Properties

Label 189.2.w.a.121.1
Level $189$
Weight $2$
Character 189.121
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(25,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 121.1
Character \(\chi\) \(=\) 189.121
Dual form 189.2.w.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.58171 - 0.939667i) q^{2} +(-1.71864 - 0.215106i) q^{3} +(4.25019 + 3.56633i) q^{4} +(0.335317 - 0.122045i) q^{5} +(4.23491 + 2.17029i) q^{6} +(-0.921726 - 2.48000i) q^{7} +(-4.87420 - 8.44237i) q^{8} +(2.90746 + 0.739379i) q^{9} +O(q^{10})\) \(q+(-2.58171 - 0.939667i) q^{2} +(-1.71864 - 0.215106i) q^{3} +(4.25019 + 3.56633i) q^{4} +(0.335317 - 0.122045i) q^{5} +(4.23491 + 2.17029i) q^{6} +(-0.921726 - 2.48000i) q^{7} +(-4.87420 - 8.44237i) q^{8} +(2.90746 + 0.739379i) q^{9} -0.980375 q^{10} +(-1.67405 - 0.609306i) q^{11} +(-6.53741 - 7.04348i) q^{12} +(-0.143143 + 0.811807i) q^{13} +(0.0492553 + 7.26878i) q^{14} +(-0.602543 + 0.137624i) q^{15} +(2.72391 + 15.4480i) q^{16} -1.85116 q^{17} +(-6.81146 - 4.64091i) q^{18} -4.90094 q^{19} +(1.86041 + 0.677136i) q^{20} +(1.05065 + 4.46051i) q^{21} +(3.74938 + 3.14611i) q^{22} +(-1.13525 + 6.43834i) q^{23} +(6.56101 + 15.5579i) q^{24} +(-3.73268 + 3.13209i) q^{25} +(1.13238 - 1.96135i) q^{26} +(-4.83784 - 1.89614i) q^{27} +(4.92701 - 13.8277i) q^{28} +(-0.600809 - 3.40736i) q^{29} +(1.68491 + 0.210884i) q^{30} +(-7.06750 - 5.93034i) q^{31} +(4.09808 - 23.2414i) q^{32} +(2.74603 + 1.40728i) q^{33} +(4.77916 + 1.73947i) q^{34} +(-0.611744 - 0.719095i) q^{35} +(9.72037 + 13.5115i) q^{36} +(-2.49443 - 4.32047i) q^{37} +(12.6528 + 4.60525i) q^{38} +(0.420637 - 1.36441i) q^{39} +(-2.66476 - 2.23600i) q^{40} +(-0.733977 + 4.16259i) q^{41} +(1.47890 - 12.5030i) q^{42} +(3.83244 - 3.21580i) q^{43} +(-4.94206 - 8.55989i) q^{44} +(1.06516 - 0.106916i) q^{45} +(8.98079 - 15.5552i) q^{46} +(-7.02871 + 5.89779i) q^{47} +(-1.35846 - 27.1356i) q^{48} +(-5.30084 + 4.57177i) q^{49} +(12.5798 - 4.57869i) q^{50} +(3.18147 + 0.398194i) q^{51} +(-3.50356 + 2.93983i) q^{52} +(2.16331 + 3.74696i) q^{53} +(10.7082 + 9.44124i) q^{54} -0.635702 q^{55} +(-16.4444 + 19.8696i) q^{56} +(8.42296 + 1.05422i) q^{57} +(-1.65066 + 9.36138i) q^{58} +(1.27225 - 7.21531i) q^{59} +(-3.05173 - 1.56394i) q^{60} +(3.62748 - 3.04382i) q^{61} +(12.6737 + 21.9515i) q^{62} +(-0.846218 - 7.89202i) q^{63} +(-16.7329 + 28.9822i) q^{64} +(0.0510789 + 0.289683i) q^{65} +(-5.76710 - 6.21354i) q^{66} +(-4.10526 + 1.49419i) q^{67} +(-7.86776 - 6.60183i) q^{68} +(3.33602 - 10.8210i) q^{69} +(0.903638 + 2.43133i) q^{70} +(2.19901 - 3.80879i) q^{71} +(-7.92944 - 28.1497i) q^{72} +(-2.34818 + 4.06717i) q^{73} +(2.38009 + 13.4982i) q^{74} +(7.08887 - 4.58002i) q^{75} +(-20.8299 - 17.4784i) q^{76} +(0.0319385 + 4.71327i) q^{77} +(-2.36806 + 3.12727i) q^{78} +(10.7633 + 3.91751i) q^{79} +(2.79874 + 4.84755i) q^{80} +(7.90664 + 4.29943i) q^{81} +(5.80637 - 10.0569i) q^{82} +(-1.28529 - 7.28926i) q^{83} +(-11.4422 + 22.7050i) q^{84} +(-0.620724 + 0.225925i) q^{85} +(-12.9160 + 4.70106i) q^{86} +(0.299634 + 5.98526i) q^{87} +(3.01569 + 17.1029i) q^{88} -5.36117 q^{89} +(-2.85040 - 0.724869i) q^{90} +(2.14522 - 0.393267i) q^{91} +(-27.7863 + 23.3155i) q^{92} +(10.8709 + 11.7124i) q^{93} +(23.6881 - 8.62176i) q^{94} +(-1.64337 + 0.598137i) q^{95} +(-12.0425 + 39.0621i) q^{96} +(1.12019 - 0.939950i) q^{97} +(17.9812 - 6.82198i) q^{98} +(-4.41673 - 3.00929i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{10} + 3 q^{11} - 3 q^{12} - 12 q^{13} + 15 q^{14} - 9 q^{16} - 54 q^{17} - 3 q^{18} - 6 q^{19} - 18 q^{20} - 21 q^{21} - 12 q^{22} + 45 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 57 q^{30} - 3 q^{31} + 51 q^{32} + 15 q^{33} - 18 q^{34} - 12 q^{35} - 60 q^{36} + 3 q^{37} - 57 q^{38} - 66 q^{39} - 66 q^{40} + 33 q^{42} - 12 q^{43} + 3 q^{44} + 33 q^{45} + 3 q^{46} - 21 q^{47} + 90 q^{48} + 12 q^{49} - 39 q^{50} - 48 q^{51} + 9 q^{52} + 9 q^{53} - 63 q^{54} - 24 q^{55} + 57 q^{56} - 18 q^{57} - 3 q^{58} - 18 q^{59} + 81 q^{60} + 33 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} + 81 q^{65} + 69 q^{66} - 3 q^{67} + 6 q^{68} - 6 q^{69} - 42 q^{70} - 18 q^{71} - 105 q^{72} + 21 q^{73} - 93 q^{74} + 18 q^{75} - 24 q^{76} + 87 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} + 39 q^{81} - 6 q^{82} - 42 q^{83} - 36 q^{84} - 63 q^{85} + 159 q^{86} + 30 q^{87} + 57 q^{88} - 150 q^{89} - 39 q^{90} + 6 q^{91} - 66 q^{92} - 27 q^{93} + 33 q^{94} - 147 q^{95} + 81 q^{96} - 12 q^{97} + 99 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58171 0.939667i −1.82555 0.664445i −0.994051 0.108916i \(-0.965262\pi\)
−0.831497 0.555529i \(-0.812516\pi\)
\(3\) −1.71864 0.215106i −0.992258 0.124191i
\(4\) 4.25019 + 3.56633i 2.12509 + 1.78317i
\(5\) 0.335317 0.122045i 0.149958 0.0545804i −0.265950 0.963987i \(-0.585686\pi\)
0.415909 + 0.909406i \(0.363464\pi\)
\(6\) 4.23491 + 2.17029i 1.72890 + 0.886018i
\(7\) −0.921726 2.48000i −0.348380 0.937353i
\(8\) −4.87420 8.44237i −1.72329 2.98483i
\(9\) 2.90746 + 0.739379i 0.969153 + 0.246460i
\(10\) −0.980375 −0.310022
\(11\) −1.67405 0.609306i −0.504746 0.183713i 0.0770813 0.997025i \(-0.475440\pi\)
−0.581827 + 0.813312i \(0.697662\pi\)
\(12\) −6.53741 7.04348i −1.88719 2.03328i
\(13\) −0.143143 + 0.811807i −0.0397009 + 0.225155i −0.998202 0.0599325i \(-0.980911\pi\)
0.958502 + 0.285087i \(0.0920226\pi\)
\(14\) 0.0492553 + 7.26878i 0.0131640 + 1.94266i
\(15\) −0.602543 + 0.137624i −0.155576 + 0.0355343i
\(16\) 2.72391 + 15.4480i 0.680976 + 3.86201i
\(17\) −1.85116 −0.448971 −0.224486 0.974477i \(-0.572070\pi\)
−0.224486 + 0.974477i \(0.572070\pi\)
\(18\) −6.81146 4.64091i −1.60548 1.09387i
\(19\) −4.90094 −1.12435 −0.562176 0.827018i \(-0.690036\pi\)
−0.562176 + 0.827018i \(0.690036\pi\)
\(20\) 1.86041 + 0.677136i 0.416001 + 0.151412i
\(21\) 1.05065 + 4.46051i 0.229272 + 0.973362i
\(22\) 3.74938 + 3.14611i 0.799371 + 0.670752i
\(23\) −1.13525 + 6.43834i −0.236717 + 1.34249i 0.602252 + 0.798306i \(0.294270\pi\)
−0.838968 + 0.544180i \(0.816841\pi\)
\(24\) 6.56101 + 15.5579i 1.33926 + 3.17574i
\(25\) −3.73268 + 3.13209i −0.746536 + 0.626418i
\(26\) 1.13238 1.96135i 0.222079 0.384652i
\(27\) −4.83784 1.89614i −0.931042 0.364912i
\(28\) 4.92701 13.8277i 0.931116 2.61318i
\(29\) −0.600809 3.40736i −0.111567 0.632730i −0.988393 0.151921i \(-0.951454\pi\)
0.876825 0.480809i \(-0.159657\pi\)
\(30\) 1.68491 + 0.210884i 0.307622 + 0.0385020i
\(31\) −7.06750 5.93034i −1.26936 1.06512i −0.994619 0.103602i \(-0.966963\pi\)
−0.274742 0.961518i \(-0.588593\pi\)
\(32\) 4.09808 23.2414i 0.724445 4.10853i
\(33\) 2.74603 + 1.40728i 0.478023 + 0.244975i
\(34\) 4.77916 + 1.73947i 0.819619 + 0.298317i
\(35\) −0.611744 0.719095i −0.103404 0.121549i
\(36\) 9.72037 + 13.5115i 1.62006 + 2.25191i
\(37\) −2.49443 4.32047i −0.410081 0.710281i 0.584817 0.811165i \(-0.301166\pi\)
−0.994898 + 0.100884i \(0.967833\pi\)
\(38\) 12.6528 + 4.60525i 2.05256 + 0.747070i
\(39\) 0.420637 1.36441i 0.0673558 0.218481i
\(40\) −2.66476 2.23600i −0.421335 0.353542i
\(41\) −0.733977 + 4.16259i −0.114628 + 0.650087i 0.872306 + 0.488961i \(0.162624\pi\)
−0.986934 + 0.161126i \(0.948487\pi\)
\(42\) 1.47890 12.5030i 0.228200 1.92926i
\(43\) 3.83244 3.21580i 0.584442 0.490405i −0.301961 0.953320i \(-0.597641\pi\)
0.886402 + 0.462916i \(0.153197\pi\)
\(44\) −4.94206 8.55989i −0.745043 1.29045i
\(45\) 1.06516 0.106916i 0.158784 0.0159381i
\(46\) 8.98079 15.5552i 1.32415 2.29349i
\(47\) −7.02871 + 5.89779i −1.02524 + 0.860281i −0.990277 0.139107i \(-0.955577\pi\)
−0.0349659 + 0.999389i \(0.511132\pi\)
\(48\) −1.35846 27.1356i −0.196077 3.91668i
\(49\) −5.30084 + 4.57177i −0.757263 + 0.653110i
\(50\) 12.5798 4.57869i 1.77906 0.647524i
\(51\) 3.18147 + 0.398194i 0.445496 + 0.0557583i
\(52\) −3.50356 + 2.93983i −0.485856 + 0.407682i
\(53\) 2.16331 + 3.74696i 0.297154 + 0.514685i 0.975484 0.220072i \(-0.0706293\pi\)
−0.678330 + 0.734757i \(0.737296\pi\)
\(54\) 10.7082 + 9.44124i 1.45720 + 1.28479i
\(55\) −0.635702 −0.0857180
\(56\) −16.4444 + 19.8696i −2.19748 + 2.65519i
\(57\) 8.42296 + 1.05422i 1.11565 + 0.139635i
\(58\) −1.65066 + 9.36138i −0.216743 + 1.22921i
\(59\) 1.27225 7.21531i 0.165633 0.939353i −0.782776 0.622304i \(-0.786197\pi\)
0.948409 0.317049i \(-0.102692\pi\)
\(60\) −3.05173 1.56394i −0.393977 0.201904i
\(61\) 3.62748 3.04382i 0.464452 0.389721i −0.380314 0.924857i \(-0.624184\pi\)
0.844766 + 0.535136i \(0.179740\pi\)
\(62\) 12.6737 + 21.9515i 1.60957 + 2.78785i
\(63\) −0.846218 7.89202i −0.106613 0.994301i
\(64\) −16.7329 + 28.9822i −2.09161 + 3.62278i
\(65\) 0.0510789 + 0.289683i 0.00633556 + 0.0359307i
\(66\) −5.76710 6.21354i −0.709881 0.764834i
\(67\) −4.10526 + 1.49419i −0.501537 + 0.182544i −0.580385 0.814342i \(-0.697098\pi\)
0.0788483 + 0.996887i \(0.474876\pi\)
\(68\) −7.86776 6.60183i −0.954106 0.800590i
\(69\) 3.33602 10.8210i 0.401609 1.30269i
\(70\) 0.903638 + 2.43133i 0.108005 + 0.290600i
\(71\) 2.19901 3.80879i 0.260974 0.452020i −0.705527 0.708683i \(-0.749290\pi\)
0.966501 + 0.256663i \(0.0826229\pi\)
\(72\) −7.92944 28.1497i −0.934493 3.31748i
\(73\) −2.34818 + 4.06717i −0.274834 + 0.476026i −0.970093 0.242733i \(-0.921956\pi\)
0.695260 + 0.718759i \(0.255289\pi\)
\(74\) 2.38009 + 13.4982i 0.276680 + 1.56913i
\(75\) 7.08887 4.58002i 0.818552 0.528855i
\(76\) −20.8299 17.4784i −2.38935 2.00491i
\(77\) 0.0319385 + 4.71327i 0.00363973 + 0.537127i
\(78\) −2.36806 + 3.12727i −0.268130 + 0.354094i
\(79\) 10.7633 + 3.91751i 1.21096 + 0.440754i 0.867037 0.498243i \(-0.166021\pi\)
0.343924 + 0.938997i \(0.388244\pi\)
\(80\) 2.79874 + 4.84755i 0.312908 + 0.541973i
\(81\) 7.90664 + 4.29943i 0.878515 + 0.477714i
\(82\) 5.80637 10.0569i 0.641206 1.11060i
\(83\) −1.28529 7.28926i −0.141079 0.800100i −0.970432 0.241375i \(-0.922402\pi\)
0.829353 0.558725i \(-0.188709\pi\)
\(84\) −11.4422 + 22.7050i −1.24844 + 2.47732i
\(85\) −0.620724 + 0.225925i −0.0673270 + 0.0245050i
\(86\) −12.9160 + 4.70106i −1.39277 + 0.506928i
\(87\) 0.299634 + 5.98526i 0.0321241 + 0.641687i
\(88\) 3.01569 + 17.1029i 0.321474 + 1.82317i
\(89\) −5.36117 −0.568283 −0.284142 0.958782i \(-0.591709\pi\)
−0.284142 + 0.958782i \(0.591709\pi\)
\(90\) −2.85040 0.724869i −0.300459 0.0764079i
\(91\) 2.14522 0.393267i 0.224881 0.0412256i
\(92\) −27.7863 + 23.3155i −2.89692 + 2.43080i
\(93\) 10.8709 + 11.7124i 1.12726 + 1.21452i
\(94\) 23.6881 8.62176i 2.44324 0.889267i
\(95\) −1.64337 + 0.598137i −0.168606 + 0.0613676i
\(96\) −12.0425 + 39.0621i −1.22908 + 3.98676i
\(97\) 1.12019 0.939950i 0.113738 0.0954374i −0.584145 0.811649i \(-0.698570\pi\)
0.697883 + 0.716212i \(0.254126\pi\)
\(98\) 17.9812 6.82198i 1.81638 0.689124i
\(99\) −4.41673 3.00929i −0.443899 0.302445i
\(100\) −27.0347 −2.70347
\(101\) −2.96289 16.8034i −0.294818 1.67200i −0.667941 0.744214i \(-0.732824\pi\)
0.373123 0.927782i \(-0.378287\pi\)
\(102\) −7.83949 4.01755i −0.776225 0.397797i
\(103\) 4.02570 1.46524i 0.396664 0.144374i −0.135983 0.990711i \(-0.543419\pi\)
0.532648 + 0.846337i \(0.321197\pi\)
\(104\) 7.55128 2.74844i 0.740464 0.269507i
\(105\) 0.896687 + 1.36746i 0.0875077 + 0.133450i
\(106\) −2.06415 11.7064i −0.200488 1.13702i
\(107\) 2.07886 3.60069i 0.200971 0.348092i −0.747871 0.663845i \(-0.768924\pi\)
0.948842 + 0.315753i \(0.102257\pi\)
\(108\) −13.7995 25.3123i −1.32785 2.43567i
\(109\) 3.36065 + 5.82082i 0.321892 + 0.557533i 0.980878 0.194622i \(-0.0623479\pi\)
−0.658986 + 0.752155i \(0.729015\pi\)
\(110\) 1.64120 + 0.597348i 0.156482 + 0.0569549i
\(111\) 3.35767 + 7.96191i 0.318696 + 0.755711i
\(112\) 35.8005 20.9942i 3.38283 1.98376i
\(113\) 2.22039 + 1.86313i 0.208877 + 0.175268i 0.741224 0.671258i \(-0.234246\pi\)
−0.532347 + 0.846526i \(0.678690\pi\)
\(114\) −20.7551 10.6365i −1.94389 0.996197i
\(115\) 0.405100 + 2.29744i 0.0377758 + 0.214237i
\(116\) 9.59820 16.6246i 0.891171 1.54355i
\(117\) −1.01642 + 2.25446i −0.0939678 + 0.208425i
\(118\) −10.0646 + 17.4324i −0.926520 + 1.60478i
\(119\) 1.70626 + 4.59087i 0.156413 + 0.420845i
\(120\) 4.09879 + 4.41608i 0.374166 + 0.403131i
\(121\) −5.99529 5.03064i −0.545026 0.457331i
\(122\) −12.2253 + 4.44965i −1.10683 + 0.402852i
\(123\) 2.15684 6.99612i 0.194476 0.630818i
\(124\) −8.88866 50.4101i −0.798225 4.52696i
\(125\) −1.76147 + 3.05095i −0.157550 + 0.272885i
\(126\) −5.23117 + 21.1701i −0.466030 + 1.88598i
\(127\) −1.54578 2.67736i −0.137165 0.237577i 0.789257 0.614063i \(-0.210466\pi\)
−0.926423 + 0.376485i \(0.877133\pi\)
\(128\) 34.2760 28.7610i 3.02960 2.54214i
\(129\) −7.27833 + 4.70243i −0.640821 + 0.414026i
\(130\) 0.140334 0.795876i 0.0123081 0.0698029i
\(131\) −0.198622 + 1.12644i −0.0173537 + 0.0984179i −0.992254 0.124222i \(-0.960356\pi\)
0.974901 + 0.222640i \(0.0714675\pi\)
\(132\) 6.65234 + 15.7745i 0.579012 + 1.37299i
\(133\) 4.51732 + 12.1543i 0.391702 + 1.05392i
\(134\) 12.0026 1.03687
\(135\) −1.85362 0.0453718i −0.159535 0.00390498i
\(136\) 9.02291 + 15.6281i 0.773708 + 1.34010i
\(137\) 5.86905 4.92472i 0.501427 0.420747i −0.356673 0.934229i \(-0.616089\pi\)
0.858100 + 0.513482i \(0.171645\pi\)
\(138\) −18.7808 + 24.8020i −1.59873 + 2.11128i
\(139\) −17.4052 + 6.33499i −1.47629 + 0.537326i −0.949801 0.312854i \(-0.898715\pi\)
−0.526491 + 0.850181i \(0.676493\pi\)
\(140\) −0.0354940 5.23797i −0.00299979 0.442689i
\(141\) 13.3485 8.62427i 1.12415 0.726295i
\(142\) −9.25621 + 7.76688i −0.776764 + 0.651782i
\(143\) 0.734269 1.27179i 0.0614026 0.106352i
\(144\) −3.50231 + 46.9285i −0.291859 + 3.91071i
\(145\) −0.617314 1.06922i −0.0512651 0.0887938i
\(146\) 9.88411 8.29375i 0.818015 0.686396i
\(147\) 10.0937 6.71699i 0.832511 0.554008i
\(148\) 4.80645 27.2588i 0.395088 2.24066i
\(149\) 11.1341 + 9.34264i 0.912143 + 0.765379i 0.972526 0.232796i \(-0.0747875\pi\)
−0.0603822 + 0.998175i \(0.519232\pi\)
\(150\) −22.6051 + 5.16313i −1.84570 + 0.421568i
\(151\) −6.77197 2.46480i −0.551095 0.200582i 0.0514377 0.998676i \(-0.483620\pi\)
−0.602533 + 0.798094i \(0.705842\pi\)
\(152\) 23.8882 + 41.3755i 1.93759 + 3.35600i
\(153\) −5.38216 1.36871i −0.435122 0.110653i
\(154\) 4.34645 12.1983i 0.350247 0.982970i
\(155\) −3.09363 1.12599i −0.248486 0.0904415i
\(156\) 6.65374 4.29889i 0.532725 0.344186i
\(157\) −2.95449 + 16.7557i −0.235794 + 1.33725i 0.605142 + 0.796117i \(0.293116\pi\)
−0.840936 + 0.541135i \(0.817995\pi\)
\(158\) −24.1065 20.2278i −1.91781 1.60923i
\(159\) −2.91196 6.90503i −0.230934 0.547604i
\(160\) −1.46235 8.29339i −0.115609 0.655650i
\(161\) 17.0135 3.11895i 1.34085 0.245808i
\(162\) −16.3726 18.5295i −1.28636 1.45582i
\(163\) 6.27938 10.8762i 0.491839 0.851891i −0.508117 0.861288i \(-0.669658\pi\)
0.999956 + 0.00939768i \(0.00299142\pi\)
\(164\) −17.9647 + 15.0742i −1.40281 + 1.17710i
\(165\) 1.09254 + 0.136743i 0.0850544 + 0.0106454i
\(166\) −3.53122 + 20.0265i −0.274076 + 1.55436i
\(167\) 4.95938 + 4.16141i 0.383768 + 0.322020i 0.814180 0.580613i \(-0.197187\pi\)
−0.430411 + 0.902633i \(0.641632\pi\)
\(168\) 32.5361 30.6114i 2.51022 2.36172i
\(169\) 11.5775 + 4.21385i 0.890574 + 0.324142i
\(170\) 1.81483 0.139191
\(171\) −14.2493 3.62365i −1.08967 0.277107i
\(172\) 27.7572 2.11647
\(173\) −4.13264 23.4373i −0.314198 1.78191i −0.576679 0.816971i \(-0.695652\pi\)
0.262481 0.964937i \(-0.415459\pi\)
\(174\) 4.85058 15.7338i 0.367722 1.19278i
\(175\) 11.2081 + 6.37013i 0.847253 + 0.481537i
\(176\) 4.85261 27.5205i 0.365779 2.07444i
\(177\) −3.73860 + 12.1269i −0.281011 + 0.911511i
\(178\) 13.8410 + 5.03772i 1.03743 + 0.377593i
\(179\) −8.06417 −0.602745 −0.301372 0.953507i \(-0.597445\pi\)
−0.301372 + 0.953507i \(0.597445\pi\)
\(180\) 4.90842 + 3.34430i 0.365852 + 0.249269i
\(181\) −8.70280 15.0737i −0.646874 1.12042i −0.983865 0.178911i \(-0.942743\pi\)
0.336991 0.941508i \(-0.390591\pi\)
\(182\) −5.90790 1.00049i −0.437922 0.0741614i
\(183\) −6.88909 + 4.45095i −0.509256 + 0.329023i
\(184\) 59.8883 21.7975i 4.41502 1.60694i
\(185\) −1.36372 1.14429i −0.100262 0.0841302i
\(186\) −17.0597 40.4530i −1.25088 2.96616i
\(187\) 3.09893 + 1.12792i 0.226617 + 0.0824817i
\(188\) −50.9068 −3.71276
\(189\) −0.243271 + 13.7456i −0.0176954 + 0.999843i
\(190\) 4.80476 0.348574
\(191\) 4.26116 + 1.55093i 0.308326 + 0.112222i 0.491549 0.870850i \(-0.336431\pi\)
−0.183223 + 0.983071i \(0.558653\pi\)
\(192\) 34.9921 46.2107i 2.52534 3.33497i
\(193\) −8.35100 7.00732i −0.601118 0.504398i 0.290687 0.956818i \(-0.406116\pi\)
−0.891805 + 0.452420i \(0.850561\pi\)
\(194\) −3.77525 + 1.37408i −0.271047 + 0.0986530i
\(195\) −0.0254739 0.508848i −0.00182423 0.0364394i
\(196\) −38.8340 + 0.526325i −2.77386 + 0.0375946i
\(197\) −4.04961 7.01413i −0.288523 0.499736i 0.684935 0.728605i \(-0.259831\pi\)
−0.973457 + 0.228869i \(0.926497\pi\)
\(198\) 8.57502 + 11.9194i 0.609400 + 0.847074i
\(199\) 6.09965 0.432393 0.216196 0.976350i \(-0.430635\pi\)
0.216196 + 0.976350i \(0.430635\pi\)
\(200\) 44.6361 + 16.2462i 3.15625 + 1.14878i
\(201\) 7.37687 1.68492i 0.520325 0.118845i
\(202\) −8.14024 + 46.1656i −0.572745 + 3.24820i
\(203\) −7.89647 + 4.63066i −0.554224 + 0.325008i
\(204\) 12.1018 + 13.0386i 0.847293 + 0.912884i
\(205\) 0.261910 + 1.48537i 0.0182926 + 0.103742i
\(206\) −11.7701 −0.820058
\(207\) −8.06107 + 17.8798i −0.560283 + 1.24273i
\(208\) −12.9307 −0.896585
\(209\) 8.20443 + 2.98617i 0.567513 + 0.206558i
\(210\) −1.03004 4.37297i −0.0710792 0.301764i
\(211\) 5.91577 + 4.96392i 0.407258 + 0.341730i 0.823291 0.567619i \(-0.192135\pi\)
−0.416033 + 0.909350i \(0.636580\pi\)
\(212\) −4.16844 + 23.6404i −0.286289 + 1.62363i
\(213\) −4.59860 + 6.07293i −0.315091 + 0.416110i
\(214\) −8.75048 + 7.34252i −0.598170 + 0.501924i
\(215\) 0.892609 1.54604i 0.0608754 0.105439i
\(216\) 7.57270 + 50.0849i 0.515257 + 3.40785i
\(217\) −8.19296 + 22.9936i −0.556175 + 1.56091i
\(218\) −3.20661 18.1856i −0.217179 1.23168i
\(219\) 4.91055 6.48489i 0.331824 0.438209i
\(220\) −2.70185 2.26712i −0.182159 0.152849i
\(221\) 0.264981 1.50278i 0.0178245 0.101088i
\(222\) −1.18699 23.7105i −0.0796656 1.59134i
\(223\) 6.50641 + 2.36814i 0.435702 + 0.158582i 0.550553 0.834800i \(-0.314417\pi\)
−0.114851 + 0.993383i \(0.536639\pi\)
\(224\) −61.4160 + 11.2589i −4.10353 + 0.752269i
\(225\) −13.1684 + 6.34656i −0.877894 + 0.423104i
\(226\) −3.98169 6.89649i −0.264858 0.458748i
\(227\) −13.8038 5.02417i −0.916191 0.333466i −0.159469 0.987203i \(-0.550978\pi\)
−0.756722 + 0.653737i \(0.773200\pi\)
\(228\) 32.0394 + 34.5197i 2.12186 + 2.28612i
\(229\) 5.84332 + 4.90313i 0.386138 + 0.324008i 0.815106 0.579311i \(-0.196679\pi\)
−0.428969 + 0.903319i \(0.641123\pi\)
\(230\) 1.11297 6.31199i 0.0733873 0.416200i
\(231\) 0.958961 8.10730i 0.0630950 0.533421i
\(232\) −25.8377 + 21.6804i −1.69633 + 1.42339i
\(233\) −6.63131 11.4858i −0.434432 0.752458i 0.562817 0.826581i \(-0.309717\pi\)
−0.997249 + 0.0741234i \(0.976384\pi\)
\(234\) 4.74254 4.86527i 0.310029 0.318053i
\(235\) −1.63705 + 2.83545i −0.106789 + 0.184965i
\(236\) 31.1395 26.1291i 2.02701 1.70086i
\(237\) −17.6555 9.04803i −1.14685 0.587733i
\(238\) −0.0911793 13.4556i −0.00591028 0.872200i
\(239\) −25.2968 + 9.20730i −1.63632 + 0.595570i −0.986389 0.164426i \(-0.947423\pi\)
−0.649927 + 0.759997i \(0.725201\pi\)
\(240\) −3.76729 8.93323i −0.243177 0.576637i
\(241\) 5.20150 4.36458i 0.335058 0.281147i −0.459699 0.888075i \(-0.652043\pi\)
0.794757 + 0.606928i \(0.207598\pi\)
\(242\) 10.7510 + 18.6213i 0.691100 + 1.19702i
\(243\) −12.6638 9.08994i −0.812386 0.583120i
\(244\) 26.2728 1.68194
\(245\) −1.21950 + 2.17994i −0.0779109 + 0.139271i
\(246\) −12.1424 + 16.0353i −0.774169 + 1.02237i
\(247\) 0.701537 3.97862i 0.0446378 0.253153i
\(248\) −15.6177 + 88.5721i −0.991722 + 5.62434i
\(249\) 0.640997 + 12.8041i 0.0406216 + 0.811426i
\(250\) 7.41448 6.22149i 0.468933 0.393482i
\(251\) 7.47800 + 12.9523i 0.472007 + 0.817540i 0.999487 0.0320274i \(-0.0101964\pi\)
−0.527480 + 0.849567i \(0.676863\pi\)
\(252\) 24.5489 36.5604i 1.54644 2.30309i
\(253\) 5.82339 10.0864i 0.366113 0.634127i
\(254\) 1.47492 + 8.36470i 0.0925448 + 0.524848i
\(255\) 1.11540 0.254763i 0.0698491 0.0159539i
\(256\) −52.6216 + 19.1527i −3.28885 + 1.19704i
\(257\) 6.52143 + 5.47213i 0.406796 + 0.341342i 0.823113 0.567877i \(-0.192235\pi\)
−0.416318 + 0.909219i \(0.636680\pi\)
\(258\) 23.2093 5.30112i 1.44495 0.330033i
\(259\) −8.41561 + 10.1685i −0.522921 + 0.631838i
\(260\) −0.816010 + 1.41337i −0.0506068 + 0.0876535i
\(261\) 0.772500 10.3510i 0.0478166 0.640709i
\(262\) 1.57127 2.72152i 0.0970733 0.168136i
\(263\) −1.20737 6.84735i −0.0744498 0.422226i −0.999138 0.0415017i \(-0.986786\pi\)
0.924689 0.380724i \(-0.124325\pi\)
\(264\) −1.50398 30.0424i −0.0925635 1.84898i
\(265\) 1.18270 + 0.992399i 0.0726524 + 0.0609626i
\(266\) −0.241397 35.6238i −0.0148010 2.18424i
\(267\) 9.21394 + 1.15322i 0.563884 + 0.0705758i
\(268\) −22.7769 8.29011i −1.39132 0.506399i
\(269\) −7.34368 12.7196i −0.447752 0.775529i 0.550487 0.834843i \(-0.314442\pi\)
−0.998239 + 0.0593143i \(0.981109\pi\)
\(270\) 4.74289 + 1.85893i 0.288643 + 0.113131i
\(271\) −5.57679 + 9.65928i −0.338766 + 0.586759i −0.984201 0.177056i \(-0.943343\pi\)
0.645435 + 0.763815i \(0.276676\pi\)
\(272\) −5.04237 28.5967i −0.305739 1.73393i
\(273\) −3.77147 + 0.214436i −0.228259 + 0.0129783i
\(274\) −19.7798 + 7.19926i −1.19494 + 0.434923i
\(275\) 8.15711 2.96894i 0.491892 0.179034i
\(276\) 52.7699 34.0939i 3.17638 2.05221i
\(277\) −0.276709 1.56929i −0.0166258 0.0942898i 0.975366 0.220594i \(-0.0707996\pi\)
−0.991992 + 0.126304i \(0.959688\pi\)
\(278\) 50.8881 3.05207
\(279\) −16.1637 22.4678i −0.967696 1.34511i
\(280\) −3.08910 + 8.66958i −0.184609 + 0.518107i
\(281\) 14.3102 12.0077i 0.853675 0.716319i −0.106921 0.994268i \(-0.534099\pi\)
0.960596 + 0.277949i \(0.0896546\pi\)
\(282\) −42.5659 + 9.72228i −2.53476 + 0.578953i
\(283\) 23.9432 8.71461i 1.42328 0.518030i 0.488279 0.872687i \(-0.337625\pi\)
0.934996 + 0.354657i \(0.115402\pi\)
\(284\) 22.9296 8.34569i 1.36062 0.495226i
\(285\) 2.95302 0.674486i 0.174922 0.0399531i
\(286\) −3.09073 + 2.59343i −0.182759 + 0.153353i
\(287\) 10.9998 2.01650i 0.649295 0.119030i
\(288\) 29.0992 64.5433i 1.71469 3.80325i
\(289\) −13.5732 −0.798425
\(290\) 0.589018 + 3.34049i 0.0345883 + 0.196160i
\(291\) −2.12739 + 1.37448i −0.124710 + 0.0805733i
\(292\) −24.4851 + 8.91183i −1.43288 + 0.521525i
\(293\) 5.63836 2.05220i 0.329397 0.119891i −0.172028 0.985092i \(-0.555032\pi\)
0.501424 + 0.865202i \(0.332810\pi\)
\(294\) −32.3707 + 7.85668i −1.88790 + 0.458211i
\(295\) −0.453987 2.57469i −0.0264322 0.149904i
\(296\) −24.3167 + 42.1177i −1.41338 + 2.44804i
\(297\) 6.94347 + 6.12196i 0.402901 + 0.355232i
\(298\) −19.9662 34.5824i −1.15661 2.00331i
\(299\) −5.06418 1.84321i −0.292869 0.106596i
\(300\) 46.4629 + 5.81531i 2.68254 + 0.335747i
\(301\) −11.5077 6.54038i −0.663290 0.376981i
\(302\) 15.1672 + 12.7268i 0.872775 + 0.732345i
\(303\) 1.47764 + 29.5163i 0.0848883 + 1.69567i
\(304\) −13.3497 75.7099i −0.765657 4.34226i
\(305\) 0.844873 1.46336i 0.0483773 0.0837919i
\(306\) 12.6091 + 8.59105i 0.720813 + 0.491118i
\(307\) −5.80605 + 10.0564i −0.331369 + 0.573947i −0.982780 0.184777i \(-0.940844\pi\)
0.651412 + 0.758724i \(0.274177\pi\)
\(308\) −16.6733 + 20.1462i −0.950052 + 1.14794i
\(309\) −7.23392 + 1.65226i −0.411524 + 0.0939941i
\(310\) 6.92881 + 5.81396i 0.393530 + 0.330211i
\(311\) 18.5993 6.76958i 1.05467 0.383868i 0.244245 0.969713i \(-0.421460\pi\)
0.810423 + 0.585846i \(0.199238\pi\)
\(312\) −13.5692 + 3.09926i −0.768202 + 0.175461i
\(313\) 1.45828 + 8.27031i 0.0824268 + 0.467466i 0.997882 + 0.0650463i \(0.0207195\pi\)
−0.915455 + 0.402419i \(0.868169\pi\)
\(314\) 23.3724 40.4823i 1.31898 2.28455i
\(315\) −1.24694 2.54305i −0.0702569 0.143285i
\(316\) 31.7747 + 55.0355i 1.78747 + 3.09599i
\(317\) −12.8500 + 10.7824i −0.721726 + 0.605600i −0.927862 0.372923i \(-0.878355\pi\)
0.206136 + 0.978523i \(0.433911\pi\)
\(318\) 1.02943 + 20.5631i 0.0577274 + 1.15312i
\(319\) −1.07034 + 6.07017i −0.0599273 + 0.339864i
\(320\) −2.07368 + 11.7604i −0.115922 + 0.657427i
\(321\) −4.34734 + 5.74112i −0.242645 + 0.320438i
\(322\) −46.8548 7.93478i −2.61111 0.442188i
\(323\) 9.07240 0.504802
\(324\) 18.2715 + 46.4711i 1.01508 + 2.58173i
\(325\) −2.00834 3.47855i −0.111403 0.192955i
\(326\) −26.4316 + 22.1787i −1.46391 + 1.22837i
\(327\) −4.52366 10.7268i −0.250159 0.593193i
\(328\) 38.7196 14.0928i 2.13793 0.778145i
\(329\) 21.1051 + 11.9951i 1.16356 + 0.661311i
\(330\) −2.69214 1.37966i −0.148198 0.0759477i
\(331\) 20.7682 17.4266i 1.14152 0.957853i 0.142037 0.989861i \(-0.454635\pi\)
0.999488 + 0.0320081i \(0.0101903\pi\)
\(332\) 20.5332 35.5645i 1.12690 1.95185i
\(333\) −4.05797 14.4059i −0.222376 0.789439i
\(334\) −8.89336 15.4037i −0.486623 0.842855i
\(335\) −1.19420 + 1.00206i −0.0652463 + 0.0547481i
\(336\) −66.0442 + 28.3806i −3.60301 + 1.54829i
\(337\) 3.69846 20.9750i 0.201468 1.14258i −0.701433 0.712735i \(-0.747456\pi\)
0.902902 0.429847i \(-0.141433\pi\)
\(338\) −25.9301 21.7579i −1.41041 1.18348i
\(339\) −3.41528 3.67967i −0.185493 0.199852i
\(340\) −3.44392 1.25348i −0.186773 0.0679797i
\(341\) 8.21799 + 14.2340i 0.445029 + 0.770813i
\(342\) 33.3825 + 22.7448i 1.80512 + 1.22990i
\(343\) 16.2239 + 8.93219i 0.876010 + 0.482293i
\(344\) −45.8290 16.6804i −2.47094 0.899347i
\(345\) −0.202030 4.03561i −0.0108770 0.217270i
\(346\) −11.3540 + 64.3918i −0.610396 + 3.46173i
\(347\) 8.22051 + 6.89783i 0.441300 + 0.370295i 0.836196 0.548431i \(-0.184775\pi\)
−0.394895 + 0.918726i \(0.629219\pi\)
\(348\) −20.0719 + 26.5071i −1.07597 + 1.42093i
\(349\) −2.11784 12.0109i −0.113365 0.642927i −0.987547 0.157327i \(-0.949712\pi\)
0.874181 0.485600i \(-0.161399\pi\)
\(350\) −22.9503 26.9778i −1.22675 1.44202i
\(351\) 2.23180 3.65597i 0.119125 0.195141i
\(352\) −21.0215 + 36.4103i −1.12045 + 1.94068i
\(353\) 10.3413 8.67736i 0.550411 0.461849i −0.324669 0.945828i \(-0.605253\pi\)
0.875080 + 0.483978i \(0.160809\pi\)
\(354\) 21.0472 27.7951i 1.11865 1.47729i
\(355\) 0.272519 1.54553i 0.0144638 0.0820283i
\(356\) −22.7860 19.1197i −1.20765 1.01334i
\(357\) −1.94493 8.25710i −0.102936 0.437012i
\(358\) 20.8194 + 7.57764i 1.10034 + 0.400491i
\(359\) −15.4380 −0.814788 −0.407394 0.913252i \(-0.633562\pi\)
−0.407394 + 0.913252i \(0.633562\pi\)
\(360\) −6.09442 8.47133i −0.321204 0.446478i
\(361\) 5.01919 0.264168
\(362\) 8.30389 + 47.0937i 0.436443 + 2.47519i
\(363\) 9.22163 + 9.93549i 0.484010 + 0.521478i
\(364\) 10.5201 + 5.97912i 0.551404 + 0.313391i
\(365\) −0.291006 + 1.65037i −0.0152319 + 0.0863846i
\(366\) 21.9681 5.01762i 1.14829 0.262275i
\(367\) 35.6352 + 12.9701i 1.86014 + 0.677036i 0.978890 + 0.204389i \(0.0655206\pi\)
0.881252 + 0.472647i \(0.156702\pi\)
\(368\) −102.552 −5.34589
\(369\) −5.21174 + 11.5599i −0.271312 + 0.601783i
\(370\) 2.44547 + 4.23568i 0.127134 + 0.220203i
\(371\) 7.29851 8.81870i 0.378920 0.457844i
\(372\) 4.43293 + 88.5489i 0.229837 + 4.59105i
\(373\) −6.57831 + 2.39431i −0.340612 + 0.123973i −0.506662 0.862145i \(-0.669121\pi\)
0.166050 + 0.986117i \(0.446899\pi\)
\(374\) −6.94070 5.82394i −0.358895 0.301149i
\(375\) 3.68361 4.86459i 0.190221 0.251206i
\(376\) 84.0507 + 30.5919i 4.33458 + 1.57766i
\(377\) 2.85212 0.146891
\(378\) 13.5443 35.2586i 0.696645 1.81350i
\(379\) −0.100614 −0.00516821 −0.00258410 0.999997i \(-0.500823\pi\)
−0.00258410 + 0.999997i \(0.500823\pi\)
\(380\) −9.11778 3.31860i −0.467732 0.170241i
\(381\) 2.08072 + 4.93393i 0.106598 + 0.252773i
\(382\) −9.54373 8.00814i −0.488300 0.409732i
\(383\) −31.3892 + 11.4248i −1.60392 + 0.583778i −0.980224 0.197893i \(-0.936590\pi\)
−0.623692 + 0.781670i \(0.714368\pi\)
\(384\) −65.0949 + 42.0569i −3.32186 + 2.14621i
\(385\) 0.585943 + 1.57654i 0.0298624 + 0.0803481i
\(386\) 14.9753 + 25.9381i 0.762225 + 1.32021i
\(387\) 13.5204 6.51618i 0.687278 0.331236i
\(388\) 8.11318 0.411884
\(389\) −7.41684 2.69951i −0.376049 0.136871i 0.147079 0.989125i \(-0.453013\pi\)
−0.523128 + 0.852254i \(0.675235\pi\)
\(390\) −0.412382 + 1.33764i −0.0208818 + 0.0677339i
\(391\) 2.10153 11.9184i 0.106279 0.602738i
\(392\) 64.4339 + 22.4679i 3.25440 + 1.13480i
\(393\) 0.583665 1.89323i 0.0294420 0.0955008i
\(394\) 3.86399 + 21.9138i 0.194665 + 1.10400i
\(395\) 4.08722 0.205650
\(396\) −8.03982 28.5416i −0.404016 1.43427i
\(397\) −0.941417 −0.0472484 −0.0236242 0.999721i \(-0.507521\pi\)
−0.0236242 + 0.999721i \(0.507521\pi\)
\(398\) −15.7476 5.73164i −0.789354 0.287301i
\(399\) −5.14919 21.8607i −0.257782 1.09440i
\(400\) −58.5521 49.1311i −2.92761 2.45655i
\(401\) 1.27200 7.21384i 0.0635204 0.360242i −0.936435 0.350840i \(-0.885896\pi\)
0.999956 0.00940206i \(-0.00299281\pi\)
\(402\) −20.6282 2.58184i −1.02884 0.128770i
\(403\) 5.82596 4.88856i 0.290212 0.243516i
\(404\) 47.3335 81.9840i 2.35493 4.07886i
\(405\) 3.17596 + 0.476703i 0.157815 + 0.0236876i
\(406\) 24.7377 4.53498i 1.22771 0.225067i
\(407\) 1.54331 + 8.75257i 0.0764992 + 0.433849i
\(408\) −12.1454 28.8000i −0.601289 1.42581i
\(409\) −4.39448 3.68741i −0.217293 0.182331i 0.527643 0.849466i \(-0.323076\pi\)
−0.744936 + 0.667135i \(0.767520\pi\)
\(410\) 0.719572 4.08090i 0.0355372 0.201541i
\(411\) −11.1461 + 7.20136i −0.549798 + 0.355217i
\(412\) 22.3355 + 8.12946i 1.10039 + 0.400510i
\(413\) −19.0667 + 3.49535i −0.938209 + 0.171995i
\(414\) 37.6125 38.5859i 1.84855 1.89639i
\(415\) −1.32060 2.28735i −0.0648258 0.112282i
\(416\) 18.2809 + 6.65370i 0.896295 + 0.326225i
\(417\) 31.2760 7.14361i 1.53159 0.349824i
\(418\) −18.3755 15.4189i −0.898775 0.754162i
\(419\) 3.61040 20.4756i 0.176380 1.00030i −0.760160 0.649736i \(-0.774879\pi\)
0.936539 0.350563i \(-0.114010\pi\)
\(420\) −1.06572 + 9.00983i −0.0520016 + 0.439635i
\(421\) −15.9469 + 13.3810i −0.777203 + 0.652151i −0.942543 0.334086i \(-0.891572\pi\)
0.165339 + 0.986237i \(0.447128\pi\)
\(422\) −10.6084 18.3743i −0.516409 0.894446i
\(423\) −24.7964 + 11.9507i −1.20564 + 0.581063i
\(424\) 21.0888 36.5269i 1.02416 1.77390i
\(425\) 6.90977 5.79799i 0.335173 0.281244i
\(426\) 17.5788 11.3574i 0.851696 0.550269i
\(427\) −10.8922 6.19061i −0.527112 0.299584i
\(428\) 21.6768 7.88971i 1.04779 0.381364i
\(429\) −1.53551 + 2.02781i −0.0741353 + 0.0979034i
\(430\) −3.75723 + 3.15269i −0.181190 + 0.152036i
\(431\) 16.3858 + 28.3810i 0.789275 + 1.36706i 0.926412 + 0.376512i \(0.122877\pi\)
−0.137136 + 0.990552i \(0.543790\pi\)
\(432\) 16.1138 79.9000i 0.775276 3.84419i
\(433\) −16.9237 −0.813300 −0.406650 0.913584i \(-0.633303\pi\)
−0.406650 + 0.913584i \(0.633303\pi\)
\(434\) 42.7582 51.6642i 2.05246 2.47996i
\(435\) 0.830946 + 1.97039i 0.0398408 + 0.0944730i
\(436\) −6.47556 + 36.7248i −0.310123 + 1.75880i
\(437\) 5.56380 31.5539i 0.266153 1.50943i
\(438\) −18.7713 + 12.1279i −0.896926 + 0.579492i
\(439\) −8.50344 + 7.13524i −0.405847 + 0.340546i −0.822749 0.568405i \(-0.807561\pi\)
0.416901 + 0.908952i \(0.363116\pi\)
\(440\) 3.09854 + 5.36683i 0.147717 + 0.255853i
\(441\) −18.7923 + 9.37290i −0.894869 + 0.446329i
\(442\) −2.09622 + 3.63076i −0.0997070 + 0.172698i
\(443\) 1.82428 + 10.3460i 0.0866743 + 0.491554i 0.996983 + 0.0776237i \(0.0247333\pi\)
−0.910308 + 0.413931i \(0.864156\pi\)
\(444\) −14.1241 + 45.8141i −0.670299 + 2.17424i
\(445\) −1.79769 + 0.654307i −0.0852188 + 0.0310171i
\(446\) −14.5724 12.2277i −0.690025 0.579000i
\(447\) −17.1259 18.4517i −0.810028 0.872734i
\(448\) 87.2992 + 14.7840i 4.12450 + 0.698477i
\(449\) −11.8726 + 20.5639i −0.560303 + 0.970473i 0.437167 + 0.899380i \(0.355982\pi\)
−0.997470 + 0.0710924i \(0.977351\pi\)
\(450\) 39.9607 4.01108i 1.88377 0.189084i
\(451\) 3.76501 6.52118i 0.177287 0.307070i
\(452\) 2.79254 + 15.8373i 0.131350 + 0.744923i
\(453\) 11.1084 + 5.69279i 0.521918 + 0.267471i
\(454\) 30.9164 + 25.9420i 1.45098 + 1.21752i
\(455\) 0.671334 0.393684i 0.0314726 0.0184562i
\(456\) −32.1551 76.2482i −1.50580 3.57065i
\(457\) −5.43763 1.97913i −0.254361 0.0925800i 0.211692 0.977336i \(-0.432102\pi\)
−0.466054 + 0.884756i \(0.654325\pi\)
\(458\) −10.4785 18.1493i −0.489627 0.848059i
\(459\) 8.95559 + 3.51005i 0.418011 + 0.163835i
\(460\) −6.47167 + 11.2093i −0.301743 + 0.522634i
\(461\) 5.84489 + 33.1480i 0.272224 + 1.54386i 0.747644 + 0.664099i \(0.231185\pi\)
−0.475420 + 0.879759i \(0.657704\pi\)
\(462\) −10.0939 + 20.0296i −0.469612 + 0.931863i
\(463\) −8.83945 + 3.21730i −0.410804 + 0.149520i −0.539151 0.842209i \(-0.681255\pi\)
0.128347 + 0.991729i \(0.459033\pi\)
\(464\) 51.0004 18.5626i 2.36763 0.861748i
\(465\) 5.07463 + 2.60063i 0.235330 + 0.120601i
\(466\) 6.32735 + 35.8842i 0.293109 + 1.66230i
\(467\) −38.7334 −1.79237 −0.896183 0.443684i \(-0.853671\pi\)
−0.896183 + 0.443684i \(0.853671\pi\)
\(468\) −12.3601 + 5.95699i −0.571346 + 0.275362i
\(469\) 7.48952 + 8.80382i 0.345834 + 0.406522i
\(470\) 6.89078 5.78205i 0.317848 0.266706i
\(471\) 8.68195 28.1616i 0.400043 1.29762i
\(472\) −67.1155 + 24.4280i −3.08924 + 1.12439i
\(473\) −8.37511 + 3.04829i −0.385088 + 0.140161i
\(474\) 37.0794 + 39.9497i 1.70311 + 1.83495i
\(475\) 18.2936 15.3502i 0.839369 0.704315i
\(476\) −9.12066 + 25.5972i −0.418045 + 1.17324i
\(477\) 3.51931 + 12.4937i 0.161138 + 0.572045i
\(478\) 73.9610 3.38290
\(479\) 5.56351 + 31.5522i 0.254203 + 1.44166i 0.798110 + 0.602512i \(0.205834\pi\)
−0.543906 + 0.839146i \(0.683055\pi\)
\(480\) 0.729298 + 14.5679i 0.0332877 + 0.664931i
\(481\) 3.86445 1.40654i 0.176204 0.0641329i
\(482\) −17.5300 + 6.38041i −0.798471 + 0.290620i
\(483\) −29.9110 + 1.70066i −1.36100 + 0.0773829i
\(484\) −7.54015 42.7623i −0.342734 1.94374i
\(485\) 0.260902 0.451895i 0.0118469 0.0205195i
\(486\) 24.1529 + 35.3674i 1.09560 + 1.60430i
\(487\) 1.62963 + 2.82261i 0.0738457 + 0.127905i 0.900584 0.434683i \(-0.143139\pi\)
−0.826738 + 0.562587i \(0.809806\pi\)
\(488\) −43.3781 15.7884i −1.96364 0.714705i
\(489\) −13.1315 + 17.3416i −0.593829 + 0.784213i
\(490\) 5.19681 4.48205i 0.234768 0.202478i
\(491\) −14.9485 12.5433i −0.674618 0.566071i 0.239811 0.970820i \(-0.422915\pi\)
−0.914428 + 0.404748i \(0.867359\pi\)
\(492\) 34.1174 22.0428i 1.53813 0.993766i
\(493\) 1.11219 + 6.30755i 0.0500905 + 0.284078i
\(494\) −5.54974 + 9.61244i −0.249695 + 0.432484i
\(495\) −1.84828 0.470025i −0.0830739 0.0211260i
\(496\) 72.3609 125.333i 3.24910 5.62761i
\(497\) −11.4727 1.94288i −0.514621 0.0871502i
\(498\) 10.3767 33.6588i 0.464992 1.50829i
\(499\) −26.9925 22.6494i −1.20835 1.01393i −0.999351 0.0360109i \(-0.988535\pi\)
−0.208999 0.977916i \(-0.567021\pi\)
\(500\) −18.3673 + 6.68513i −0.821409 + 0.298968i
\(501\) −7.62825 8.21877i −0.340805 0.367187i
\(502\) −7.13523 40.4659i −0.318461 1.80608i
\(503\) −9.87950 + 17.1118i −0.440505 + 0.762978i −0.997727 0.0673862i \(-0.978534\pi\)
0.557222 + 0.830364i \(0.311867\pi\)
\(504\) −62.5026 + 45.6114i −2.78409 + 2.03169i
\(505\) −3.04428 5.27285i −0.135469 0.234639i
\(506\) −24.5122 + 20.5682i −1.08970 + 0.914367i
\(507\) −18.9911 9.73248i −0.843424 0.432235i
\(508\) 2.97852 16.8920i 0.132151 0.749463i
\(509\) 0.794834 4.50772i 0.0352304 0.199801i −0.962112 0.272653i \(-0.912099\pi\)
0.997343 + 0.0728517i \(0.0232100\pi\)
\(510\) −3.11904 0.390380i −0.138113 0.0172863i
\(511\) 12.2510 + 2.07468i 0.541951 + 0.0917785i
\(512\) 64.3628 2.84446
\(513\) 23.7099 + 9.29286i 1.04682 + 0.410290i
\(514\) −11.6945 20.2555i −0.515822 0.893430i
\(515\) 1.17106 0.982638i 0.0516032 0.0433002i
\(516\) −47.7047 5.97073i −2.10008 0.262847i
\(517\) 15.3600 5.59058i 0.675532 0.245874i
\(518\) 31.2817 18.3442i 1.37444 0.805999i
\(519\) 2.06102 + 41.1693i 0.0904686 + 1.80713i
\(520\) 2.19664 1.84320i 0.0963290 0.0808296i
\(521\) 7.54189 13.0629i 0.330416 0.572297i −0.652177 0.758066i \(-0.726144\pi\)
0.982593 + 0.185769i \(0.0594776\pi\)
\(522\) −11.7208 + 25.9974i −0.513007 + 1.13787i
\(523\) −3.41462 5.91429i −0.149311 0.258614i 0.781662 0.623702i \(-0.214372\pi\)
−0.930973 + 0.365088i \(0.881039\pi\)
\(524\) −4.86145 + 4.07924i −0.212374 + 0.178203i
\(525\) −17.8925 13.3589i −0.780891 0.583030i
\(526\) −3.31714 + 18.8124i −0.144634 + 0.820261i
\(527\) 13.0831 + 10.9780i 0.569907 + 0.478208i
\(528\) −14.2597 + 46.2541i −0.620575 + 2.01295i
\(529\) −18.5505 6.75182i −0.806542 0.293557i
\(530\) −2.12086 3.67343i −0.0921241 0.159564i
\(531\) 9.03388 20.0375i 0.392037 0.869555i
\(532\) −24.1469 + 67.7685i −1.04690 + 2.93814i
\(533\) −3.27415 1.19169i −0.141819 0.0516180i
\(534\) −22.7041 11.6353i −0.982503 0.503509i
\(535\) 0.257629 1.46109i 0.0111383 0.0631684i
\(536\) 32.6244 + 27.3751i 1.40916 + 1.18242i
\(537\) 13.8594 + 1.73465i 0.598078 + 0.0748556i
\(538\) 7.00707 + 39.7391i 0.302096 + 1.71327i
\(539\) 11.6595 4.42356i 0.502210 0.190536i
\(540\) −7.71644 6.80348i −0.332063 0.292775i
\(541\) 17.3586 30.0660i 0.746305 1.29264i −0.203278 0.979121i \(-0.565159\pi\)
0.949583 0.313517i \(-0.101507\pi\)
\(542\) 23.4742 19.6972i 1.00830 0.846066i
\(543\) 11.7146 + 27.7783i 0.502720 + 1.19208i
\(544\) −7.58619 + 43.0234i −0.325255 + 1.84461i
\(545\) 1.83729 + 1.54167i 0.0787008 + 0.0660378i
\(546\) 9.93835 + 2.99031i 0.425322 + 0.127973i
\(547\) −29.2610 10.6501i −1.25111 0.455366i −0.370332 0.928899i \(-0.620756\pi\)
−0.880776 + 0.473533i \(0.842978\pi\)
\(548\) 42.5077 1.81584
\(549\) 12.7973 6.16770i 0.546175 0.263231i
\(550\) −23.8491 −1.01693
\(551\) 2.94453 + 16.6992i 0.125441 + 0.711411i
\(552\) −107.615 + 24.5799i −4.58041 + 1.04619i
\(553\) −0.205347 30.3038i −0.00873225 1.28865i
\(554\) −0.760231 + 4.31148i −0.0322991 + 0.183177i
\(555\) 2.09760 + 2.25998i 0.0890380 + 0.0959306i
\(556\) −96.5681 35.1479i −4.09540 1.49060i
\(557\) −1.79877 −0.0762164 −0.0381082 0.999274i \(-0.512133\pi\)
−0.0381082 + 0.999274i \(0.512133\pi\)
\(558\) 20.6178 + 73.1939i 0.872823 + 3.09855i
\(559\) 2.06202 + 3.57152i 0.0872141 + 0.151059i
\(560\) 9.44228 11.4090i 0.399009 0.482118i
\(561\) −5.08334 2.60509i −0.214619 0.109987i
\(562\) −48.2281 + 17.5536i −2.03438 + 0.740454i
\(563\) 13.2042 + 11.0797i 0.556492 + 0.466952i 0.877132 0.480249i \(-0.159454\pi\)
−0.320640 + 0.947201i \(0.603898\pi\)
\(564\) 87.4906 + 10.9503i 3.68402 + 0.461093i
\(565\) 0.971921 + 0.353750i 0.0408890 + 0.0148824i
\(566\) −70.0034 −2.94246
\(567\) 3.37485 23.5714i 0.141730 0.989905i
\(568\) −42.8736 −1.79894
\(569\) −42.3245 15.4048i −1.77433 0.645805i −0.999914 0.0131329i \(-0.995820\pi\)
−0.774420 0.632672i \(-0.781958\pi\)
\(570\) −8.25766 1.03353i −0.345875 0.0432898i
\(571\) −33.1991 27.8574i −1.38934 1.16580i −0.965606 0.260009i \(-0.916274\pi\)
−0.423735 0.905786i \(-0.639281\pi\)
\(572\) 7.65640 2.78670i 0.320130 0.116518i
\(573\) −6.98979 3.58210i −0.292003 0.149644i
\(574\) −30.2931 5.13008i −1.26441 0.214126i
\(575\) −15.9279 27.5880i −0.664240 1.15050i
\(576\) −70.0791 + 71.8927i −2.91996 + 2.99553i
\(577\) −21.8077 −0.907866 −0.453933 0.891036i \(-0.649980\pi\)
−0.453933 + 0.891036i \(0.649980\pi\)
\(578\) 35.0422 + 12.7543i 1.45756 + 0.530509i
\(579\) 12.8451 + 13.8394i 0.533823 + 0.575147i
\(580\) 1.18949 6.74592i 0.0493908 0.280109i
\(581\) −16.8927 + 9.90623i −0.700827 + 0.410980i
\(582\) 6.78387 1.54947i 0.281200 0.0642276i
\(583\) −1.33845 7.59074i −0.0554330 0.314376i
\(584\) 45.7820 1.89447
\(585\) −0.0656756 + 0.880008i −0.00271535 + 0.0363838i
\(586\) −16.4850 −0.680990
\(587\) 44.1339 + 16.0634i 1.82160 + 0.663009i 0.994959 + 0.100280i \(0.0319739\pi\)
0.826642 + 0.562729i \(0.190248\pi\)
\(588\) 66.8550 + 7.44885i 2.75705 + 0.307185i
\(589\) 34.6374 + 29.0642i 1.42721 + 1.19757i
\(590\) −1.24729 + 7.07371i −0.0513500 + 0.291220i
\(591\) 5.45105 + 12.9259i 0.224226 + 0.531699i
\(592\) 59.9482 50.3025i 2.46386 2.06742i
\(593\) −15.7914 + 27.3515i −0.648475 + 1.12319i 0.335012 + 0.942214i \(0.391260\pi\)
−0.983487 + 0.180978i \(0.942074\pi\)
\(594\) −12.1735 22.3297i −0.499483 0.916199i
\(595\) 1.13243 + 1.33116i 0.0464252 + 0.0545721i
\(596\) 14.0032 + 79.4160i 0.573592 + 3.25300i
\(597\) −10.4831 1.31207i −0.429045 0.0536994i
\(598\) 11.3423 + 9.51730i 0.463820 + 0.389191i
\(599\) −5.81267 + 32.9653i −0.237499 + 1.34692i 0.599787 + 0.800160i \(0.295252\pi\)
−0.837286 + 0.546765i \(0.815859\pi\)
\(600\) −73.2188 37.5229i −2.98914 1.53187i
\(601\) −30.8500 11.2285i −1.25840 0.458020i −0.375167 0.926957i \(-0.622415\pi\)
−0.883231 + 0.468937i \(0.844637\pi\)
\(602\) 23.5637 + 27.6988i 0.960385 + 1.12892i
\(603\) −13.0406 + 1.30896i −0.531056 + 0.0533049i
\(604\) −19.9919 34.6269i −0.813458 1.40895i
\(605\) −2.62429 0.955163i −0.106693 0.0388329i
\(606\) 23.9206 77.5911i 0.971709 3.15192i
\(607\) 25.1890 + 21.1361i 1.02239 + 0.857887i 0.989926 0.141586i \(-0.0452201\pi\)
0.0324641 + 0.999473i \(0.489665\pi\)
\(608\) −20.0844 + 113.905i −0.814532 + 4.61944i
\(609\) 14.5673 6.25986i 0.590296 0.253662i
\(610\) −3.55630 + 2.98409i −0.143990 + 0.120822i
\(611\) −3.78175 6.55019i −0.152993 0.264992i
\(612\) −17.9939 25.0118i −0.727362 1.01104i
\(613\) −21.8124 + 37.7802i −0.880994 + 1.52593i −0.0307575 + 0.999527i \(0.509792\pi\)
−0.850237 + 0.526400i \(0.823541\pi\)
\(614\) 24.4392 20.5069i 0.986286 0.827592i
\(615\) −0.130619 2.60915i −0.00526707 0.105211i
\(616\) 39.6355 23.2431i 1.59696 0.936491i
\(617\) 29.1770 10.6196i 1.17462 0.427528i 0.320324 0.947308i \(-0.396208\pi\)
0.854300 + 0.519780i \(0.173986\pi\)
\(618\) 20.2285 + 2.53180i 0.813710 + 0.101844i
\(619\) 1.06715 0.895446i 0.0428924 0.0359910i −0.621089 0.783740i \(-0.713310\pi\)
0.663982 + 0.747749i \(0.268865\pi\)
\(620\) −9.13284 15.8185i −0.366784 0.635288i
\(621\) 17.7001 28.9950i 0.710282 1.16353i
\(622\) −54.3792 −2.18041
\(623\) 4.94153 + 13.2957i 0.197978 + 0.532682i
\(624\) 22.2233 + 2.78147i 0.889644 + 0.111348i
\(625\) 4.01235 22.7552i 0.160494 0.910208i
\(626\) 4.00648 22.7219i 0.160131 0.908149i
\(627\) −13.4581 6.89698i −0.537466 0.275439i
\(628\) −72.3135 + 60.6783i −2.88562 + 2.42133i
\(629\) 4.61757 + 7.99787i 0.184115 + 0.318896i
\(630\) 0.829611 + 7.73714i 0.0330525 + 0.308255i
\(631\) −8.49624 + 14.7159i −0.338230 + 0.585832i −0.984100 0.177616i \(-0.943162\pi\)
0.645870 + 0.763448i \(0.276495\pi\)
\(632\) −19.3893 109.962i −0.771264 4.37406i
\(633\) −9.09932 9.80372i −0.361666 0.389663i
\(634\) 43.3068 15.7624i 1.71993 0.626004i
\(635\) −0.845085 0.709110i −0.0335362 0.0281402i
\(636\) 12.2492 39.7327i 0.485713 1.57550i
\(637\) −2.95261 4.95768i −0.116987 0.196430i
\(638\) 8.46724 14.6657i 0.335221 0.580620i
\(639\) 9.20966 9.44801i 0.364329 0.373757i
\(640\) 7.98319 13.8273i 0.315563 0.546572i
\(641\) −4.66424 26.4522i −0.184226 1.04480i −0.926945 0.375197i \(-0.877575\pi\)
0.742719 0.669603i \(-0.233536\pi\)
\(642\) 16.6184 10.7369i 0.655874 0.423751i
\(643\) 35.0679 + 29.4255i 1.38294 + 1.16043i 0.968108 + 0.250533i \(0.0806057\pi\)
0.414837 + 0.909896i \(0.363839\pi\)
\(644\) 83.4338 + 47.4196i 3.28775 + 1.86859i
\(645\) −1.86664 + 2.46509i −0.0734988 + 0.0970629i
\(646\) −23.4223 8.52504i −0.921540 0.335413i
\(647\) 11.6262 + 20.1371i 0.457072 + 0.791671i 0.998805 0.0488793i \(-0.0155650\pi\)
−0.541733 + 0.840551i \(0.682232\pi\)
\(648\) −2.24120 87.7070i −0.0880426 3.44546i
\(649\) −6.52615 + 11.3036i −0.256174 + 0.443706i
\(650\) 1.91629 + 10.8678i 0.0751630 + 0.426271i
\(651\) 19.0268 37.7554i 0.745720 1.47975i
\(652\) 65.4767 23.8316i 2.56427 0.933317i
\(653\) −3.61606 + 1.31614i −0.141507 + 0.0515045i −0.411803 0.911273i \(-0.635101\pi\)
0.270296 + 0.962777i \(0.412879\pi\)
\(654\) 1.59919 + 31.9443i 0.0625333 + 1.24912i
\(655\) 0.0708759 + 0.401957i 0.00276935 + 0.0157058i
\(656\) −66.3031 −2.58870
\(657\) −9.83441 + 10.0889i −0.383677 + 0.393606i
\(658\) −43.2159 50.7997i −1.68473 1.98038i
\(659\) −25.4848 + 21.3843i −0.992746 + 0.833012i −0.985963 0.166965i \(-0.946603\pi\)
−0.00678272 + 0.999977i \(0.502159\pi\)
\(660\) 4.15584 + 4.47756i 0.161766 + 0.174289i
\(661\) 7.02943 2.55850i 0.273413 0.0995142i −0.201675 0.979453i \(-0.564638\pi\)
0.475088 + 0.879938i \(0.342416\pi\)
\(662\) −69.9928 + 25.4753i −2.72035 + 0.990126i
\(663\) −0.778664 + 2.52574i −0.0302408 + 0.0980918i
\(664\) −55.2738 + 46.3802i −2.14504 + 1.79990i
\(665\) 2.99812 + 3.52424i 0.116262 + 0.136664i
\(666\) −3.06024 + 41.0051i −0.118582 + 1.58892i
\(667\) 22.6198 0.875841
\(668\) 6.23731 + 35.3736i 0.241329 + 1.36864i
\(669\) −10.6728 5.46955i −0.412634 0.211465i
\(670\) 4.02469 1.46487i 0.155487 0.0565928i
\(671\) −7.92722 + 2.88527i −0.306027 + 0.111385i
\(672\) 107.974 6.13913i 4.16519 0.236822i
\(673\) 2.06817 + 11.7292i 0.0797222 + 0.452127i 0.998371 + 0.0570524i \(0.0181702\pi\)
−0.918649 + 0.395075i \(0.870719\pi\)
\(674\) −29.2579 + 50.6762i −1.12697 + 1.95197i
\(675\) 23.9970 8.07486i 0.923644 0.310802i
\(676\) 34.1784 + 59.1987i 1.31455 + 2.27687i
\(677\) 15.5801 + 5.67068i 0.598791 + 0.217942i 0.623591 0.781750i \(-0.285673\pi\)
−0.0248008 + 0.999692i \(0.507895\pi\)
\(678\) 5.35963 + 12.7091i 0.205835 + 0.488089i
\(679\) −3.36359 1.91170i −0.129083 0.0733642i
\(680\) 4.93288 + 4.13918i 0.189167 + 0.158730i
\(681\) 22.6431 + 11.6040i 0.867684 + 0.444668i
\(682\) −7.84130 44.4702i −0.300259 1.70285i
\(683\) 6.20726 10.7513i 0.237514 0.411387i −0.722486 0.691385i \(-0.757001\pi\)
0.960000 + 0.279999i \(0.0903340\pi\)
\(684\) −47.6390 66.2188i −1.82152 2.53194i
\(685\) 1.36695 2.36763i 0.0522286 0.0904626i
\(686\) −33.4923 38.3055i −1.27874 1.46251i
\(687\) −8.98788 9.68365i −0.342909 0.369454i
\(688\) 60.1170 + 50.4441i 2.29194 + 1.92316i
\(689\) −3.35148 + 1.21984i −0.127681 + 0.0464721i
\(690\) −3.27055 + 10.6086i −0.124508 + 0.403864i
\(691\) −4.07584 23.1153i −0.155052 0.879346i −0.958738 0.284292i \(-0.908242\pi\)
0.803685 0.595054i \(-0.202869\pi\)
\(692\) 66.0208 114.351i 2.50974 4.34699i
\(693\) −3.39204 + 13.7273i −0.128853 + 0.521456i
\(694\) −14.7414 25.5328i −0.559574 0.969211i
\(695\) −5.06312 + 4.24846i −0.192055 + 0.161153i
\(696\) 49.0693 31.7030i 1.85997 1.20170i
\(697\) 1.35871 7.70560i 0.0514646 0.291870i
\(698\) −5.81856 + 32.9987i −0.220236 + 1.24902i
\(699\) 8.92620 + 21.1664i 0.337620 + 0.800585i
\(700\) 24.9185 + 67.0461i 0.941833 + 2.53410i
\(701\) −19.0250 −0.718566 −0.359283 0.933229i \(-0.616979\pi\)
−0.359283 + 0.933229i \(0.616979\pi\)
\(702\) −9.19727 + 7.34152i −0.347129 + 0.277088i
\(703\) 12.2250 + 21.1744i 0.461075 + 0.798606i
\(704\) 45.6708 38.3224i 1.72128 1.44433i
\(705\) 3.42342 4.52099i 0.128934 0.170270i
\(706\) −34.8521 + 12.6851i −1.31167 + 0.477411i
\(707\) −38.9414 + 22.8361i −1.46454 + 0.858839i
\(708\) −59.1382 + 38.2083i −2.22255 + 1.43596i
\(709\) −11.3565 + 9.52923i −0.426502 + 0.357878i −0.830630 0.556825i \(-0.812019\pi\)
0.404128 + 0.914702i \(0.367575\pi\)
\(710\) −2.15585 + 3.73405i −0.0809077 + 0.140136i
\(711\) 28.3972 + 19.3481i 1.06498 + 0.725611i
\(712\) 26.1314 + 45.2610i 0.979317 + 1.69623i
\(713\) 46.2049 38.7705i 1.73039 1.45197i
\(714\) −2.73768 + 23.1450i −0.102455 + 0.866182i
\(715\) 0.0909966 0.516067i 0.00340308 0.0192998i
\(716\) −34.2742 28.7595i −1.28089 1.07479i
\(717\) 45.4567 10.3826i 1.69761 0.387744i
\(718\) 39.8566 + 14.5066i 1.48744 + 0.541382i
\(719\) 13.1238 + 22.7311i 0.489436 + 0.847727i 0.999926 0.0121561i \(-0.00386949\pi\)
−0.510491 + 0.859883i \(0.670536\pi\)
\(720\) 4.55303 + 16.1634i 0.169681 + 0.602374i
\(721\) −7.34439 8.63322i −0.273519 0.321518i
\(722\) −12.9581 4.71637i −0.482251 0.175525i
\(723\) −9.87836 + 6.38227i −0.367380 + 0.237359i
\(724\) 16.7692 95.1031i 0.623224 3.53448i
\(725\) 12.9148 + 10.8368i 0.479643 + 0.402468i
\(726\) −14.4716 34.3159i −0.537090 1.27358i
\(727\) −6.88405 39.0414i −0.255315 1.44797i −0.795262 0.606266i \(-0.792667\pi\)
0.539946 0.841699i \(-0.318444\pi\)
\(728\) −13.7764 16.1939i −0.510586 0.600186i
\(729\) 19.8093 + 18.3464i 0.733678 + 0.679497i
\(730\) 2.30210 3.98735i 0.0852044 0.147578i
\(731\) −7.09444 + 5.95294i −0.262397 + 0.220178i
\(732\) −45.1535 5.65142i −1.66892 0.208882i
\(733\) 5.63713 31.9698i 0.208212 1.18083i −0.684092 0.729396i \(-0.739801\pi\)
0.892304 0.451435i \(-0.149088\pi\)
\(734\) −79.8123 66.9704i −2.94592 2.47192i
\(735\) 2.56480 3.48421i 0.0946040 0.128517i
\(736\) 144.984 + 52.7697i 5.34416 + 1.94512i
\(737\) 7.78284 0.286685
\(738\) 24.3176 24.9470i 0.895145 0.918311i
\(739\) 32.6921 1.20260 0.601298 0.799025i \(-0.294650\pi\)
0.601298 + 0.799025i \(0.294650\pi\)
\(740\) −1.71512 9.72693i −0.0630491 0.357569i
\(741\) −2.06151 + 6.68691i −0.0757316 + 0.245650i
\(742\) −27.1293 + 15.9092i −0.995948 + 0.584045i
\(743\) 2.39317 13.5723i 0.0877968 0.497920i −0.908921 0.416968i \(-0.863093\pi\)
0.996718 0.0809524i \(-0.0257962\pi\)
\(744\) 45.8935 148.864i 1.68254 5.45763i
\(745\) 4.87369 + 1.77388i 0.178558 + 0.0649899i
\(746\) 19.2332 0.704177
\(747\) 1.65259 22.1435i 0.0604650 0.810190i
\(748\) 9.14852 + 15.8457i 0.334503 + 0.579376i
\(749\) −10.8459 1.83673i −0.396299 0.0671127i
\(750\) −14.0811 + 9.09761i −0.514170 + 0.332198i
\(751\) −36.9927 + 13.4642i −1.34988 + 0.491317i −0.912911 0.408159i \(-0.866171\pi\)
−0.436970 + 0.899476i \(0.643949\pi\)
\(752\) −110.255 92.5148i −4.02058 3.37367i
\(753\) −10.0659 23.8689i −0.366821 0.869830i
\(754\) −7.36335 2.68004i −0.268157 0.0976013i
\(755\) −2.57158 −0.0935892
\(756\) −50.0552 + 57.5537i −1.82049 + 2.09321i
\(757\) −34.5578 −1.25602 −0.628011 0.778204i \(-0.716131\pi\)
−0.628011 + 0.778204i \(0.716131\pi\)
\(758\) 0.259757 + 0.0945439i 0.00943481 + 0.00343399i
\(759\) −12.1780 + 16.0823i −0.442032 + 0.583750i
\(760\) 13.0598 + 10.9585i 0.473729 + 0.397506i
\(761\) 36.6049 13.3231i 1.32693 0.482962i 0.421256 0.906942i \(-0.361589\pi\)
0.905672 + 0.423980i \(0.139367\pi\)
\(762\) −0.735569 14.6932i −0.0266469 0.532278i
\(763\) 11.3381 13.6996i 0.410465 0.495960i
\(764\) 12.5796 + 21.7885i 0.455113 + 0.788279i
\(765\) −1.97178 + 0.197918i −0.0712897 + 0.00715573i
\(766\) 91.7735 3.31591
\(767\) 5.67532 + 2.06565i 0.204924 + 0.0745863i
\(768\) 94.5576