950714 0.310068i \(-0.100352\pi\)
−0.999429 + 0.0337952i \(0.989241\pi\)
\(42\) −0.141364 0.0432274i −0.0218129 0.00667013i
\(43\) 2.26024 + 1.89657i 0.344684 + 0.289224i 0.798651 0.601794i \(-0.205547\pi\)
−0.453967 + 0.891018i \(0.649992\pi\)
\(44\) −2.68791 + 4.65560i −0.405218 + 0.701859i
\(45\) 8.50112 8.23908i 1.26727 1.22821i
\(46\) 0.0715817 + 0.123983i 0.0105541 + 0.0182803i
\(47\) −5.41229 4.54145i −0.789463 0.662438i 0.156149 0.987733i \(-0.450092\pi\)
−0.945613 + 0.325295i \(0.894536\pi\)
\(48\) 6.41136 2.59708i 0.925400 0.374856i
\(49\) 5.21093 4.67399i 0.744419 0.667713i
\(50\) 0.320478 + 0.116645i 0.0453225 + 0.0164960i
\(51\) 1.52922 + 2.44237i 0.214134 + 0.342001i
\(52\) −7.42149 6.22737i −1.02918 0.863581i
\(53\) 1.43735 2.48957i 0.197436 0.341968i −0.750261 0.661142i \(-0.770072\pi\)
0.947696 + 0.319174i \(0.103405\pi\)
\(54\) −0.150455 + 0.0738858i −0.0204744 + 0.0100546i
\(55\) −10.6125 −1.43099
\(56\) 0.0537122 0.337047i 0.00717760 0.0450398i
\(57\) −0.692577 1.10614i −0.0917341 0.146511i
\(58\) −0.000578989 0.00328361i −7.60250e−5 0.000431159i
\(59\) −2.04118 11.5761i −0.265739 1.50708i −0.766922 0.641740i \(-0.778213\pi\)
0.501183 0.865341i \(-0.332898\pi\)
\(60\) 10.7741 + 8.40201i 1.39093 + 1.08469i
\(61\) 6.31104 + 5.29559i 0.808046 + 0.678031i 0.950141 0.311822i \(-0.100939\pi\)
−0.142095 + 0.989853i \(0.545384\pi\)
\(62\) −0.143065 + 0.247795i −0.0181692 + 0.0314700i
\(63\) 0.685069 7.90763i 0.0863106 0.996268i
\(64\) 3.98752 + 6.90658i 0.498440 + 0.863323i
\(65\) 3.32109 18.8349i 0.411931 2.33618i
\(66\) 0.142947 + 0.0463040i 0.0175956 + 0.00569963i
\(67\) 3.44392 + 1.25348i 0.420742 + 0.153138i 0.543710 0.839273i \(-0.317019\pi\)
−0.122968 + 0.992411i \(0.539241\pi\)
\(68\) −2.54761 + 2.13770i −0.308944 + 0.259234i
\(69\) −5.70786 + 5.14870i −0.687146 + 0.619831i
\(70\) 0.314541 0.120397i 0.0375948 0.0143902i
\(71\) 2.95503 + 5.11826i 0.350698 + 0.607426i 0.986372 0.164531i \(-0.0526112\pi\)
−0.635674 + 0.771957i \(0.719278\pi\)
\(72\) −0.216984 0.320445i −0.0255718 0.0377648i
\(73\) −2.08581 3.61273i −0.244126 0.422838i 0.717760 0.696291i \(-0.245168\pi\)
−0.961885 + 0.273453i \(0.911834\pi\)
\(74\) −0.00735617 + 0.0417189i −0.000855138 + 0.00484973i
\(75\) −2.53219 + 18.1360i −0.292393 + 2.09416i
\(76\) 1.15380 0.968153i 0.132350 0.111055i
\(77\) −5.37439 + 4.66291i −0.612469 + 0.531388i
\(78\) −0.126913 + 0.239208i −0.0143701 + 0.0270850i
\(79\) 8.24914 3.00244i 0.928101 0.337801i 0.166644 0.986017i \(-0.446707\pi\)
0.761457 + 0.648216i \(0.224485\pi\)
\(80\) −7.88006 + 13.6487i −0.881017 + 1.52597i
\(81\) −5.56647 7.07209i −0.618496 0.785788i
\(82\) −0.0289726 0.0501821i −0.00319949 0.00554168i
\(83\) −3.12320 + 17.7126i −0.342816 + 1.94421i −0.0137360 + 0.999906i \(0.504372\pi\)
−0.329080 + 0.944302i \(0.606739\pi\)
\(84\) 9.14785 0.478939i 0.998113 0.0522565i
\(85\) −6.16935 2.24546i −0.669160 0.243554i
\(86\) 0.0894389 + 0.0325531i 0.00964445 + 0.00351029i
\(87\) 0.165931 0.0672145i 0.0177897 0.00720615i
\(88\) −0.0602419 + 0.341649i −0.00642180 + 0.0364199i
\(89\) −9.24903 −0.980395 −0.490198 0.871611i \(-0.663075\pi\)
−0.490198 + 0.871611i \(0.663075\pi\)
\(90\) 0.166791 0.343542i 0.0175813 0.0362125i
\(91\) −6.59374 10.9976i −0.691212 1.15286i
\(92\) −6.79595 5.70248i −0.708527 0.594524i
\(93\) −14.6156 4.73435i −1.51557 0.490929i
\(94\) −0.214167 0.0779504i −0.0220896 0.00803997i
\(95\) 2.79406 + 1.01696i 0.286665 + 0.104337i
\(96\) 0.497509 0.448772i 0.0507768 0.0458026i
\(97\) 4.56635 + 3.83162i 0.463642 + 0.389042i 0.844469 0.535604i \(-0.179916\pi\)
−0.380827 + 0.924646i \(0.624361\pi\)
\(98\) 0.106390 0.199174i 0.0107470 0.0201196i
\(99\) −0.828875 + 8.02525i −0.0833051 + 0.806568i
\(100\) −21.1338 −2.11338
\(101\) −2.59079 + 14.6931i −0.257793 + 1.46202i 0.531007 + 0.847367i \(0.321814\pi\)
−0.788800 + 0.614650i \(0.789297\pi\)
\(102\) 0.0733016 + 0.0571633i 0.00725794 + 0.00566001i
\(103\) 2.03908 + 0.742165i 0.200917 + 0.0731277i 0.440518 0.897744i \(-0.354795\pi\)
−0.239602 + 0.970871i \(0.577017\pi\)
\(104\) −0.587497 0.213832i −0.0576089 0.0209679i
\(105\) 9.84830 + 15.1668i 0.961095 + 1.48013i
\(106\) 0.0161029 0.0913240i 0.00156405 0.00887017i
\(107\) 6.90622 + 11.9619i 0.667649 + 1.15640i 0.978560 + 0.205963i \(0.0660328\pi\)
−0.310910 + 0.950439i \(0.600634\pi\)
\(108\) 7.19513 7.49118i 0.692352 0.720839i
\(109\) 4.72436 8.18284i 0.452512 0.783774i −0.546029 0.837766i \(-0.683861\pi\)
0.998541 + 0.0539923i \(0.0171946\pi\)
\(110\) −0.321695 + 0.117087i −0.0306724 + 0.0111639i
\(111\) −2.27313 + 0.0814291i −0.215756 + 0.00772891i
\(112\) 2.00630 + 10.3743i 0.189577 + 0.980276i
\(113\) 7.33190 6.15220i 0.689727 0.578750i −0.229103 0.973402i \(-0.573579\pi\)
0.918831 + 0.394652i \(0.129135\pi\)
\(114\) −0.0331979 0.0258889i −0.00310927 0.00242472i
\(115\) 3.04116 17.2473i 0.283590 1.60832i
\(116\) 0.103308 + 0.178935i 0.00959191 + 0.0166137i
\(117\) −13.9836 3.98249i −1.29279 0.368182i
\(118\) −0.189592 0.328384i −0.0174534 0.0302302i
\(119\) −4.11088 + 1.57353i −0.376844 + 0.144245i
\(120\) 0.838800 + 0.271708i 0.0765716 + 0.0248034i
\(121\) −2.88615 + 2.42176i −0.262377 + 0.220160i
\(122\) 0.249731 + 0.0908947i 0.0226096 + 0.00822922i
\(123\) 2.31025 2.08393i 0.208309 0.187902i
\(124\) 3.07891 17.4614i 0.276494 1.56808i
\(125\) −10.9948 19.0436i −0.983409 1.70331i
\(126\) −0.0664782 0.247261i −0.00592235 0.0220277i
\(127\) 2.18105 3.77770i 0.193537 0.335216i −0.752883 0.658155i \(-0.771337\pi\)
0.946420 + 0.322938i \(0.104671\pi\)
\(128\) 0.789730 + 0.662662i 0.0698029 + 0.0585716i
\(129\) −0.706683 + 5.06138i −0.0622200 + 0.445630i
\(130\) −0.107132 0.607578i −0.00939614 0.0532881i
\(131\) −0.752768 4.26916i −0.0657696 0.372998i −0.999872 0.0159930i \(-0.994909\pi\)
0.934102 0.357005i \(-0.116202\pi\)
\(132\) −9.30524 + 0.333337i −0.809917 + 0.0290132i
\(133\) 1.86180 0.712642i 0.161438 0.0617939i
\(134\) 0.118224 0.0102130
\(135\) 19.9092 + 4.90683i 1.71351 + 0.422313i
\(136\) −0.107308 + 0.185863i −0.00920159 + 0.0159376i
\(137\) 0.386077 + 0.323957i 0.0329848 + 0.0276775i 0.659131 0.752028i \(-0.270924\pi\)
−0.626146 + 0.779706i \(0.715369\pi\)
\(138\) −0.116216 + 0.219046i −0.00989295 + 0.0186464i
\(139\) 9.66255 + 3.51688i 0.819567 + 0.298298i 0.717570 0.696487i \(-0.245255\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(140\) −15.7641 + 13.6772i −1.33231 + 1.15593i
\(141\) 1.69220 12.1198i 0.142509 1.02067i
\(142\) 0.146045 + 0.122546i 0.0122558 + 0.0102838i
\(143\) 6.51695 + 11.2877i 0.544975 + 0.943924i
\(144\) 9.70572 + 7.02494i 0.808810 + 0.585412i
\(145\) −0.203943 + 0.353239i −0.0169365 + 0.0293349i
\(146\) −0.103086 0.0864993i −0.00853144 0.00715873i
\(147\) 11.6513 + 3.35364i 0.960984 + 0.276603i
\(148\) −0.455844 2.58522i −0.0374701 0.212504i
\(149\) −11.9811 + 10.0533i −0.981530 + 0.823602i −0.984320 0.176394i \(-0.943557\pi\)
0.00278917 + 0.999996i \(0.499112\pi\)
\(150\) 0.123336 + 0.577690i 0.0100703 + 0.0471682i
\(151\) −8.93852 + 3.25336i −0.727407 + 0.264754i −0.679067 0.734077i \(-0.737615\pi\)
−0.0483399 + 0.998831i \(0.515393\pi\)
\(152\) 0.0485992 0.0841764i 0.00394192 0.00682760i
\(153\) −2.17987 + 4.48991i −0.176232 + 0.362988i
\(154\) −0.111467 + 0.200641i −0.00898228 + 0.0161681i
\(155\) 32.8917 11.9716i 2.64192 0.961581i
\(156\) 2.32039 16.6190i 0.185780 1.33059i
\(157\) 1.38639 + 7.86263i 0.110646 + 0.627506i 0.988814 + 0.149153i \(0.0476548\pi\)
−0.878168 + 0.478353i \(0.841234\pi\)
\(158\) 0.216929 0.182025i 0.0172579 0.0144811i
\(159\) 4.97594 0.178251i 0.394618 0.0141362i
\(160\) −0.265074 + 1.50331i −0.0209560 + 0.118847i
\(161\) −6.03797 10.0706i −0.475859 0.793674i
\(162\) −0.246761 0.152960i −0.0193874 0.0120177i
\(163\) 10.4429 + 18.0876i 0.817952 + 1.41673i 0.907189 + 0.420723i \(0.138224\pi\)
−0.0892373 + 0.996010i \(0.528443\pi\)
\(164\) 2.75065 + 2.30807i 0.214790 + 0.180230i
\(165\) −9.75472 15.5796i −0.759404 1.21287i
\(166\) 0.100749 + 0.571375i 0.00781963 + 0.0443473i
\(167\) −3.51101 + 2.94608i −0.271690 + 0.227975i −0.768445 0.639916i \(-0.778969\pi\)
0.496755 + 0.867891i \(0.334525\pi\)
\(168\) 0.544167 0.230952i 0.0419834 0.0178183i
\(169\) −9.85653 + 3.58749i −0.758195 + 0.275960i
\(170\) −0.211784 −0.0162431
\(171\) 0.987253 2.03346i 0.0754971 0.155502i
\(172\) −5.89800 −0.449718
\(173\) 2.57715 14.6157i 0.195937 1.11121i −0.715141 0.698980i \(-0.753638\pi\)
0.911078 0.412234i \(-0.135251\pi\)
\(174\) 0.00428826 0.00386817i 0.000325092 0.000293245i
\(175\) −26.4393 9.13196i −1.99862 0.690312i
\(176\) −1.86506 10.5773i −0.140584 0.797293i
\(177\) 15.1179 13.6369i 1.13633 1.02501i
\(178\) −0.280364 + 0.102044i −0.0210141 + 0.00764852i
\(179\) −5.11532 −0.382337 −0.191168 0.981557i \(-0.561228\pi\)
−0.191168 + 0.981557i \(0.561228\pi\)
\(180\) −2.43125 + 23.5396i −0.181215 + 1.75454i
\(181\) 9.84429 17.0508i 0.731720 1.26738i −0.224427 0.974491i \(-0.572051\pi\)
0.956147 0.292886i \(-0.0946155\pi\)
\(182\) −0.321210 0.260618i −0.0238097 0.0193183i
\(183\) −1.97320 + 14.1324i −0.145863 + 1.04470i
\(184\) −0.537978 0.195808i −0.0396603 0.0144352i
\(185\) 3.96984 3.33109i 0.291869 0.244907i
\(186\) −0.495273 + 0.0177419i −0.0363152 + 0.00130090i
\(187\) 4.20439 1.53027i 0.307455 0.111905i
\(188\) 14.1231 1.03003
\(189\) 12.2384 6.26275i 0.890211 0.455548i
\(190\) 0.0959158 0.00695846
\(191\) −8.82949 + 3.21367i −0.638879 + 0.232533i −0.641091 0.767465i \(-0.721518\pi\)
0.00221224 + 0.999998i \(0.499296\pi\)
\(192\) −6.47390 + 12.2021i −0.467214 + 0.880614i
\(193\) 8.08871 6.78724i 0.582238 0.488556i −0.303443 0.952850i \(-0.598136\pi\)
0.885681 + 0.464294i \(0.153692\pi\)
\(194\) 0.180693 + 0.0657668i 0.0129730 + 0.00472178i
\(195\) 30.7029 12.4369i 2.19868 0.890628i
\(196\) −1.97381 + 13.8528i −0.140987 + 0.989486i
\(197\) 1.56004 2.70208i 0.111149 0.192515i −0.805085 0.593159i \(-0.797880\pi\)
0.916234 + 0.400644i \(0.131214\pi\)
\(198\) 0.0634166 + 0.252412i 0.00450682 + 0.0179382i
\(199\) 8.82336 0.625471 0.312736 0.949840i \(-0.398755\pi\)
0.312736 + 0.949840i \(0.398755\pi\)
\(200\) −1.28158 + 0.466457i −0.0906214 + 0.0329835i
\(201\) 1.32539 + 6.20796i 0.0934856 + 0.437876i
\(202\) 0.0835741 + 0.473972i 0.00588025 + 0.0333486i
\(203\) 0.0519246 + 0.268495i 0.00364440 + 0.0188446i
\(204\) −5.47991 1.77508i −0.383670 0.124280i
\(205\) −1.23091 + 6.98083i −0.0859704 + 0.487562i
\(206\) 0.0699985 0.00487702
\(207\) −12.8050 3.64682i −0.890007 0.253471i
\(208\) 19.3560 1.34210
\(209\) −1.90414 + 0.693052i −0.131712 + 0.0479394i
\(210\) 0.465863 + 0.351092i 0.0321476 + 0.0242276i
\(211\) −18.1592 + 15.2374i −1.25013 + 1.04898i −0.253468 + 0.967344i \(0.581571\pi\)
−0.996662 + 0.0816394i \(0.973984\pi\)
\(212\) 0.997855 + 5.65912i 0.0685330 + 0.388670i
\(213\) −4.79761 + 9.04264i −0.328727 + 0.619591i
\(214\) 0.341322 + 0.286403i 0.0233323 + 0.0195781i
\(215\) −5.82168 10.0835i −0.397035 0.687686i
\(216\) 0.270980 0.613083i 0.0184378 0.0417150i
\(217\) 11.3969 20.5145i 0.773675 1.39262i
\(218\) 0.0529277 0.300168i 0.00358472 0.0203300i
\(219\) 3.38640 6.38276i 0.228832 0.431307i
\(220\) 16.2509 13.6361i 1.09563 0.919346i
\(221\) 1.40016 + 7.94073i 0.0941853 + 0.534151i
\(222\) −0.0680064 + 0.0275476i −0.00456429 + 0.00184888i
\(223\) −0.334278 + 0.121667i −0.0223849 + 0.00814745i −0.353188 0.935552i \(-0.614903\pi\)
0.330803 + 0.943700i \(0.392680\pi\)
\(224\) 0.526282 + 0.877774i 0.0351637 + 0.0586487i
\(225\) −28.9518 + 12.9527i −1.93012 + 0.863514i
\(226\) 0.154373 0.267383i 0.0102688 0.0177860i
\(227\) −11.0233 + 4.01214i −0.731639 + 0.266295i −0.680859 0.732415i \(-0.738393\pi\)
−0.0507807 + 0.998710i \(0.516171\pi\)
\(228\) 2.48182 + 0.803922i 0.164363 + 0.0532410i
\(229\) 13.9724 11.7242i 0.923323 0.774760i −0.0512835 0.998684i \(-0.516331\pi\)
0.974607 + 0.223924i \(0.0718868\pi\)
\(230\) −0.0981024 0.556367i −0.00646868 0.0366857i
\(231\) −11.7853 3.60380i −0.775415 0.237113i
\(232\) 0.0102141 + 0.00857066i 0.000670590 + 0.000562692i
\(233\) 13.3533 23.1286i 0.874803 1.51520i 0.0178301 0.999841i \(-0.494324\pi\)
0.856973 0.515362i \(-0.172342\pi\)
\(234\) −0.467821 + 0.0335601i −0.0305824 + 0.00219389i
\(235\) 13.9404 + 24.1454i 0.909370 + 1.57507i
\(236\) 17.9999 + 15.1037i 1.17169 + 0.983166i
\(237\) 11.9900 + 9.35028i 0.778837 + 0.607366i
\(238\) −0.107252 + 0.0930531i −0.00695209 + 0.00603174i
\(239\) −9.78283 3.56066i −0.632799 0.230320i 0.00565038 0.999984i \(-0.498201\pi\)
−0.638449 + 0.769664i \(0.720424\pi\)
\(240\) −27.2798 + 0.977231i −1.76090 + 0.0630800i
\(241\) −9.42034 7.90460i −0.606817 0.509180i 0.286811 0.957987i \(-0.407405\pi\)
−0.893629 + 0.448807i \(0.851849\pi\)
\(242\) −0.0607679 + 0.105253i −0.00390631 + 0.00676593i
\(243\) 5.26555 14.6722i 0.337785 0.941223i
\(244\) −16.4684 −1.05428
\(245\) −25.6316 + 10.2990i −1.63754 + 0.657982i
\(246\) 0.0470383 0.0886587i 0.00299905 0.00565267i
\(247\) −0.634127 3.59631i −0.0403485 0.228828i
\(248\) −0.198692 1.12684i −0.0126169 0.0715542i
\(249\) −28.8734 + 11.6959i −1.82978 + 0.741197i
\(250\) −0.543392 0.455960i −0.0343671 0.0288374i
\(251\) −7.54312 + 13.0651i −0.476118 + 0.824660i −0.999626 0.0273608i \(-0.991290\pi\)
0.523508 + 0.852021i \(0.324623\pi\)
\(252\) 9.11153 + 12.9891i 0.573972 + 0.818239i
\(253\) 5.96765 + 10.3363i 0.375183 + 0.649836i
\(254\) 0.0244347 0.138576i 0.00153317 0.00869503i
\(255\) −2.37426 11.1208i −0.148682 0.696410i
\(256\) −14.9569 5.44387i −0.934807 0.340242i
\(257\) 8.27056 6.93982i 0.515903 0.432894i −0.347297 0.937755i \(-0.612901\pi\)
0.863201 + 0.504861i \(0.168456\pi\)
\(258\) 0.0344204 + 0.161221i 0.00214292 + 0.0100372i
\(259\) 0.546799 3.43119i 0.0339765 0.213204i
\(260\) 19.1155 + 33.1090i 1.18549 + 2.05333i
\(261\) 0.251192 + 0.181811i 0.0155484 + 0.0112538i
\(262\) −0.0699199 0.121105i −0.00431966 0.00748188i
\(263\) 2.69620 15.2909i 0.166255 0.942877i −0.781507 0.623897i \(-0.785549\pi\)
0.947761 0.318980i \(-0.103340\pi\)
\(264\) −0.556925 + 0.225596i −0.0342763 + 0.0138845i
\(265\) −8.69010 + 7.29186i −0.533829 + 0.447936i
\(266\) 0.0485737 0.0421432i 0.00297824 0.00258397i
\(267\) −8.50143 13.5779i −0.520279 0.830954i
\(268\) −6.88426 + 2.50567i −0.420523 + 0.153058i
\(269\) 5.78363 10.0175i 0.352634 0.610780i −0.634076 0.773271i \(-0.718619\pi\)
0.986710 + 0.162491i \(0.0519528\pi\)
\(270\) 0.657641 0.0709178i 0.0400228 0.00431592i
\(271\) −4.43407 7.68004i −0.269351 0.466529i 0.699344 0.714786i \(-0.253476\pi\)
−0.968694 + 0.248257i \(0.920142\pi\)
\(272\) 1.15379 6.54348i 0.0699589 0.396757i
\(273\) 10.0840 19.7885i 0.610313 1.19765i
\(274\) 0.0152773 + 0.00556047i 0.000922933 + 0.000335920i
\(275\) 26.7178 + 9.72448i 1.61114 + 0.586408i
\(276\) 2.12481 15.2182i 0.127898 0.916030i
\(277\) 0.367346 2.08332i 0.0220717 0.125175i −0.971781 0.235884i \(-0.924201\pi\)
0.993853 + 0.110710i \(0.0353124\pi\)
\(278\) 0.331700 0.0198941
\(279\) −6.48402 25.8079i −0.388188 1.54508i
\(280\) −0.654079 + 1.17734i −0.0390887 + 0.0703597i
\(281\) 1.89531 + 1.59035i 0.113065 + 0.0948724i 0.697567 0.716519i \(-0.254266\pi\)
−0.584503 + 0.811392i \(0.698710\pi\)
\(282\) −0.0824218 0.386054i −0.00490815 0.0229892i
\(283\) 14.8229 + 5.39510i 0.881130 + 0.320705i 0.742666 0.669662i \(-0.233561\pi\)
0.138465 + 0.990367i \(0.455783\pi\)
\(284\) −11.1015 4.04062i −0.658753 0.239766i
\(285\) 1.07529 + 5.03654i 0.0636947 + 0.298339i
\(286\) 0.322083 + 0.270260i 0.0190452 + 0.0159808i
\(287\) 2.44386 + 4.07606i 0.144257 + 0.240602i
\(288\) 1.11611 + 0.317864i 0.0657673 + 0.0187303i
\(289\) −14.2321 −0.837182
\(290\) −0.00228480 + 0.0129577i −0.000134168 + 0.000760904i
\(291\) −1.42771 + 10.2255i −0.0836936 + 0.599427i
\(292\) 7.83601 + 2.85207i 0.458568 + 0.166905i
\(293\) 24.9842 + 9.09352i 1.45959 + 0.531249i 0.945254 0.326337i \(-0.105814\pi\)
0.514341 + 0.857586i \(0.328036\pi\)
\(294\) 0.390184 0.0268902i 0.0227560 0.00156827i
\(295\) −8.05488 + 45.6815i −0.468973 + 2.65968i
\(296\) −0.0847030 0.146710i −0.00492326 0.00852734i
\(297\) −12.5432 + 6.15974i −0.727832 + 0.357425i
\(298\) −0.252263 + 0.436932i −0.0146132 + 0.0253108i
\(299\) −20.2121 + 7.35660i −1.16890 + 0.425443i
\(300\) −19.4255 31.0251i −1.12153 1.79124i
\(301\) −7.37866 2.54854i −0.425299 0.146896i
\(302\) −0.235057 + 0.197236i −0.0135260 + 0.0113497i
\(303\) −23.9513 + 9.70207i −1.37597 + 0.557370i
\(304\) −0.522546 + 2.96351i −0.0299701 + 0.169969i
\(305\) −16.2553 28.1550i −0.930775 1.61215i
\(306\) −0.0165411 + 0.160152i −0.000945590 + 0.00915529i
\(307\) 5.29520 + 9.17155i 0.302213 + 0.523448i 0.976637 0.214896i \(-0.0689413\pi\)
−0.674424 + 0.738344i \(0.735608\pi\)
\(308\) 2.23837 14.0459i 0.127543 0.800337i
\(309\) 0.784737 + 3.67562i 0.0446421 + 0.209099i
\(310\) 0.864956 0.725784i 0.0491262 0.0412218i
\(311\) 17.6456 + 6.42249i 1.00059 + 0.364186i 0.789813 0.613348i \(-0.210178\pi\)
0.210780 + 0.977534i \(0.432400\pi\)
\(312\) −0.226097 1.05901i −0.0128002 0.0599549i
\(313\) −5.57157 + 31.5979i −0.314924 + 1.78602i 0.257724 + 0.966219i \(0.417027\pi\)
−0.572648 + 0.819802i \(0.694084\pi\)
\(314\) 0.128773 + 0.223042i 0.00726710 + 0.0125870i
\(315\) −13.2131 + 28.3985i −0.744475 + 1.60007i
\(316\) −8.77398 + 15.1970i −0.493575 + 0.854897i
\(317\) 5.25691 + 4.41107i 0.295257 + 0.247750i 0.778367 0.627810i \(-0.216048\pi\)
−0.483110 + 0.875560i \(0.660493\pi\)
\(318\) 0.148868 0.0603026i 0.00834811 0.00338160i
\(319\) −0.0482694 0.273749i −0.00270257 0.0153270i
\(320\) −5.46488 30.9929i −0.305496 1.73255i
\(321\) −11.2125 + 21.1336i −0.625823 + 1.17956i
\(322\) −0.294136 0.238651i −0.0163916 0.0132995i
\(323\) −1.25357 −0.0697505
\(324\) 17.6109 + 3.67705i 0.978381 + 0.204280i
\(325\) −25.6198 + 44.3749i −1.42113 + 2.46147i
\(326\) 0.516114 + 0.433071i 0.0285849 + 0.0239856i
\(327\) 16.3552 0.585884i 0.904444 0.0323994i
\(328\) 0.217746 + 0.0792532i 0.0120230 + 0.00437602i
\(329\) 17.6686 + 6.10264i 0.974104 + 0.336449i
\(330\) −0.467581 0.364637i −0.0257395 0.0200726i
\(331\) 2.02724 + 1.70106i 0.111427 + 0.0934985i 0.696799 0.717266i \(-0.254607\pi\)
−0.585372 + 0.810765i \(0.699051\pi\)
\(332\) −17.9765 31.1361i −0.986586 1.70882i
\(333\) −2.20893 3.26218i −0.121049 0.178767i
\(334\) −0.0739244 + 0.128041i −0.00404496 + 0.00700608i
\(335\) −11.0790 9.29635i −0.605308 0.507914i
\(336\) −13.3857 + 12.4810i −0.730248 + 0.680896i
\(337\) −1.96653 11.1527i −0.107123 0.607527i −0.990351 0.138582i \(-0.955745\pi\)
0.883227 0.468945i \(-0.155366\pi\)
\(338\) −0.259198 + 0.217493i −0.0140985 + 0.0118301i
\(339\) 15.7709 + 5.10858i 0.856558 + 0.277460i
\(340\) 12.3323 4.48858i 0.668811 0.243427i
\(341\) −11.9271 + 20.6583i −0.645887 + 1.11871i
\(342\) 0.00749136 0.0725320i 0.000405086 0.00392208i
\(343\) −8.45516 + 16.4776i −0.456536 + 0.889705i
\(344\) −0.357663 + 0.130179i −0.0192839 + 0.00701876i
\(345\) 28.1150 11.3887i 1.51366 0.613145i
\(346\) −0.0831341 0.471477i −0.00446932 0.0253468i
\(347\) 18.3420 15.3908i 0.984652 0.826221i −0.000132581 1.00000i \(-0.500042\pi\)
0.984785 + 0.173779i \(0.0555978\pi\)
\(348\) −0.167725 + 0.316131i −0.00899100 + 0.0169464i
\(349\) 4.47083 25.3553i 0.239318 1.35724i −0.594008 0.804459i \(-0.702455\pi\)
0.833326 0.552781i \(-0.186433\pi\)
\(350\) −0.902200 + 0.0148880i −0.0482246 + 0.000795798i
\(351\) −7.00688 24.1890i −0.373999 1.29112i
\(352\) −0.520153 0.900931i −0.0277242 0.0480198i
\(353\) 19.1986 + 16.1095i 1.02184 + 0.857423i 0.989857 0.142065i \(-0.0453743\pi\)
0.0319799 + 0.999489i \(0.489819\pi\)
\(354\) 0.307811 0.580169i 0.0163600 0.0308356i
\(355\) −4.04986 22.9679i −0.214944 1.21901i
\(356\) 14.1630 11.8841i 0.750635 0.629858i
\(357\) −6.08859 4.58858i −0.322242 0.242854i
\(358\) −0.155059 + 0.0564370i −0.00819515 + 0.00298279i
\(359\) 8.42993 0.444915 0.222457 0.974942i \(-0.428592\pi\)
0.222457 + 0.974942i \(0.428592\pi\)
\(360\) 0.372123 + 1.48113i 0.0196126 + 0.0780626i
\(361\) −18.4323 −0.970119
\(362\) 0.110287 0.625469i 0.00579656 0.0328739i
\(363\) −6.20809 2.01095i −0.325840 0.105548i
\(364\) 24.2278 + 8.36812i 1.26988 + 0.438609i
\(365\) 2.85860 + 16.2119i 0.149626 + 0.848570i
\(366\) 0.0961087 + 0.450162i 0.00502368 + 0.0235303i
\(367\) −13.2149 + 4.80983i −0.689813 + 0.251071i −0.663055 0.748571i \(-0.730740\pi\)
−0.0267577 + 0.999642i \(0.508518\pi\)
\(368\) 17.7245 0.923953
\(369\) 5.18280 + 1.47605i 0.269806 + 0.0768399i
\(370\) 0.0835852 0.144774i 0.00434539 0.00752643i
\(371\) −1.19696 + 7.51098i −0.0621431 + 0.389951i
\(372\) 28.4639 11.5300i 1.47579 0.597803i
\(373\) −7.08308 2.57803i −0.366748 0.133485i 0.152071 0.988370i \(-0.451406\pi\)
−0.518819 + 0.854884i \(0.673628\pi\)
\(374\) 0.110563 0.0927736i 0.00571709 0.00479721i
\(375\) 17.8506 33.6452i 0.921801 1.73743i
\(376\) 0.856445 0.311720i 0.0441678 0.0160758i
\(377\) 0.500949 0.0258002
\(378\) 0.301883 0.324867i 0.0155272 0.0167093i
\(379\) 28.7753 1.47809 0.739044 0.673657i \(-0.235278\pi\)
0.739044 + 0.673657i \(0.235278\pi\)
\(380\) −5.58522 + 2.03285i −0.286516 + 0.104283i
\(381\) 7.55055 0.270480i 0.386827 0.0138571i
\(382\) −0.232190 + 0.194830i −0.0118799 + 0.00996840i
\(383\) 7.01885 + 2.55465i 0.358646 + 0.130537i 0.515058 0.857155i \(-0.327770\pi\)
−0.156412 + 0.987692i \(0.549993\pi\)
\(384\) −0.246916 + 1.76845i −0.0126004 + 0.0902459i
\(385\) 26.2228 10.0373i 1.33644 0.511549i
\(386\) 0.170308 0.294982i 0.00866845 0.0150142i
\(387\) −8.07985 + 3.61483i −0.410722 + 0.183752i
\(388\) −11.9157 −0.604927
\(389\) −19.8965 + 7.24173i −1.00879 + 0.367170i −0.792969 0.609262i \(-0.791466\pi\)
−0.215823 + 0.976433i \(0.569243\pi\)
\(390\) 0.793473 0.715742i 0.0401791 0.0362430i
\(391\) 1.28215 + 7.27142i 0.0648410 + 0.367731i
\(392\) 0.186059 + 0.883618i 0.00939742 + 0.0446294i
\(393\) 5.57535 5.02917i 0.281239 0.253688i
\(394\) 0.0174774 0.0991193i 0.000880499 0.00499356i
\(395\) −34.6418 −1.74302
\(396\) −9.04244 13.3540i −0.454400 0.671065i
\(397\) 27.8419 1.39735 0.698673 0.715441i \(-0.253774\pi\)
0.698673 + 0.715441i \(0.253774\pi\)
\(398\) 0.267460 0.0973476i 0.0134066 0.00487960i
\(399\) 2.75749 + 2.07814i 0.138047 + 0.104037i
\(400\) 32.3451 27.1408i 1.61726 1.35704i
\(401\) −4.18351 23.7258i −0.208914 1.18481i −0.891160 0.453689i \(-0.850108\pi\)
0.682246 0.731123i \(-0.261003\pi\)
\(402\) 0.108668 + 0.173558i 0.00541988 + 0.00865627i
\(403\) −32.9314 27.6327i −1.64043 1.37648i
\(404\) −14.9120 25.8283i −0.741899 1.28501i
\(405\) 11.0966 + 33.7377i 0.551392 + 1.67644i
\(406\) 0.00453627 + 0.00756594i 0.000225131 + 0.000375491i
\(407\) −0.613272 + 3.47804i −0.0303988 + 0.172400i
\(408\) −0.371488 + 0.0133076i −0.0183914 + 0.000658826i
\(409\) 12.7810 10.7245i 0.631978 0.530292i −0.269565 0.962982i \(-0.586880\pi\)
0.901543 + 0.432690i \(0.142436\pi\)
\(410\) 0.0397069 + 0.225189i 0.00196098 + 0.0111213i
\(411\) −0.120710 + 0.864546i −0.00595419 + 0.0426449i
\(412\) −4.07604 + 1.48356i −0.200812 + 0.0730896i
\(413\) 15.9923 + 26.6731i 0.786928 + 1.31250i
\(414\) −0.428389 + 0.0307314i −0.0210542 + 0.00151036i
\(415\) 35.4877 61.4665i 1.74202 3.01727i
\(416\) 1.76173 0.641216i 0.0863758 0.0314382i
\(417\) 3.71862 + 17.4176i 0.182101 + 0.852942i
\(418\) −0.0500735 + 0.0420166i −0.00244917 + 0.00205510i
\(419\) −3.30513 18.7443i −0.161466 0.915721i −0.952633 0.304121i \(-0.901637\pi\)
0.791167 0.611600i \(-0.209474\pi\)
\(420\) −34.5685 10.5706i −1.68677 0.515794i
\(421\) 5.08767 + 4.26906i 0.247958 + 0.208061i 0.758292 0.651915i \(-0.226034\pi\)
−0.510334 + 0.859976i \(0.670478\pi\)
\(422\) −0.382342 + 0.662236i −0.0186121 + 0.0322371i
\(423\) 19.3477 8.65594i 0.940717 0.420866i
\(424\) 0.185417 + 0.321152i 0.00900466 + 0.0155965i
\(425\) 13.4742 + 11.3062i 0.653595 + 0.548431i
\(426\) −0.0456621 + 0.327039i −0.00221233 + 0.0158451i
\(427\) −20.6027 7.11603i −0.997033 0.344369i
\(428\) −25.9454 9.44335i −1.25412 0.456461i
\(429\) −10.5805 + 19.9424i −0.510834 + 0.962829i
\(430\) −0.287722 0.241427i −0.0138752 0.0116426i
\(431\) −0.575323 + 0.996489i −0.0277123 + 0.0479992i −0.879549 0.475808i \(-0.842156\pi\)
0.851837 + 0.523808i \(0.175489\pi\)
\(432\) −1.39166 + 20.7055i −0.0669563 + 0.996192i
\(433\) −10.6968 −0.514055 −0.257028 0.966404i \(-0.582743\pi\)
−0.257028 + 0.966404i \(0.582743\pi\)
\(434\) 0.119138 0.747594i 0.00571879 0.0358856i
\(435\) −0.706025 + 0.0252916i −0.0338513 + 0.00121264i
\(436\) 3.27980 + 18.6007i 0.157074 + 0.890811i
\(437\) −0.580677 3.29319i −0.0277776 0.157534i
\(438\) 0.0322306 0.230841i 0.00154004 0.0110300i
\(439\) −19.5171 16.3768i −0.931503 0.781624i 0.0445839 0.999006i \(-0.485804\pi\)
−0.976087 + 0.217382i \(0.930248\pi\)
\(440\) 0.684504 1.18560i 0.0326324 0.0565210i
\(441\) 5.78627 + 20.1871i 0.275537 + 0.961291i
\(442\) 0.130053 + 0.225258i 0.00618597 + 0.0107144i
\(443\) −5.83349 + 33.0834i −0.277157 + 1.57184i 0.454867 + 0.890559i \(0.349687\pi\)
−0.732024 + 0.681278i \(0.761424\pi\)
\(444\) 3.37619 3.04545i 0.160227 0.144531i
\(445\) 34.2973 + 12.4832i 1.62585 + 0.591760i
\(446\) −0.00879056 + 0.00737615i −0.000416245 + 0.000349271i
\(447\) −25.7713 8.34796i −1.21894 0.394845i
\(448\) −16.3851 13.2943i −0.774123 0.628095i
\(449\) −11.0779 19.1875i −0.522800 0.905516i −0.999648 0.0265304i \(-0.991554\pi\)
0.476848 0.878986i \(-0.341779\pi\)
\(450\) −0.734703 + 0.712056i −0.0346342 + 0.0335666i
\(451\) −2.41540 4.18360i −0.113737 0.196998i
\(452\) −3.32228 + 18.8416i −0.156267 + 0.886235i
\(453\) −12.9921 10.1317i −0.610420 0.476028i
\(454\) −0.289880 + 0.243238i −0.0136047 + 0.0114157i
\(455\) 9.60781 + 49.6806i 0.450421 + 2.32906i
\(456\) 0.168245 0.00602695i 0.00787878 0.000282238i
\(457\) 9.55339 3.47715i 0.446889 0.162654i −0.108766 0.994067i \(-0.534690\pi\)
0.555655 + 0.831413i \(0.312468\pi\)
\(458\) 0.294190 0.509551i 0.0137466 0.0238098i
\(459\) −8.59502 + 0.926858i −0.401181 + 0.0432620i
\(460\) 17.5043 + 30.3183i 0.816140 + 1.41360i
\(461\) 0.142962 0.810775i 0.00665838 0.0377616i −0.981298 0.192497i \(-0.938341\pi\)
0.987956 + 0.154735i \(0.0494525\pi\)
\(462\) −0.397005 + 0.0207854i −0.0184704 + 0.000967022i
\(463\) −10.3711 3.77477i −0.481985 0.175428i 0.0895886 0.995979i \(-0.471445\pi\)
−0.571574 + 0.820551i \(0.693667\pi\)
\(464\) −0.387907 0.141187i −0.0180081 0.00655442i
\(465\) 47.8078 + 37.2822i 2.21703 + 1.72892i
\(466\) 0.149599 0.848417i 0.00693003 0.0393022i
\(467\) 19.6268 0.908218 0.454109 0.890946i \(-0.349958\pi\)
0.454109 + 0.890946i \(0.349958\pi\)
\(468\) 26.5301 11.8693i 1.22636 0.548658i
\(469\) −9.69521 + 0.159989i −0.447683 + 0.00738762i
\(470\) 0.688967 + 0.578112i 0.0317797 + 0.0266663i
\(471\) −10.2683 + 9.26236i −0.473138 + 0.426787i
\(472\) 1.42490 + 0.518621i 0.0655863 + 0.0238714i
\(473\) 7.45638 + 2.71390i 0.342845 + 0.124785i
\(474\) 0.466613 + 0.151147i 0.0214322 + 0.00694242i
\(475\) −6.10239 5.12051i −0.279997 0.234945i
\(476\) 4.27313 7.69163i 0.195858 0.352545i
\(477\) 4.83542 + 7.14102i 0.221398 + 0.326965i
\(478\) −0.335829 −0.0153605
\(479\) −1.97315 + 11.1903i −0.0901556 + 0.511298i 0.905969 + 0.423344i \(0.139144\pi\)
−0.996125 + 0.0879538i \(0.971967\pi\)
\(480\) −2.45056 + 0.992659i −0.111852 + 0.0453085i
\(481\) −5.98082 2.17684i −0.272702 0.0992554i
\(482\) −0.372768 0.135676i −0.0169791 0.00617989i
\(483\) 9.23407 18.1205i 0.420165 0.824513i
\(484\) 1.30779 7.41686i 0.0594451 0.337130i
\(485\) −11.7615 20.3715i −0.534062 0.925023i
\(486\) −0.00226435 0.502850i −0.000102713 0.0228097i
\(487\) 2.67544 4.63401i 0.121236 0.209987i −0.799019 0.601305i \(-0.794648\pi\)
0.920255 + 0.391318i \(0.127981\pi\)
\(488\) −0.998665 + 0.363484i −0.0452074 + 0.0164542i
\(489\) −16.9545 + 31.9562i −0.766709 + 1.44511i
\(490\) −0.663335 + 0.594984i −0.0299664 + 0.0268786i
\(491\) −24.6086 + 20.6490i −1.11057 + 0.931878i −0.998090 0.0617756i \(-0.980324\pi\)
−0.112479 + 0.993654i \(0.535879\pi\)
\(492\) −0.860015 + 6.15957i −0.0387725 + 0.277695i
\(493\) 0.0298611 0.169351i 0.00134488 0.00762718i
\(494\) −0.0589001 0.102018i −0.00265004 0.00459000i
\(495\) 13.9051 28.6405i 0.624989 1.28730i
\(496\) 17.7123 + 30.6786i 0.795305 + 1.37751i
\(497\) −12.1425 9.85197i −0.544665 0.441921i
\(498\) −0.746194 + 0.673094i −0.0334377 + 0.0301621i
\(499\) −24.0547 + 20.1843i −1.07684 + 0.903575i −0.995654 0.0931244i \(-0.970315\pi\)
−0.0811839 + 0.996699i \(0.525870\pi\)
\(500\) 41.3056 + 15.0340i 1.84724 + 0.672341i
\(501\) −7.55217 2.44633i −0.337406 0.109294i
\(502\) −0.0845067 + 0.479261i −0.00377172 + 0.0213905i
\(503\) −6.05814 10.4930i −0.270119 0.467860i 0.698773 0.715343i \(-0.253730\pi\)
−0.968892 + 0.247484i \(0.920396\pi\)
\(504\) 0.839227 + 0.586573i 0.0373821 + 0.0261280i
\(505\) 29.4381 50.9882i 1.30998 2.26895i
\(506\) 0.294936 + 0.247480i 0.0131115 + 0.0110018i
\(507\) −14.3264 11.1722i −0.636257 0.496176i
\(508\) 1.51416 + 8.58721i 0.0671798 + 0.380996i
\(509\) 3.20646 + 18.1847i 0.142124 + 0.806024i 0.969632 + 0.244570i \(0.0786468\pi\)
−0.827508 + 0.561454i \(0.810242\pi\)
\(510\) −0.194665 0.310906i −0.00861993 0.0137672i
\(511\) 8.57080 + 6.95403i 0.379150 + 0.307628i
\(512\) −2.57529 −0.113813
\(513\) 3.89264 0.419769i 0.171864 0.0185333i
\(514\) 0.174137 0.301614i 0.00768085 0.0133036i
\(515\) −6.55964 5.50420i −0.289052 0.242544i
\(516\) −5.42126 8.65847i −0.238658 0.381168i
\(517\) −17.8548 6.49860i −0.785251 0.285808i
\(518\) −0.0212811 0.110042i −0.000935040 0.00483496i
\(519\) 23.8252 9.65099i 1.04581 0.423632i
\(520\) 1.88996 + 1.58586i 0.0828801 + 0.0695446i
\(521\) −13.1082 22.7040i −0.574279 0.994680i −0.996120 0.0880100i \(-0.971949\pi\)
0.421841 0.906670i \(-0.361384\pi\)
\(522\) 0.00962025 + 0.00273982i 0.000421067 + 0.000119919i
\(523\) −15.4813 + 26.8143i −0.676948 + 1.17251i 0.298948 + 0.954270i \(0.403364\pi\)
−0.975895 + 0.218238i \(0.929969\pi\)
\(524\) 6.63817 + 5.57009i 0.289990 + 0.243330i
\(525\) −10.8961 47.2076i −0.475546 2.06031i
\(526\) −0.0869744 0.493256i −0.00379226 0.0215070i
\(527\) −11.3045 + 9.48562i −0.492433 + 0.413200i
\(528\) 13.8135 12.4603i 0.601157 0.542265i
\(529\) 3.10448 1.12994i 0.134978 0.0491278i
\(530\) −0.182970 + 0.316914i −0.00794773 + 0.0137659i
\(531\) 33.9155 + 9.65902i 1.47181 + 0.419166i
\(532\) −1.93527 + 3.48350i −0.0839048 + 0.151029i
\(533\) 8.18083 2.97758i 0.354351 0.128973i
\(534\) −0.407506 0.317788i −0.0176345 0.0137520i
\(535\) −9.46495 53.6784i −0.409205 2.32072i
\(536\) −0.362166 + 0.303894i −0.0156432 + 0.0131262i
\(537\) −4.70185 7.50947i −0.202900 0.324057i
\(538\) 0.0647948 0.367470i 0.00279350 0.0158427i
\(539\) 8.86955 16.6048i 0.382039 0.715219i
\(540\) −36.7917 + 18.0677i −1.58326 + 0.777510i
\(541\) −10.8185 18.7381i −0.465122 0.805615i 0.534085 0.845431i \(-0.320656\pi\)
−0.999207 + 0.0398159i \(0.987323\pi\)
\(542\) −0.219142 0.183882i −0.00941298 0.00789842i
\(543\) 34.0798 1.22082i 1.46250 0.0523905i
\(544\) −0.111755 0.633792i −0.00479144 0.0271736i
\(545\) −28.5631 + 23.9673i −1.22351 + 1.02664i
\(546\) 0.0873498 0.711100i 0.00373823 0.0304323i
\(547\) −27.7409 + 10.0969i −1.18612 + 0.431711i −0.858358 0.513051i \(-0.828515\pi\)
−0.327758 + 0.944762i \(0.606293\pi\)
\(548\) −1.00745 −0.0430362
\(549\) −22.5605 + 10.0933i −0.962860 + 0.430773i
\(550\) 0.917180 0.0391087
\(551\) −0.0135239 + 0.0766980i −0.000576139 + 0.00326745i
\(552\) −0.207040 0.969752i −0.00881221 0.0412754i
\(553\) −17.5433 + 15.2208i −0.746017 + 0.647255i
\(554\) −0.0118499 0.0672042i −0.000503454 0.00285523i
\(555\) 8.53912 + 2.76603i 0.362466 + 0.117411i
\(556\) −19.3150 + 7.03010i −0.819140 + 0.298143i
\(557\) 23.2458 0.984957 0.492479 0.870325i \(-0.336091\pi\)
0.492479 + 0.870325i \(0.336091\pi\)
\(558\) −0.481286 0.710770i −0.0203744 0.0300893i
\(559\) −7.14997 + 12.3841i −0.302411 + 0.523792i
\(560\) 6.56214 41.1777i 0.277301 1.74008i
\(561\) 6.11104 + 4.76561i 0.258008 + 0.201204i
\(562\) 0.0749983 + 0.0272971i 0.00316361 + 0.00115146i
\(563\) −22.4743 + 18.8582i −0.947179 + 0.794777i −0.978820 0.204722i \(-0.934371\pi\)
0.0316415 + 0.999499i \(0.489927\pi\)
\(564\) 12.9815 + 20.7332i 0.546622 + 0.873027i
\(565\) −35.4916 + 12.9179i −1.49314 + 0.543460i
\(566\) 0.508847 0.0213884
\(567\) 20.4431 + 12.2098i 0.858529 + 0.512765i
\(568\) −0.762393 −0.0319893
\(569\) −39.0561 + 14.2153i −1.63732 + 0.595935i −0.986567 0.163356i \(-0.947768\pi\)
−0.650751 + 0.759291i \(0.725546\pi\)
\(570\) 0.0881629 + 0.140808i 0.00369274 + 0.00589779i
\(571\) −9.70179 + 8.14077i −0.406007 + 0.340681i −0.822810 0.568316i \(-0.807595\pi\)
0.416803 + 0.908997i \(0.363151\pi\)
\(572\) −24.4830 8.91108i −1.02368 0.372591i
\(573\) −12.8336 10.0081i −0.536130 0.418094i
\(574\) 0.119051 + 0.0965938i 0.00496910 + 0.00403175i
\(575\) −23.4604 + 40.6346i −0.978366 + 1.69458i
\(576\) −23.8638 + 1.71192i −0.994324 + 0.0713299i
\(577\) −17.8669 −0.743808 −0.371904 0.928271i \(-0.621295\pi\)
−0.371904 + 0.928271i \(0.621295\pi\)
\(578\) −0.431414 + 0.157022i −0.0179445 + 0.00653125i
\(579\) 17.3988 + 5.63589i 0.723069 + 0.234220i
\(580\) −0.141583 0.802959i −0.00587893 0.0333410i
\(581\) −9.03532 46.7203i −0.374848 1.93829i
\(582\) 0.0695393 + 0.325714i 0.00288250 + 0.0135013i
\(583\) 1.34247 7.61353i 0.0555995 0.315320i
\(584\) 0.538136 0.0222682
\(585\) 46.4790 + 33.6412i 1.92167 + 1.39089i
\(586\) 0.857670 0.0354300
\(587\) −14.7437 + 5.36628i −0.608539 + 0.221490i −0.627864 0.778323i \(-0.716071\pi\)
0.0193246 + 0.999813i \(0.493848\pi\)
\(588\) −22.1507 + 9.83545i −0.913478 + 0.405607i
\(589\) 5.11976 4.29598i 0.210956 0.177013i
\(590\) 0.259836 + 1.47360i 0.0106973 + 0.0606672i
\(591\) 5.40069 0.193466i 0.222155 0.00795813i
\(592\) 4.01770 + 3.37125i 0.165126 + 0.138558i
\(593\) 16.1429 + 27.9602i 0.662908 + 1.14819i 0.979848 + 0.199744i \(0.0640111\pi\)
−0.316940 + 0.948445i \(0.602656\pi\)
\(594\) −0.312260 + 0.325108i −0.0128122 + 0.0133393i
\(595\) 17.3677 0.286601i 0.712008 0.0117495i
\(596\) 5.42897 30.7892i 0.222379 1.26117i
\(597\) 8.11016 + 12.9530i 0.331927 + 0.530131i
\(598\) −0.531519 + 0.445998i −0.0217354 + 0.0182382i
\(599\) −3.83043 21.7234i −0.156507 0.887596i −0.957395 0.288782i \(-0.906750\pi\)
0.800888 0.598814i \(-0.204361\pi\)
\(600\) −1.86277 1.45265i −0.0760471 0.0593043i
\(601\) 34.2549 12.4678i 1.39729 0.508571i 0.469915 0.882712i \(-0.344285\pi\)
0.927372 + 0.374141i \(0.122062\pi\)
\(602\) −0.251785 + 0.00415494i −0.0102620 + 0.000169343i
\(603\) −7.89525 + 7.65189i −0.321519 + 0.311609i
\(604\) 9.50723 16.4670i 0.386844 0.670033i
\(605\) 13.9710 5.08503i 0.568002 0.206736i
\(606\) −0.618989 + 0.558351i −0.0251447 + 0.0226814i
\(607\) 3.43140 2.87928i 0.139276 0.116867i −0.570488 0.821306i \(-0.693246\pi\)
0.709764 + 0.704439i \(0.248801\pi\)
\(608\) 0.0506131 + 0.287041i 0.00205263 + 0.0116410i
\(609\) −0.346432 + 0.323020i −0.0140381 + 0.0130894i
\(610\) −0.803375 0.674112i −0.0325277 0.0272940i
\(611\) 17.1210 29.6545i 0.692643 1.19969i
\(612\) −2.43109 9.67630i −0.0982711 0.391141i
\(613\) 0.737367 + 1.27716i 0.0297820 + 0.0515839i 0.880532 0.473986i \(-0.157185\pi\)
−0.850750 + 0.525570i \(0.823852\pi\)
\(614\) 0.261701 + 0.219594i 0.0105614 + 0.00886207i
\(615\) −11.3795 + 4.60955i −0.458867 + 0.185875i
\(616\) −0.174278 0.901164i −0.00702184 0.0363089i
\(617\) −35.4677 12.9092i −1.42788 0.519705i −0.491555 0.870847i \(-0.663571\pi\)
−0.936322 + 0.351142i \(0.885793\pi\)
\(618\) 0.0643405 + 0.102760i 0.00258815 + 0.00413362i
\(619\) 9.28915 + 7.79452i 0.373362 + 0.313288i 0.810090 0.586306i \(-0.199418\pi\)
−0.436728 + 0.899594i \(0.643863\pi\)
\(620\) −34.9844 + 60.5947i −1.40501 + 2.43354i
\(621\) −6.41628 22.1502i −0.257476 0.888856i
\(622\) 0.605747 0.0242883
\(623\) 22.8536 8.74772i 0.915612 0.350470i
\(624\) 17.7914 + 28.4152i 0.712227 + 1.13752i
\(625\) 5.88902 + 33.3983i 0.235561 + 1.33593i
\(626\) 0.179729 + 1.01929i 0.00718340 + 0.0407391i
\(627\) −2.76766 2.15832i −0.110530 0.0861949i
\(628\) −12.2257 10.2586i −0.487859 0.409362i
\(629\) −1.09241 + 1.89212i −0.0435574 + 0.0754437i
\(630\) −0.0872071 + 1.00662i −0.00347442 + 0.0401046i
\(631\) −0.847811 1.46845i −0.0337508 0.0584581i 0.848657 0.528944i \(-0.177412\pi\)
−0.882407 + 0.470486i \(0.844079\pi\)
\(632\) −0.196644 + 1.11522i −0.00782207 + 0.0443611i
\(633\) −39.0603 12.6526i −1.55251 0.502896i
\(634\) 0.208019 + 0.0757126i 0.00826147 + 0.00300693i
\(635\) −13.1865 + 11.0648i −0.523289 + 0.439091i
\(636\) −7.39059 + 6.66658i −0.293056 + 0.264347i
\(637\) 26.6941 + 20.9378i 1.05766 + 0.829585i
\(638\) −0.00448344 0.00776554i −0.000177501 0.000307441i
\(639\) −17.6847 + 1.26865i −0.699597 + 0.0501870i
\(640\) −2.03410 3.52317i −0.0804049 0.139265i
\(641\) −5.96752 + 33.8435i −0.235703 + 1.33674i 0.605426 + 0.795902i \(0.293003\pi\)
−0.841129 + 0.540835i \(0.818108\pi\)
\(642\) −0.106717 + 0.764326i −0.00421179 + 0.0301655i
\(643\) 22.7195 19.0639i 0.895969 0.751807i −0.0734294 0.997300i \(-0.523394\pi\)
0.969398 + 0.245493i \(0.0789499\pi\)
\(644\) 22.1857 + 7.66279i 0.874238 + 0.301956i
\(645\) 9.45175 17.8148i 0.372162 0.701458i
\(646\) −0.0379992 + 0.0138306i −0.00149506 + 0.000544156i
\(647\) −1.88069 + 3.25746i −0.0739377 + 0.128064i −0.900624 0.434599i \(-0.856890\pi\)
0.826686 + 0.562663i \(0.190223\pi\)
\(648\) 1.14910 0.165720i 0.0451411 0.00651008i
\(649\) −15.8060 27.3768i −0.620441 1.07463i
\(650\) −0.287023 + 1.62779i −0.0112580 + 0.0638471i
\(651\) 40.5918 2.12520i 1.59092 0.0832930i
\(652\) −39.2321 14.2793i −1.53645 0.559221i
\(653\) 16.7177 + 6.08474i 0.654213 + 0.238114i 0.647736 0.761865i \(-0.275716\pi\)
0.00647719 + 0.999979i \(0.497938\pi\)
\(654\) 0.489307 0.198206i 0.0191334 0.00775045i
\(655\) −2.97056 + 16.8469i −0.116069 + 0.658263i
\(656\) −7.17397 −0.280097
\(657\) 12.4828 0.895479i 0.487000 0.0349359i
\(658\) 0.602916 0.00994925i 0.0235041 0.000387862i
\(659\) 19.8663 + 16.6698i 0.773883 + 0.649365i 0.941700 0.336453i \(-0.109227\pi\)
−0.167817 + 0.985818i \(0.553672\pi\)
\(660\) 34.9556 + 11.3230i 1.36064 + 0.440746i
\(661\) 20.6360 + 7.51089i 0.802647 + 0.292140i 0.710583 0.703613i \(-0.248431\pi\)
0.0920643 + 0.995753i \(0.470653\pi\)
\(662\) 0.0802190 + 0.0291973i 0.00311780 + 0.00113479i
\(663\) −10.3703 + 9.35437i −0.402748 + 0.363294i
\(664\) −1.77734 1.49137i −0.0689743 0.0578763i
\(665\) −7.86575 + 0.129800i −0.305021 + 0.00503342i
\(666\) −0.102950 0.0745148i −0.00398924 0.00288739i
\(667\) 0.458725 0.0177619
\(668\) 1.59093 9.02263i 0.0615550 0.349096i
\(669\) −0.485871 0.378900i −0.0187848 0.0146491i
\(670\) −0.438400 0.159565i −0.0169369 0.00616452i
\(671\) 20.8197 + 7.57775i 0.803735 + 0.292536i
\(672\) −0.804861 + 1.57942i −0.0310482 + 0.0609276i
\(673\) 0.0952584 0.540237i 0.00367194 0.0208246i −0.982917 0.184051i \(-0.941079\pi\)
0.986589 + 0.163226i \(0.0521900\pi\)
\(674\) −0.182658 0.316373i −0.00703573 0.0121862i
\(675\) −45.6266 30.5965i −1.75617 1.17766i
\(676\) 10.4836 18.1582i 0.403217 0.698393i
\(677\) 40.3843 14.6987i 1.55209 0.564916i 0.583186 0.812339i \(-0.301806\pi\)
0.968908 + 0.247423i \(0.0795837\pi\)
\(678\) 0.534422 0.0191443i 0.0205244 0.000735234i
\(679\) −14.9070 5.14880i −0.572080 0.197593i
\(680\) 0.648775 0.544387i 0.0248794 0.0208763i
\(681\) −16.0222 12.4947i −0.613972 0.478798i
\(682\) −0.133621 + 0.757801i −0.00511660 + 0.0290177i
\(683\) 3.14418 + 5.44587i 0.120309 + 0.208380i 0.919889 0.392178i \(-0.128278\pi\)
−0.799581 + 0.600559i \(0.794945\pi\)
\(684\) 1.10103 + 4.38234i 0.0420989 + 0.167563i
\(685\) −0.994415 1.72238i −0.0379946 0.0658087i
\(686\) −0.0745032 + 0.592766i −0.00284455 + 0.0226319i
\(687\) 30.0546 + 9.73542i 1.14666 + 0.371430i
\(688\) 9.02686 7.57443i 0.344146 0.288773i
\(689\) 13.0922 + 4.76517i 0.498773 + 0.181538i
\(690\) 0.726593 0.655413i 0.0276609 0.0249511i
\(691\) 3.88895 22.0553i 0.147943 0.839025i −0.817014 0.576617i \(-0.804372\pi\)
0.964957 0.262408i \(-0.0845165\pi\)
\(692\) 14.8335 + 25.6923i 0.563884 + 0.976676i
\(693\) −5.54218 20.6137i −0.210530 0.783051i
\(694\) 0.386192 0.668904i 0.0146597 0.0253913i
\(695\) −31.0840 26.0826i −1.17908 0.989370i
\(696\) −0.00319353 + 0.0228726i −0.000121050 + 0.000866983i
\(697\) −0.518948 2.94310i −0.0196566 0.111478i
\(698\) −0.144221 0.817917i −0.00545884 0.0309586i
\(699\) 46.2275 1.65598i 1.74848 0.0626351i
\(700\) 52.2200 19.9883i 1.97373 0.755487i
\(701\) 34.7809 1.31366 0.656828 0.754040i \(-0.271898\pi\)
0.656828 + 0.754040i \(0.271898\pi\)
\(702\) −0.479274 0.655930i −0.0180890 0.0247565i
\(703\) 0.494748 0.856929i 0.0186598 0.0323197i
\(704\) 16.4296 + 13.7861i 0.619215 + 0.519583i
\(705\) −22.6328 + 42.6587i −0.852400 + 1.60662i
\(706\) 0.759698 + 0.276507i 0.0285916 + 0.0104065i
\(707\) −7.49506 38.7559i −0.281881 1.45756i
\(708\) −5.62780 + 40.3073i −0.211506 + 1.51484i
\(709\) 21.3878 + 17.9465i 0.803235 + 0.673994i 0.948983 0.315328i \(-0.102114\pi\)
−0.145748 + 0.989322i \(0.546559\pi\)
\(710\) −0.376166 0.651538i −0.0141173 0.0244518i
\(711\) −2.70565 + 26.1963i −0.101470 + 0.982438i
\(712\) 0.596558 1.03327i 0.0223570 0.0387234i
\(713\) −30.1556 25.3036i −1.12934 0.947627i
\(714\) −0.235188 0.0719175i −0.00880168 0.00269145i
\(715\) −8.93146 50.6528i −0.334018 1.89431i
\(716\) 7.83305 6.57271i 0.292735 0.245634i
\(717\) −3.76491 17.6344i −0.140603 0.658568i
\(718\) 0.255535 0.0930070i 0.00953647 0.00347099i
\(719\) −20.6505 + 35.7678i −0.770135 + 1.33391i 0.167353 + 0.985897i \(0.446478\pi\)
−0.937488 + 0.348017i \(0.886855\pi\)
\(720\) −26.5094 39.1495i −0.987947 1.45902i
\(721\) −5.74035 + 0.0947267i −0.213782 + 0.00352781i
\(722\) −0.558733 + 0.203362i −0.0207939 + 0.00756836i
\(723\) 2.94535 21.0951i 0.109539 0.784534i
\(724\) 6.83421 + 38.7587i 0.253992 + 1.44046i
\(725\) 0.837119 0.702426i 0.0310898 0.0260875i
\(726\) −0.210371 + 0.00753602i −0.00780761 + 0.000279688i
\(727\) −2.47910 + 14.0597i −0.0919447 + 0.521444i 0.903696 + 0.428174i \(0.140843\pi\)
−0.995641 + 0.0932699i \(0.970268\pi\)
\(728\) 1.65390 0.0272925i 0.0612977 0.00101153i
\(729\) 26.3793 5.75624i 0.977010 0.213194i
\(730\) 0.265517 + 0.459889i 0.00982723 + 0.0170213i
\(731\) 3.76037 + 3.15532i 0.139082 + 0.116704i
\(732\) −15.1372 24.1762i −0.559488 0.893577i
\(733\) 3.41036 + 19.3411i 0.125965 + 0.714381i 0.980730 + 0.195367i \(0.0625897\pi\)
−0.854766 + 0.519014i \(0.826299\pi\)
\(734\) −0.347514 + 0.291599i −0.0128270 + 0.0107631i
\(735\) −38.6791 28.1615i −1.42670 1.03875i
\(736\) 1.61324 0.587170i 0.0594646 0.0216434i
\(737\) 9.85618 0.363057
\(738\) 0.173390 0.0124385i 0.00638258 0.000457868i
\(739\) 1.77314 0.0652262 0.0326131 0.999468i \(-0.489617\pi\)
0.0326131 + 0.999468i \(0.489617\pi\)
\(740\) −1.79884 + 10.2018i −0.0661268 + 0.375024i
\(741\) 4.69664 4.23654i 0.172535 0.155633i
\(742\) 0.0465851 + 0.240885i 0.00171019 + 0.00884315i
\(743\) −6.26135 35.5099i −0.229707 1.30273i −0.853480 0.521126i \(-0.825512\pi\)
0.623773 0.781605i \(-0.285599\pi\)
\(744\) 1.47160 1.32744i 0.0539516 0.0486663i
\(745\) 57.9971 21.1092i 2.12485 0.773382i
\(746\) −0.243151 −0.00890239
\(747\) −43.7096 31.6367i −1.59925 1.15753i
\(748\) −4.47189 + 7.74554i −0.163508 + 0.283205i
\(749\) −28.3783 23.0251i −1.03692 0.841319i
\(750\) 0.169896 1.21682i 0.00620372 0.0444321i
\(751\) 31.2937 + 11.3900i 1.14192 + 0.415626i 0.842607 0.538529i \(-0.181020\pi\)
0.299315 + 0.954154i \(0.403242\pi\)
\(752\) −21.6154 + 18.1374i −0.788231 + 0.661404i
\(753\) −26.1134 + 0.935447i −0.951625 + 0.0340896i
\(754\) 0.0151851 0.00552694i 0.000553010 0.000201279i
\(755\) 37.5368 1.36610
\(756\) −10.6935 + 25.3153i −0.388918 + 0.920708i
\(757\) 3.07203 0.111655 0.0558274 0.998440i \(-0.482220\pi\)
0.0558274 + 0.998440i \(0.482220\pi\)
\(758\) 0.872259 0.317476i 0.0316819 0.0115313i
\(759\) −9.68873 + 18.2615i −0.351679 + 0.662851i
\(760\) −0.293827 + 0.246550i −0.0106582 + 0.00894330i
\(761\) 21.0629 + 7.66628i 0.763531 + 0.277902i 0.694288 0.719697i \(-0.255719\pi\)
0.0692427 + 0.997600i \(0.477942\pi\)
\(762\) 0.225894 0.0915038i 0.00818328 0.00331483i
\(763\) −3.93423 + 24.6875i −0.142429 + 0.893746i
\(764\) 9.39125 16.2661i 0.339764 0.588488i
\(765\) 14.1433 13.7074i 0.511353 0.495591i
\(766\) 0.240946 0.00870574