Properties

Label 189.2.v.a.43.9
Level $189$
Weight $2$
Character 189.43
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.9
Character \(\chi\) \(=\) 189.43
Dual form 189.2.v.a.22.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00215 + 1.68000i) q^{2} +(1.58061 - 0.708280i) q^{3} +(0.838893 + 4.75760i) q^{4} +(-3.29720 - 1.20008i) q^{5} +(4.35453 + 1.23735i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-3.69957 + 6.40784i) q^{8} +(1.99668 - 2.23903i) q^{9} +O(q^{10})\) \(q+(2.00215 + 1.68000i) q^{2} +(1.58061 - 0.708280i) q^{3} +(0.838893 + 4.75760i) q^{4} +(-3.29720 - 1.20008i) q^{5} +(4.35453 + 1.23735i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-3.69957 + 6.40784i) q^{8} +(1.99668 - 2.23903i) q^{9} +(-4.58534 - 7.94204i) q^{10} +(-0.308948 + 0.112448i) q^{11} +(4.69568 + 6.92576i) q^{12} +(-1.82041 + 1.52750i) q^{13} +(2.00215 - 1.68000i) q^{14} +(-6.06160 + 0.438472i) q^{15} +(-9.09294 + 3.30956i) q^{16} +(-1.28196 - 2.22042i) q^{17} +(7.75922 - 1.12845i) q^{18} +(2.50633 - 4.34109i) q^{19} +(2.94352 - 16.6935i) q^{20} +(-0.423048 - 1.67959i) q^{21} +(-0.807473 - 0.293896i) q^{22} +(0.785944 + 4.45731i) q^{23} +(-1.30905 + 12.7486i) q^{24} +(5.60111 + 4.69989i) q^{25} -6.21093 q^{26} +(1.57012 - 4.95325i) q^{27} +4.83099 q^{28} +(-7.49985 - 6.29312i) q^{29} +(-12.8728 - 9.30560i) q^{30} +(1.70905 + 9.69250i) q^{31} +(-9.85965 - 3.58862i) q^{32} +(-0.408683 + 0.396559i) q^{33} +(1.16363 - 6.59930i) q^{34} +(-1.75440 + 3.03872i) q^{35} +(12.3274 + 7.62110i) q^{36} +(1.70374 + 2.95097i) q^{37} +(12.3111 - 4.48086i) q^{38} +(-1.79546 + 3.70375i) q^{39} +(19.8881 - 16.6881i) q^{40} +(-5.18169 + 4.34795i) q^{41} +(1.97471 - 4.07351i) q^{42} +(0.843380 - 0.306965i) q^{43} +(-0.794157 - 1.37552i) q^{44} +(-9.27048 + 4.98636i) q^{45} +(-5.91471 + 10.2446i) q^{46} +(-0.875085 + 4.96285i) q^{47} +(-12.0283 + 11.6715i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(3.31843 + 18.8197i) q^{50} +(-3.59896 - 2.60164i) q^{51} +(-8.79438 - 7.37936i) q^{52} +6.97774 q^{53} +(11.4651 - 7.27934i) q^{54} +1.15361 q^{55} +(5.66806 + 4.75607i) q^{56} +(0.886834 - 8.63677i) q^{57} +(-4.44335 - 25.1995i) q^{58} +(6.88347 + 2.50538i) q^{59} +(-7.17111 - 28.4708i) q^{60} +(0.157688 - 0.894295i) q^{61} +(-12.8616 + 22.2770i) q^{62} +(-1.85830 - 2.35515i) q^{63} +(-4.03508 - 6.98896i) q^{64} +(7.83538 - 2.85185i) q^{65} +(-1.48446 + 0.107380i) q^{66} +(4.46899 - 3.74993i) q^{67} +(9.48844 - 7.96175i) q^{68} +(4.39930 + 6.48862i) q^{69} +(-8.61762 + 3.13656i) q^{70} +(-5.46530 - 9.46618i) q^{71} +(6.96050 + 21.0778i) q^{72} +(2.95135 - 5.11188i) q^{73} +(-1.54649 + 8.77057i) q^{74} +(12.1820 + 3.46156i) q^{75} +(22.7557 + 8.28240i) q^{76} +(0.0570914 + 0.323781i) q^{77} +(-9.81708 + 4.39907i) q^{78} +(-0.653105 - 0.548021i) q^{79} +33.9530 q^{80} +(-1.02654 - 8.94127i) q^{81} -17.6791 q^{82} +(-1.71116 - 1.43583i) q^{83} +(7.63593 - 3.42169i) q^{84} +(1.56219 + 8.85963i) q^{85} +(2.20427 + 0.802290i) q^{86} +(-16.3116 - 4.63500i) q^{87} +(0.422426 - 2.39570i) q^{88} +(0.107492 - 0.186182i) q^{89} +(-26.9379 - 5.59099i) q^{90} +(1.18819 + 2.05800i) q^{91} +(-20.5468 + 7.47842i) q^{92} +(9.56634 + 14.1096i) q^{93} +(-10.0896 + 8.46622i) q^{94} +(-13.4735 + 11.3056i) q^{95} +(-18.1261 + 1.31117i) q^{96} +(-2.73245 + 0.994531i) q^{97} +(-1.30681 - 2.26346i) q^{98} +(-0.365096 + 0.916268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00215 + 1.68000i 1.41573 + 1.18794i 0.953580 + 0.301139i \(0.0973667\pi\)
0.462151 + 0.886801i \(0.347078\pi\)
\(3\) 1.58061 0.708280i 0.912568 0.408925i
\(4\) 0.838893 + 4.75760i 0.419447 + 2.37880i
\(5\) −3.29720 1.20008i −1.47455 0.536693i −0.525220 0.850966i \(-0.676017\pi\)
−0.949333 + 0.314273i \(0.898239\pi\)
\(6\) 4.35453 + 1.23735i 1.77773 + 0.505147i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) −3.69957 + 6.40784i −1.30799 + 2.26551i
\(9\) 1.99668 2.23903i 0.665560 0.746344i
\(10\) −4.58534 7.94204i −1.45001 2.51149i
\(11\) −0.308948 + 0.112448i −0.0931514 + 0.0339044i −0.388175 0.921585i \(-0.626895\pi\)
0.295024 + 0.955490i \(0.404672\pi\)
\(12\) 4.69568 + 6.92576i 1.35553 + 1.99929i
\(13\) −1.82041 + 1.52750i −0.504890 + 0.423653i −0.859327 0.511427i \(-0.829117\pi\)
0.354437 + 0.935080i \(0.384673\pi\)
\(14\) 2.00215 1.68000i 0.535096 0.448999i
\(15\) −6.06160 + 0.438472i −1.56510 + 0.113213i
\(16\) −9.09294 + 3.30956i −2.27324 + 0.827390i
\(17\) −1.28196 2.22042i −0.310921 0.538531i 0.667641 0.744483i \(-0.267304\pi\)
−0.978562 + 0.205952i \(0.933971\pi\)
\(18\) 7.75922 1.12845i 1.82887 0.265978i
\(19\) 2.50633 4.34109i 0.574991 0.995914i −0.421051 0.907037i \(-0.638339\pi\)
0.996043 0.0888772i \(-0.0283279\pi\)
\(20\) 2.94352 16.6935i 0.658190 3.73278i
\(21\) −0.423048 1.67959i −0.0923167 0.366517i
\(22\) −0.807473 0.293896i −0.172154 0.0626588i
\(23\) 0.785944 + 4.45731i 0.163881 + 0.929414i 0.950211 + 0.311607i \(0.100867\pi\)
−0.786330 + 0.617806i \(0.788022\pi\)
\(24\) −1.30905 + 12.7486i −0.267208 + 2.60231i
\(25\) 5.60111 + 4.69989i 1.12022 + 0.939978i
\(26\) −6.21093 −1.21806
\(27\) 1.57012 4.95325i 0.302170 0.953254i
\(28\) 4.83099 0.912972
\(29\) −7.49985 6.29312i −1.39269 1.16860i −0.964238 0.265036i \(-0.914616\pi\)
−0.428448 0.903566i \(-0.640940\pi\)
\(30\) −12.8728 9.30560i −2.35025 1.69896i
\(31\) 1.70905 + 9.69250i 0.306954 + 1.74082i 0.614161 + 0.789181i \(0.289495\pi\)
−0.307207 + 0.951643i \(0.599394\pi\)
\(32\) −9.85965 3.58862i −1.74296 0.634384i
\(33\) −0.408683 + 0.396559i −0.0711427 + 0.0690320i
\(34\) 1.16363 6.59930i 0.199562 1.13177i
\(35\) −1.75440 + 3.03872i −0.296548 + 0.513637i
\(36\) 12.3274 + 7.62110i 2.05457 + 1.27018i
\(37\) 1.70374 + 2.95097i 0.280094 + 0.485137i 0.971408 0.237418i \(-0.0763011\pi\)
−0.691314 + 0.722555i \(0.742968\pi\)
\(38\) 12.3111 4.48086i 1.99712 0.726892i
\(39\) −1.79546 + 3.70375i −0.287504 + 0.593075i
\(40\) 19.8881 16.6881i 3.14459 2.63863i
\(41\) −5.18169 + 4.34795i −0.809244 + 0.679036i −0.950427 0.310947i \(-0.899354\pi\)
0.141183 + 0.989983i \(0.454909\pi\)
\(42\) 1.97471 4.07351i 0.304704 0.628556i
\(43\) 0.843380 0.306965i 0.128614 0.0468118i −0.276911 0.960896i \(-0.589311\pi\)
0.405525 + 0.914084i \(0.367089\pi\)
\(44\) −0.794157 1.37552i −0.119724 0.207368i
\(45\) −9.27048 + 4.98636i −1.38196 + 0.743323i
\(46\) −5.91471 + 10.2446i −0.872076 + 1.51048i
\(47\) −0.875085 + 4.96285i −0.127644 + 0.723907i 0.852058 + 0.523448i \(0.175354\pi\)
−0.979702 + 0.200459i \(0.935757\pi\)
\(48\) −12.0283 + 11.6715i −1.73614 + 1.68463i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) 3.31843 + 18.8197i 0.469297 + 2.66151i
\(51\) −3.59896 2.60164i −0.503955 0.364303i
\(52\) −8.79438 7.37936i −1.21956 1.02333i
\(53\) 6.97774 0.958466 0.479233 0.877688i \(-0.340915\pi\)
0.479233 + 0.877688i \(0.340915\pi\)
\(54\) 11.4651 7.27934i 1.56020 0.990593i
\(55\) 1.15361 0.155553
\(56\) 5.66806 + 4.75607i 0.757427 + 0.635557i
\(57\) 0.886834 8.63677i 0.117464 1.14397i
\(58\) −4.44335 25.1995i −0.583441 3.30886i
\(59\) 6.88347 + 2.50538i 0.896151 + 0.326172i 0.748709 0.662899i \(-0.230674\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(60\) −7.17111 28.4708i −0.925786 3.67557i
\(61\) 0.157688 0.894295i 0.0201899 0.114503i −0.973047 0.230606i \(-0.925929\pi\)
0.993237 + 0.116103i \(0.0370403\pi\)
\(62\) −12.8616 + 22.2770i −1.63343 + 2.82918i
\(63\) −1.85830 2.35515i −0.234123 0.296721i
\(64\) −4.03508 6.98896i −0.504385 0.873620i
\(65\) 7.83538 2.85185i 0.971859 0.353728i
\(66\) −1.48446 + 0.107380i −0.182725 + 0.0132176i
\(67\) 4.46899 3.74993i 0.545974 0.458126i −0.327601 0.944816i \(-0.606240\pi\)
0.873575 + 0.486690i \(0.161796\pi\)
\(68\) 9.48844 7.96175i 1.15064 0.965504i
\(69\) 4.39930 + 6.48862i 0.529613 + 0.781138i
\(70\) −8.61762 + 3.13656i −1.03000 + 0.374890i
\(71\) −5.46530 9.46618i −0.648612 1.12343i −0.983455 0.181155i \(-0.942016\pi\)
0.334843 0.942274i \(-0.391317\pi\)
\(72\) 6.96050 + 21.0778i 0.820303 + 2.48405i
\(73\) 2.95135 5.11188i 0.345429 0.598301i −0.640003 0.768373i \(-0.721067\pi\)
0.985432 + 0.170072i \(0.0544001\pi\)
\(74\) −1.54649 + 8.77057i −0.179776 + 1.01956i
\(75\) 12.1820 + 3.46156i 1.40666 + 0.399707i
\(76\) 22.7557 + 8.28240i 2.61026 + 0.950056i
\(77\) 0.0570914 + 0.323781i 0.00650616 + 0.0368983i
\(78\) −9.81708 + 4.39907i −1.11157 + 0.498097i
\(79\) −0.653105 0.548021i −0.0734801 0.0616571i 0.605308 0.795991i \(-0.293050\pi\)
−0.678788 + 0.734334i \(0.737494\pi\)
\(80\) 33.9530 3.79606
\(81\) −1.02654 8.94127i −0.114060 0.993474i
\(82\) −17.6791 −1.95233
\(83\) −1.71116 1.43583i −0.187824 0.157603i 0.544027 0.839068i \(-0.316899\pi\)
−0.731851 + 0.681465i \(0.761343\pi\)
\(84\) 7.63593 3.42169i 0.833149 0.373337i
\(85\) 1.56219 + 8.85963i 0.169443 + 0.960962i
\(86\) 2.20427 + 0.802290i 0.237693 + 0.0865131i
\(87\) −16.3116 4.63500i −1.74879 0.496924i
\(88\) 0.422426 2.39570i 0.0450308 0.255382i
\(89\) 0.107492 0.186182i 0.0113941 0.0197352i −0.860272 0.509835i \(-0.829706\pi\)
0.871666 + 0.490100i \(0.163040\pi\)
\(90\) −26.9379 5.59099i −2.83951 0.589342i
\(91\) 1.18819 + 2.05800i 0.124556 + 0.215737i
\(92\) −20.5468 + 7.47842i −2.14215 + 0.779679i
\(93\) 9.56634 + 14.1096i 0.991984 + 1.46310i
\(94\) −10.0896 + 8.46622i −1.04067 + 0.873224i
\(95\) −13.4735 + 11.3056i −1.38236 + 1.15993i
\(96\) −18.1261 + 1.31117i −1.84998 + 0.133820i
\(97\) −2.73245 + 0.994531i −0.277438 + 0.100979i −0.476992 0.878908i \(-0.658273\pi\)
0.199554 + 0.979887i \(0.436051\pi\)
\(98\) −1.30681 2.26346i −0.132008 0.228644i
\(99\) −0.365096 + 0.916268i −0.0366936 + 0.0920884i
\(100\) −17.6615 + 30.5906i −1.76615 + 3.05906i
\(101\) −0.958894 + 5.43816i −0.0954135 + 0.541117i 0.899206 + 0.437525i \(0.144145\pi\)
−0.994620 + 0.103592i \(0.966966\pi\)
\(102\) −2.83489 11.2551i −0.280696 1.11442i
\(103\) −4.15162 1.51106i −0.409071 0.148890i 0.129285 0.991608i \(-0.458732\pi\)
−0.538355 + 0.842718i \(0.680954\pi\)
\(104\) −3.05327 17.3160i −0.299398 1.69797i
\(105\) −0.620774 + 6.04565i −0.0605814 + 0.589995i
\(106\) 13.9705 + 11.7226i 1.35693 + 1.13860i
\(107\) −13.6243 −1.31711 −0.658556 0.752532i \(-0.728832\pi\)
−0.658556 + 0.752532i \(0.728832\pi\)
\(108\) 24.8828 + 3.31475i 2.39434 + 0.318962i
\(109\) 11.0039 1.05398 0.526989 0.849872i \(-0.323321\pi\)
0.526989 + 0.849872i \(0.323321\pi\)
\(110\) 2.30970 + 1.93807i 0.220221 + 0.184788i
\(111\) 4.78307 + 3.45762i 0.453989 + 0.328183i
\(112\) 1.68031 + 9.52950i 0.158774 + 0.900453i
\(113\) −1.17069 0.426096i −0.110129 0.0400837i 0.286368 0.958120i \(-0.407552\pi\)
−0.396497 + 0.918036i \(0.629774\pi\)
\(114\) 16.2853 15.8022i 1.52526 1.48001i
\(115\) 2.75773 15.6398i 0.257159 1.45842i
\(116\) 23.6486 40.9605i 2.19571 3.80309i
\(117\) −0.214642 + 7.12589i −0.0198436 + 0.658789i
\(118\) 9.57267 + 16.5804i 0.881236 + 1.52635i
\(119\) −2.40930 + 0.876912i −0.220860 + 0.0803864i
\(120\) 19.6156 40.4639i 1.79065 3.69383i
\(121\) −8.34368 + 7.00118i −0.758517 + 0.636471i
\(122\) 1.81813 1.52559i 0.164606 0.138121i
\(123\) −5.11068 + 10.5425i −0.460815 + 0.950587i
\(124\) −44.6793 + 16.2619i −4.01232 + 1.46037i
\(125\) −4.05572 7.02470i −0.362754 0.628309i
\(126\) 0.236070 7.83730i 0.0210308 0.698202i
\(127\) 6.39662 11.0793i 0.567608 0.983126i −0.429193 0.903213i \(-0.641202\pi\)
0.996802 0.0799139i \(-0.0254645\pi\)
\(128\) 0.0186594 0.105822i 0.00164927 0.00935347i
\(129\) 1.11564 1.08254i 0.0982267 0.0953125i
\(130\) 20.4787 + 7.45363i 1.79610 + 0.653727i
\(131\) −1.25242 7.10283i −0.109424 0.620577i −0.989360 0.145485i \(-0.953526\pi\)
0.879936 0.475092i \(-0.157585\pi\)
\(132\) −2.22951 1.61168i −0.194054 0.140279i
\(133\) −3.83992 3.22207i −0.332963 0.279389i
\(134\) 15.2474 1.31718
\(135\) −11.1213 + 14.4476i −0.957170 + 1.24345i
\(136\) 18.9708 1.62673
\(137\) 7.02318 + 5.89315i 0.600031 + 0.503486i 0.891456 0.453108i \(-0.149685\pi\)
−0.291425 + 0.956594i \(0.594129\pi\)
\(138\) −2.09285 + 20.3820i −0.178155 + 1.73503i
\(139\) −3.10976 17.6363i −0.263766 1.49589i −0.772526 0.634983i \(-0.781007\pi\)
0.508760 0.860909i \(-0.330104\pi\)
\(140\) −15.9288 5.79759i −1.34623 0.489986i
\(141\) 2.13192 + 8.46416i 0.179540 + 0.712811i
\(142\) 4.96085 28.1344i 0.416305 2.36099i
\(143\) 0.390647 0.676621i 0.0326676 0.0565819i
\(144\) −10.7455 + 26.9675i −0.895457 + 2.24729i
\(145\) 17.1762 + 29.7501i 1.42641 + 2.47061i
\(146\) 14.4970 5.27647i 1.19978 0.436684i
\(147\) −1.72754 + 0.124963i −0.142485 + 0.0103068i
\(148\) −12.6103 + 10.5813i −1.03656 + 0.869776i
\(149\) 15.3512 12.8812i 1.25762 1.05527i 0.261690 0.965152i \(-0.415720\pi\)
0.995931 0.0901176i \(-0.0287243\pi\)
\(150\) 18.5748 + 27.3964i 1.51663 + 2.23690i
\(151\) 0.536388 0.195229i 0.0436506 0.0158875i −0.320103 0.947383i \(-0.603717\pi\)
0.363753 + 0.931495i \(0.381495\pi\)
\(152\) 18.5447 + 32.1203i 1.50417 + 2.60530i
\(153\) −7.53126 1.56312i −0.608866 0.126371i
\(154\) −0.429647 + 0.744171i −0.0346220 + 0.0599670i
\(155\) 5.99672 34.0091i 0.481668 2.73168i
\(156\) −19.1272 5.43504i −1.53140 0.435151i
\(157\) −7.56674 2.75407i −0.603891 0.219798i 0.0219369 0.999759i \(-0.493017\pi\)
−0.625828 + 0.779961i \(0.715239\pi\)
\(158\) −0.386938 2.19444i −0.0307831 0.174580i
\(159\) 11.0291 4.94219i 0.874665 0.391941i
\(160\) 28.2026 + 23.6648i 2.22961 + 1.87087i
\(161\) 4.52607 0.356704
\(162\) 12.9661 19.6263i 1.01871 1.54199i
\(163\) −1.88855 −0.147923 −0.0739614 0.997261i \(-0.523564\pi\)
−0.0739614 + 0.997261i \(0.523564\pi\)
\(164\) −25.0327 21.0049i −1.95473 1.64021i
\(165\) 1.82341 0.817080i 0.141953 0.0636096i
\(166\) −1.01379 5.74949i −0.0786854 0.446247i
\(167\) −4.73464 1.72327i −0.366378 0.133351i 0.152269 0.988339i \(-0.451342\pi\)
−0.518647 + 0.854988i \(0.673564\pi\)
\(168\) 12.3276 + 3.50294i 0.951099 + 0.270257i
\(169\) −1.27681 + 7.24114i −0.0982161 + 0.557011i
\(170\) −11.7564 + 20.3628i −0.901678 + 1.56175i
\(171\) −4.71550 14.2795i −0.360603 1.09198i
\(172\) 2.16792 + 3.75495i 0.165303 + 0.286313i
\(173\) 16.2893 5.92883i 1.23845 0.450760i 0.361969 0.932190i \(-0.382105\pi\)
0.876485 + 0.481430i \(0.159882\pi\)
\(174\) −24.8715 36.6835i −1.88550 2.78097i
\(175\) 5.60111 4.69989i 0.423404 0.355278i
\(176\) 2.43710 2.04497i 0.183703 0.154145i
\(177\) 12.6546 0.915385i 0.951178 0.0688045i
\(178\) 0.528001 0.192177i 0.0395753 0.0144042i
\(179\) 5.86658 + 10.1612i 0.438489 + 0.759485i 0.997573 0.0696257i \(-0.0221805\pi\)
−0.559084 + 0.829111i \(0.688847\pi\)
\(180\) −31.5000 39.9222i −2.34787 2.97563i
\(181\) −6.59159 + 11.4170i −0.489949 + 0.848617i −0.999933 0.0115671i \(-0.996318\pi\)
0.509984 + 0.860184i \(0.329651\pi\)
\(182\) −1.07852 + 6.11657i −0.0799450 + 0.453390i
\(183\) −0.384166 1.52522i −0.0283984 0.112748i
\(184\) −31.4694 11.4539i −2.31995 0.844394i
\(185\) −2.07618 11.7746i −0.152644 0.865685i
\(186\) −4.55093 + 44.3210i −0.333690 + 3.24977i
\(187\) 0.645741 + 0.541841i 0.0472213 + 0.0396234i
\(188\) −24.3454 −1.77557
\(189\) −4.60535 2.40639i −0.334990 0.175039i
\(190\) −45.9695 −3.33498
\(191\) −0.292258 0.245234i −0.0211470 0.0177445i 0.632153 0.774844i \(-0.282171\pi\)
−0.653300 + 0.757099i \(0.726616\pi\)
\(192\) −11.3280 8.18889i −0.817531 0.590982i
\(193\) −1.86312 10.5663i −0.134110 0.760577i −0.975475 0.220110i \(-0.929359\pi\)
0.841365 0.540467i \(-0.181753\pi\)
\(194\) −7.14158 2.59932i −0.512736 0.186621i
\(195\) 10.3648 10.0573i 0.742239 0.720219i
\(196\) 0.838893 4.75760i 0.0599209 0.339829i
\(197\) 0.207469 0.359346i 0.0147815 0.0256024i −0.858540 0.512747i \(-0.828628\pi\)
0.873322 + 0.487144i \(0.161961\pi\)
\(198\) −2.27031 + 1.22114i −0.161344 + 0.0867827i
\(199\) −9.85935 17.0769i −0.698910 1.21055i −0.968845 0.247670i \(-0.920335\pi\)
0.269934 0.962879i \(-0.412998\pi\)
\(200\) −50.8378 + 18.5035i −3.59478 + 1.30839i
\(201\) 4.40775 9.09248i 0.310899 0.641334i
\(202\) −11.0559 + 9.27704i −0.777894 + 0.652730i
\(203\) −7.49985 + 6.29312i −0.526386 + 0.441690i
\(204\) 9.35842 19.3049i 0.655220 1.35161i
\(205\) 22.3030 8.11762i 1.55771 0.566959i
\(206\) −5.77355 10.0001i −0.402263 0.696739i
\(207\) 11.5493 + 7.14007i 0.802735 + 0.496269i
\(208\) 11.4975 19.9143i 0.797208 1.38080i
\(209\) −0.286179 + 1.62300i −0.0197954 + 0.112266i
\(210\) −11.3996 + 11.0614i −0.786645 + 0.763307i
\(211\) −15.6464 5.69483i −1.07714 0.392048i −0.258300 0.966065i \(-0.583162\pi\)
−0.818844 + 0.574016i \(0.805385\pi\)
\(212\) 5.85358 + 33.1973i 0.402025 + 2.28000i
\(213\) −15.3432 11.0914i −1.05130 0.759971i
\(214\) −27.2779 22.8888i −1.86468 1.56465i
\(215\) −3.14918 −0.214772
\(216\) 25.9309 + 28.3860i 1.76437 + 1.93142i
\(217\) 9.84202 0.668120
\(218\) 22.0313 + 18.4865i 1.49215 + 1.25206i
\(219\) 1.04430 10.1703i 0.0705671 0.687245i
\(220\) 0.967757 + 5.48842i 0.0652462 + 0.370029i
\(221\) 5.72539 + 2.08387i 0.385131 + 0.140176i
\(222\) 3.76761 + 14.9582i 0.252866 + 1.00393i
\(223\) −1.64750 + 9.34342i −0.110325 + 0.625682i 0.878635 + 0.477494i \(0.158455\pi\)
−0.988959 + 0.148187i \(0.952656\pi\)
\(224\) −5.24621 + 9.08671i −0.350527 + 0.607131i
\(225\) 21.7068 3.15689i 1.44712 0.210460i
\(226\) −1.62805 2.81986i −0.108296 0.187575i
\(227\) 13.1661 4.79209i 0.873868 0.318062i 0.134135 0.990963i \(-0.457174\pi\)
0.739732 + 0.672901i \(0.234952\pi\)
\(228\) 41.8342 3.02612i 2.77054 0.200410i
\(229\) −15.7576 + 13.2222i −1.04129 + 0.873749i −0.992151 0.125043i \(-0.960093\pi\)
−0.0491422 + 0.998792i \(0.515649\pi\)
\(230\) 31.7963 26.6803i 2.09659 1.75925i
\(231\) 0.319567 + 0.471336i 0.0210260 + 0.0310117i
\(232\) 68.0714 24.7760i 4.46911 1.62662i
\(233\) 7.85140 + 13.5990i 0.514362 + 0.890902i 0.999861 + 0.0166645i \(0.00530471\pi\)
−0.485499 + 0.874237i \(0.661362\pi\)
\(234\) −12.4012 + 13.9065i −0.810694 + 0.909095i
\(235\) 8.84117 15.3133i 0.576734 0.998933i
\(236\) −6.14509 + 34.8505i −0.400011 + 2.26858i
\(237\) −1.42046 0.403628i −0.0922687 0.0262184i
\(238\) −6.29698 2.29191i −0.408172 0.148563i
\(239\) 4.90948 + 27.8431i 0.317568 + 1.80102i 0.557444 + 0.830215i \(0.311782\pi\)
−0.239875 + 0.970804i \(0.577107\pi\)
\(240\) 53.6666 24.0482i 3.46416 1.55231i
\(241\) 18.4147 + 15.4518i 1.18620 + 0.995336i 0.999918 + 0.0128394i \(0.00408702\pi\)
0.186278 + 0.982497i \(0.440357\pi\)
\(242\) −28.4673 −1.82995
\(243\) −7.95547 13.4056i −0.510344 0.859970i
\(244\) 4.38698 0.280848
\(245\) 2.68790 + 2.25542i 0.171724 + 0.144093i
\(246\) −27.9438 + 12.5217i −1.78163 + 0.798356i
\(247\) 2.06849 + 11.7310i 0.131615 + 0.746424i
\(248\) −68.4307 24.9067i −4.34535 1.58158i
\(249\) −3.72165 1.05752i −0.235850 0.0670175i
\(250\) 3.68137 20.8781i 0.232830 1.32045i
\(251\) 7.79191 13.4960i 0.491821 0.851859i −0.508135 0.861278i \(-0.669665\pi\)
0.999956 + 0.00941867i \(0.00299810\pi\)
\(252\) 9.64595 10.8168i 0.607638 0.681391i
\(253\) −0.744032 1.28870i −0.0467769 0.0810199i
\(254\) 31.4202 11.4360i 1.97148 0.717559i
\(255\) 8.74432 + 12.8972i 0.547590 + 0.807653i
\(256\) −12.1491 + 10.1943i −0.759316 + 0.637142i
\(257\) 5.73016 4.80817i 0.357437 0.299925i −0.446331 0.894868i \(-0.647270\pi\)
0.803768 + 0.594942i \(0.202825\pi\)
\(258\) 4.05235 0.293131i 0.252288 0.0182495i
\(259\) 3.20199 1.16543i 0.198962 0.0724163i
\(260\) 20.1410 + 34.8852i 1.24909 + 2.16349i
\(261\) −29.0653 + 4.22706i −1.79910 + 0.261648i
\(262\) 9.42523 16.3250i 0.582292 1.00856i
\(263\) 4.48609 25.4419i 0.276624 1.56881i −0.457131 0.889399i \(-0.651123\pi\)
0.733755 0.679414i \(-0.237766\pi\)
\(264\) −1.02913 4.08587i −0.0633387 0.251468i
\(265\) −23.0070 8.37387i −1.41331 0.514403i
\(266\) −2.27499 12.9021i −0.139489 0.791080i
\(267\) 0.0380348 0.370416i 0.00232769 0.0226691i
\(268\) 21.5896 + 18.1159i 1.31880 + 1.10660i
\(269\) 0.492770 0.0300447 0.0150223 0.999887i \(-0.495218\pi\)
0.0150223 + 0.999887i \(0.495218\pi\)
\(270\) −46.5385 + 10.2424i −2.83224 + 0.623333i
\(271\) −23.6945 −1.43934 −0.719669 0.694317i \(-0.755707\pi\)
−0.719669 + 0.694317i \(0.755707\pi\)
\(272\) 19.0054 + 15.9474i 1.15237 + 0.966955i
\(273\) 3.33570 + 2.41133i 0.201886 + 0.145941i
\(274\) 4.16095 + 23.5979i 0.251372 + 1.42560i
\(275\) −2.25895 0.822190i −0.136220 0.0495799i
\(276\) −27.1797 + 26.3733i −1.63603 + 1.58749i
\(277\) 2.12745 12.0654i 0.127826 0.724938i −0.851763 0.523927i \(-0.824466\pi\)
0.979589 0.201011i \(-0.0644225\pi\)
\(278\) 23.4028 40.5349i 1.40361 2.43112i
\(279\) 25.1142 + 15.5262i 1.50355 + 0.929529i
\(280\) −12.9811 22.4839i −0.775767 1.34367i
\(281\) −12.5499 + 4.56778i −0.748662 + 0.272491i −0.688043 0.725670i \(-0.741530\pi\)
−0.0606193 + 0.998161i \(0.519308\pi\)
\(282\) −9.95138 + 20.5281i −0.592596 + 1.22243i
\(283\) −2.30721 + 1.93598i −0.137150 + 0.115082i −0.708782 0.705428i \(-0.750755\pi\)
0.571632 + 0.820510i \(0.306310\pi\)
\(284\) 40.4515 33.9428i 2.40035 2.01414i
\(285\) −13.2889 + 27.4129i −0.787167 + 1.62380i
\(286\) 1.91886 0.698407i 0.113464 0.0412976i
\(287\) 3.38211 + 5.85798i 0.199639 + 0.345786i
\(288\) −27.7216 + 14.9108i −1.63351 + 0.878625i
\(289\) 5.21316 9.02945i 0.306656 0.531144i
\(290\) −15.5909 + 88.4202i −0.915527 + 5.19221i
\(291\) −3.61455 + 3.50731i −0.211888 + 0.205602i
\(292\) 26.7962 + 9.75300i 1.56813 + 0.570751i
\(293\) −0.738094 4.18594i −0.0431199 0.244545i 0.955628 0.294577i \(-0.0951788\pi\)
−0.998748 + 0.0500319i \(0.984068\pi\)
\(294\) −3.66872 2.65207i −0.213964 0.154672i
\(295\) −19.6895 16.5215i −1.14637 0.961917i
\(296\) −25.2125 −1.46544
\(297\) 0.0718977 + 1.70686i 0.00417193 + 0.0990419i
\(298\) 52.3758 3.03405
\(299\) −8.23930 6.91359i −0.476491 0.399823i
\(300\) −6.24929 + 60.8611i −0.360803 + 3.51382i
\(301\) −0.155850 0.883871i −0.00898307 0.0509455i
\(302\) 1.40191 + 0.510255i 0.0806710 + 0.0293618i
\(303\) 2.33609 + 9.27479i 0.134205 + 0.532823i
\(304\) −8.42281 + 47.7681i −0.483081 + 2.73969i
\(305\) −1.59316 + 2.75943i −0.0912240 + 0.158005i
\(306\) −12.4526 15.7821i −0.711870 0.902203i
\(307\) 12.1955 + 21.1232i 0.696034 + 1.20557i 0.969831 + 0.243779i \(0.0783870\pi\)
−0.273797 + 0.961787i \(0.588280\pi\)
\(308\) −1.49253 + 0.543236i −0.0850446 + 0.0309537i
\(309\) −7.63236 + 0.552095i −0.434190 + 0.0314076i
\(310\) 69.1416 58.0167i 3.92698 3.29513i
\(311\) −10.8993 + 9.14557i −0.618041 + 0.518598i −0.897187 0.441651i \(-0.854393\pi\)
0.279146 + 0.960249i \(0.409949\pi\)
\(312\) −17.0906 25.2073i −0.967564 1.42708i
\(313\) −7.28132 + 2.65018i −0.411564 + 0.149797i −0.539501 0.841985i \(-0.681387\pi\)
0.127936 + 0.991782i \(0.459165\pi\)
\(314\) −10.5229 18.2262i −0.593841 1.02856i
\(315\) 3.30080 + 9.99551i 0.185979 + 0.563183i
\(316\) 2.05938 3.56694i 0.115849 0.200656i
\(317\) 2.19724 12.4612i 0.123409 0.699889i −0.858830 0.512260i \(-0.828808\pi\)
0.982240 0.187629i \(-0.0600804\pi\)
\(318\) 30.3848 + 8.63392i 1.70389 + 0.484166i
\(319\) 3.02471 + 1.10091i 0.169351 + 0.0616389i
\(320\) 4.91713 + 27.8864i 0.274876 + 1.55890i
\(321\) −21.5348 + 9.64982i −1.20195 + 0.538600i
\(322\) 9.06186 + 7.60380i 0.504998 + 0.423743i
\(323\) −12.8521 −0.715107
\(324\) 41.6778 12.3846i 2.31543 0.688034i
\(325\) −17.3754 −0.963814
\(326\) −3.78116 3.17277i −0.209419 0.175723i
\(327\) 17.3928 7.79380i 0.961826 0.430998i
\(328\) −8.69097 49.2889i −0.479879 2.72153i
\(329\) 4.73550 + 1.72358i 0.261077 + 0.0950241i
\(330\) 5.02344 + 1.42742i 0.276531 + 0.0785771i
\(331\) 0.178113 1.01013i 0.00979000 0.0555218i −0.979521 0.201340i \(-0.935470\pi\)
0.989311 + 0.145818i \(0.0465815\pi\)
\(332\) 5.39564 9.34551i 0.296124 0.512902i
\(333\) 10.0092 + 2.07741i 0.548498 + 0.113841i
\(334\) −6.58436 11.4044i −0.360280 0.624023i
\(335\) −19.2354 + 7.00110i −1.05094 + 0.382511i
\(336\) 9.40547 + 13.8723i 0.513110 + 0.756798i
\(337\) 9.90301 8.30961i 0.539451 0.452653i −0.331899 0.943315i \(-0.607689\pi\)
0.871350 + 0.490662i \(0.163245\pi\)
\(338\) −14.7215 + 12.3528i −0.800743 + 0.671903i
\(339\) −2.15220 + 0.155682i −0.116892 + 0.00845548i
\(340\) −40.8401 + 14.8646i −2.21486 + 0.806144i
\(341\) −1.61791 2.80230i −0.0876147 0.151753i
\(342\) 14.5485 36.5117i 0.786691 1.97433i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −1.15316 + 6.53988i −0.0621741 + 0.352607i
\(345\) −6.71848 26.6738i −0.361711 1.43607i
\(346\) 42.5740 + 15.4957i 2.28879 + 0.833053i
\(347\) 4.78492 + 27.1366i 0.256868 + 1.45677i 0.791232 + 0.611516i \(0.209440\pi\)
−0.534364 + 0.845254i \(0.679449\pi\)
\(348\) 8.36776 81.4926i 0.448559 4.36846i
\(349\) 17.0080 + 14.2714i 0.910417 + 0.763931i 0.972198 0.234159i \(-0.0752337\pi\)
−0.0617812 + 0.998090i \(0.519678\pi\)
\(350\) 19.1101 1.02148
\(351\) 4.70785 + 11.4153i 0.251287 + 0.609304i
\(352\) 3.44966 0.183867
\(353\) 10.6062 + 8.89963i 0.564509 + 0.473680i 0.879819 0.475309i \(-0.157664\pi\)
−0.315309 + 0.948989i \(0.602108\pi\)
\(354\) 26.8742 + 19.4270i 1.42835 + 1.03253i
\(355\) 6.66000 + 37.7707i 0.353476 + 2.00466i
\(356\) 0.975953 + 0.355218i 0.0517254 + 0.0188265i
\(357\) −3.18707 + 3.09252i −0.168678 + 0.163673i
\(358\) −5.32509 + 30.2001i −0.281440 + 1.59613i
\(359\) 1.18334 2.04960i 0.0624543 0.108174i −0.833108 0.553111i \(-0.813441\pi\)
0.895562 + 0.444937i \(0.146774\pi\)
\(360\) 2.34498 77.8511i 0.123592 4.10311i
\(361\) −3.06337 5.30590i −0.161230 0.279258i
\(362\) −32.3779 + 11.7846i −1.70174 + 0.619383i
\(363\) −8.22935 + 16.9758i −0.431929 + 0.891000i
\(364\) −8.79438 + 7.37936i −0.460951 + 0.386783i
\(365\) −15.8659 + 13.3130i −0.830457 + 0.696837i
\(366\) 1.79322 3.69912i 0.0937329 0.193356i
\(367\) −8.02424 + 2.92059i −0.418862 + 0.152453i −0.542849 0.839831i \(-0.682654\pi\)
0.123986 + 0.992284i \(0.460432\pi\)
\(368\) −21.8983 37.9289i −1.14153 1.97718i
\(369\) −0.610966 + 20.2834i −0.0318056 + 1.05591i
\(370\) 15.6245 27.0624i 0.812279 1.40691i
\(371\) 1.21167 6.87173i 0.0629069 0.356763i
\(372\) −59.1027 + 57.3493i −3.06433 + 2.97342i
\(373\) −34.0106 12.3788i −1.76100 0.640951i −0.761030 0.648717i \(-0.775306\pi\)
−0.999970 + 0.00776552i \(0.997528\pi\)
\(374\) 0.382575 + 2.16969i 0.0197825 + 0.112192i
\(375\) −11.3860 8.23077i −0.587969 0.425035i
\(376\) −28.5637 23.9678i −1.47306 1.23605i
\(377\) 23.2655 1.19824
\(378\) −5.17786 12.5549i −0.266320 0.645757i
\(379\) −8.57465 −0.440450 −0.220225 0.975449i \(-0.570679\pi\)
−0.220225 + 0.975449i \(0.570679\pi\)
\(380\) −65.0906 54.6175i −3.33908 2.80182i
\(381\) 2.26337 22.0426i 0.115956 1.12928i
\(382\) −0.173151 0.981987i −0.00885917 0.0502428i
\(383\) −3.27371 1.19153i −0.167279 0.0608844i 0.257023 0.966405i \(-0.417258\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(384\) −0.0454586 0.180480i −0.00231980 0.00921011i
\(385\) 0.200323 1.13609i 0.0102094 0.0579003i
\(386\) 14.0211 24.2853i 0.713656 1.23609i
\(387\) 0.996655 2.50127i 0.0506628 0.127147i
\(388\) −7.02382 12.1656i −0.356580 0.617615i
\(389\) −17.9466 + 6.53202i −0.909927 + 0.331186i −0.754224 0.656617i \(-0.771987\pi\)
−0.155703 + 0.987804i \(0.549764\pi\)
\(390\) 37.6481 2.72332i 1.90639 0.137901i
\(391\) 8.88955 7.45922i 0.449564 0.377229i
\(392\) 5.66806 4.75607i 0.286280 0.240218i
\(393\) −7.01038 10.3398i −0.353627 0.521572i
\(394\) 1.01908 0.370916i 0.0513407 0.0186865i
\(395\) 1.49575 + 2.59071i 0.0752593 + 0.130353i
\(396\) −4.66551 0.968331i −0.234451 0.0486605i
\(397\) 7.24191 12.5434i 0.363461 0.629533i −0.625067 0.780571i \(-0.714928\pi\)
0.988528 + 0.151038i \(0.0482616\pi\)
\(398\) 8.94932 50.7541i 0.448589 2.54408i
\(399\) −8.35156 2.37312i −0.418101 0.118805i
\(400\) −66.4852 24.1986i −3.32426 1.20993i
\(401\) 6.11108 + 34.6577i 0.305173 + 1.73072i 0.622690 + 0.782469i \(0.286040\pi\)
−0.317517 + 0.948253i \(0.602849\pi\)
\(402\) 24.1003 10.7995i 1.20201 0.538628i
\(403\) −17.9165 15.0337i −0.892484 0.748883i
\(404\) −26.6770 −1.32723
\(405\) −7.34557 + 30.7131i −0.365004 + 1.52615i
\(406\) −25.5882 −1.26992
\(407\) −0.858200 0.720115i −0.0425394 0.0356948i
\(408\) 29.9855 13.4366i 1.48450 0.665212i
\(409\) 0.541327 + 3.07002i 0.0267669 + 0.151803i 0.995262 0.0972304i \(-0.0309984\pi\)
−0.968495 + 0.249033i \(0.919887\pi\)
\(410\) 58.2914 + 21.2163i 2.87881 + 1.04780i
\(411\) 15.2749 + 4.34042i 0.753457 + 0.214097i
\(412\) 3.70628 21.0193i 0.182595 1.03555i
\(413\) 3.66262 6.34384i 0.180226 0.312160i
\(414\) 11.1282 + 33.6984i 0.546919 + 1.65618i
\(415\) 3.91891 + 6.78776i 0.192372 + 0.333198i
\(416\) 23.4302 8.52790i 1.14876 0.418115i
\(417\) −17.4068 25.6736i −0.852413 1.25724i
\(418\) −3.29962 + 2.76871i −0.161390 + 0.135422i
\(419\) −1.33321 + 1.11870i −0.0651317 + 0.0546520i −0.674772 0.738026i \(-0.735758\pi\)
0.609641 + 0.792678i \(0.291314\pi\)
\(420\) −29.2835 + 2.11826i −1.42889 + 0.103360i
\(421\) −32.8485 + 11.9559i −1.60094 + 0.582694i −0.979619 0.200864i \(-0.935625\pi\)
−0.621319 + 0.783558i \(0.713403\pi\)
\(422\) −21.7591 37.6879i −1.05922 1.83462i
\(423\) 9.36473 + 11.8686i 0.455329 + 0.577070i
\(424\) −25.8146 + 44.7122i −1.25367 + 2.17142i
\(425\) 3.25533 18.4619i 0.157907 0.895533i
\(426\) −12.0858 47.9833i −0.585560 2.32480i
\(427\) −0.853326 0.310585i −0.0412954 0.0150303i
\(428\) −11.4293 64.8190i −0.552458 3.13314i
\(429\) 0.138226 1.34616i 0.00667360 0.0649934i
\(430\) −6.30512 5.29062i −0.304060 0.255136i
\(431\) −5.07549 −0.244478 −0.122239 0.992501i \(-0.539007\pi\)
−0.122239 + 0.992501i \(0.539007\pi\)
\(432\) 2.11609 + 50.2361i 0.101810 + 2.41698i
\(433\) −17.1982 −0.826492 −0.413246 0.910619i \(-0.635605\pi\)
−0.413246 + 0.910619i \(0.635605\pi\)
\(434\) 19.7052 + 16.5346i 0.945878 + 0.793686i
\(435\) 48.2204 + 34.8579i 2.31199 + 1.67131i
\(436\) 9.23106 + 52.3519i 0.442087 + 2.50720i
\(437\) 21.3194 + 7.75963i 1.01985 + 0.371194i
\(438\) 19.1769 18.6080i 0.916309 0.889124i
\(439\) −2.95767 + 16.7738i −0.141162 + 0.800570i 0.829207 + 0.558942i \(0.188793\pi\)
−0.970369 + 0.241628i \(0.922319\pi\)
\(440\) −4.26786 + 7.39216i −0.203462 + 0.352407i
\(441\) −2.64206 + 1.42110i −0.125812 + 0.0676713i
\(442\) 7.96216 + 13.7909i 0.378721 + 0.655965i
\(443\) −14.1938 + 5.16612i −0.674367 + 0.245450i −0.656427 0.754389i \(-0.727933\pi\)
−0.0179401 + 0.999839i \(0.505711\pi\)
\(444\) −12.4375 + 25.6565i −0.590257 + 1.21760i
\(445\) −0.577857 + 0.484880i −0.0273930 + 0.0229855i
\(446\) −18.9955 + 15.9391i −0.899462 + 0.754738i
\(447\) 15.1409 31.2332i 0.716138 1.47728i
\(448\) −7.58347 + 2.76016i −0.358285 + 0.130405i
\(449\) −7.06546 12.2377i −0.333440 0.577535i 0.649744 0.760153i \(-0.274876\pi\)
−0.983184 + 0.182618i \(0.941543\pi\)
\(450\) 48.7639 + 30.1469i 2.29875 + 1.42114i
\(451\) 1.11196 1.92596i 0.0523599 0.0906901i
\(452\) 1.04511 5.92712i 0.0491579 0.278788i
\(453\) 0.709545 0.688495i 0.0333374 0.0323483i
\(454\) 34.4113 + 12.5247i 1.61500 + 0.587812i
\(455\) −1.44792 8.21156i −0.0678795 0.384964i
\(456\) 52.0621 + 37.6350i 2.43803 + 1.76242i
\(457\) 17.4919 + 14.6774i 0.818237 + 0.686582i 0.952558 0.304356i \(-0.0984411\pi\)
−0.134322 + 0.990938i \(0.542886\pi\)
\(458\) −53.7624 −2.51215
\(459\) −13.0111 + 2.86355i −0.607308 + 0.133659i
\(460\) 76.7216 3.57716
\(461\) 20.5560 + 17.2485i 0.957386 + 0.803342i 0.980526 0.196390i \(-0.0629218\pi\)
−0.0231398 + 0.999732i \(0.507366\pi\)
\(462\) −0.152025 + 1.48056i −0.00707286 + 0.0688817i
\(463\) −4.18053 23.7090i −0.194286 1.10185i −0.913432 0.406990i \(-0.866578\pi\)
0.719147 0.694858i \(-0.244533\pi\)
\(464\) 89.0231 + 32.4018i 4.13280 + 1.50421i
\(465\) −14.6095 58.0026i −0.677497 2.68981i
\(466\) −7.12671 + 40.4176i −0.330139 + 1.87231i
\(467\) 0.873689 1.51327i 0.0404295 0.0700259i −0.845103 0.534604i \(-0.820461\pi\)
0.885532 + 0.464578i \(0.153794\pi\)
\(468\) −34.0822 + 4.95668i −1.57545 + 0.229123i
\(469\) −2.91692 5.05226i −0.134691 0.233292i
\(470\) 43.4277 15.8064i 2.00317 0.729095i
\(471\) −13.9107 + 1.00625i −0.640973 + 0.0463655i
\(472\) −41.5199 + 34.8393i −1.91111 + 1.60361i
\(473\) −0.226043 + 0.189673i −0.0103935 + 0.00872117i
\(474\) −2.16587 3.19449i −0.0994818 0.146728i
\(475\) 34.4409 12.5355i 1.58026 0.575166i
\(476\) −6.19314 10.7268i −0.283862 0.491664i
\(477\) 13.9323 15.6234i 0.637917 0.715346i
\(478\) −36.9469 + 63.9938i −1.68991 + 2.92701i
\(479\) 0.743652 4.21746i 0.0339783 0.192701i −0.963094 0.269165i \(-0.913252\pi\)
0.997072 + 0.0764648i \(0.0243633\pi\)
\(480\) 61.3387 + 17.4296i 2.79972 + 0.795548i
\(481\) −7.60913 2.76950i −0.346946 0.126278i
\(482\) 10.9100 + 61.8734i 0.496935 + 2.81826i
\(483\) 7.15397 3.20572i 0.325517 0.145865i
\(484\) −40.3083 33.8227i −1.83219 1.53739i
\(485\) 10.2030 0.463293
\(486\) 6.59342 40.2052i 0.299083 1.82374i
\(487\) −41.2245 −1.86806 −0.934030 0.357194i \(-0.883733\pi\)
−0.934030 + 0.357194i \(0.883733\pi\)
\(488\) 5.14712 + 4.31894i 0.232999 + 0.195509i
\(489\) −2.98507 + 1.33762i −0.134990 + 0.0604894i
\(490\) 1.59247 + 9.03136i 0.0719405 + 0.407995i
\(491\) 17.1068 + 6.22637i 0.772020 + 0.280992i 0.697841 0.716253i \(-0.254144\pi\)
0.0741788 + 0.997245i \(0.476366\pi\)
\(492\) −54.4444 15.4705i −2.45454 0.697466i
\(493\) −4.35886 + 24.7203i −0.196313 + 1.11335i
\(494\) −15.5666 + 26.9622i −0.700376 + 1.21309i
\(495\) 2.30339 2.58297i 0.103530 0.116096i
\(496\) −47.6182 82.4771i −2.13812 3.70333i
\(497\) −10.2714 + 3.73849i −0.460736 + 0.167694i
\(498\) −5.67466 8.36968i −0.254288 0.375054i
\(499\) −7.49376 + 6.28801i −0.335467 + 0.281490i −0.794923 0.606710i \(-0.792489\pi\)
0.459456 + 0.888200i \(0.348044\pi\)
\(500\) 30.0184 25.1884i 1.34246 1.12646i
\(501\) −8.70420 + 0.629627i −0.388875 + 0.0281297i
\(502\) 38.2738 13.9305i 1.70824 0.621750i
\(503\) 17.9132 + 31.0265i 0.798708 + 1.38340i 0.920458 + 0.390842i \(0.127816\pi\)
−0.121750 + 0.992561i \(0.538851\pi\)
\(504\) 21.9663 3.19463i 0.978457 0.142300i
\(505\) 9.68790 16.7799i 0.431106 0.746698i
\(506\) 0.675357 3.83014i 0.0300233 0.170271i
\(507\) 3.11061 + 12.3498i 0.138147 + 0.548473i
\(508\) 58.0768 + 21.1382i 2.57674 + 0.937858i
\(509\) −6.48936 36.8030i −0.287636 1.63126i −0.695716 0.718317i \(-0.744913\pi\)
0.408080 0.912946i \(-0.366199\pi\)
\(510\) −4.15987 + 40.5125i −0.184202 + 1.79392i
\(511\) −4.52173 3.79418i −0.200029 0.167845i
\(512\) −41.6655 −1.84137
\(513\) −17.5673 19.2305i −0.775614 0.849048i
\(514\) 19.5503 0.862329
\(515\) 11.8753 + 9.96457i 0.523289 + 0.439091i
\(516\) 6.08621 + 4.39964i 0.267930 + 0.193683i
\(517\) −0.287707 1.63167i −0.0126533 0.0717606i
\(518\) 8.36878 + 3.04599i 0.367703 + 0.133833i
\(519\) 21.5479 20.9086i 0.945846 0.917784i
\(520\) −10.7133 + 60.7584i −0.469811 + 2.66443i
\(521\) −15.9281 + 27.5883i −0.697824 + 1.20867i 0.271396 + 0.962468i \(0.412515\pi\)
−0.969220 + 0.246198i \(0.920819\pi\)
\(522\) −65.2944 40.3665i −2.85786 1.76679i
\(523\) −0.367822 0.637086i −0.0160837 0.0278578i 0.857872 0.513864i \(-0.171786\pi\)
−0.873955 + 0.486006i \(0.838453\pi\)
\(524\) 32.7418 11.9170i 1.43033 0.520598i
\(525\) 5.52436 11.3959i 0.241103 0.497356i
\(526\) 51.7242 43.4017i 2.25528 1.89241i
\(527\) 19.3305 16.2202i 0.842049 0.706563i
\(528\) 2.40370 4.95845i 0.104608 0.215789i
\(529\) 2.36302 0.860068i 0.102740 0.0373943i
\(530\) −31.9953 55.4175i −1.38979 2.40718i
\(531\) 19.3537 10.4099i 0.839879 0.451750i
\(532\) 12.1081 20.9718i 0.524951 0.909241i
\(533\) 2.79127 15.8301i 0.120903 0.685677i
\(534\) 0.698451 0.677729i 0.0302249 0.0293282i
\(535\) 44.9221 + 16.3503i 1.94215 + 0.706885i
\(536\) 7.49560 + 42.5096i 0.323760 + 1.83614i
\(537\) 16.4698 + 11.9058i 0.710724 + 0.513772i
\(538\) 0.986597 + 0.827853i 0.0425352 + 0.0356913i
\(539\) 0.328776 0.0141614
\(540\) −78.0655 40.7908i −3.35940 1.75536i
\(541\) 4.13866 0.177935 0.0889674 0.996035i \(-0.471643\pi\)
0.0889674 + 0.996035i \(0.471643\pi\)
\(542\) −47.4399 39.8068i −2.03772 1.70985i
\(543\) −2.33235 + 22.7145i −0.100091 + 0.974773i
\(544\) 4.67144 + 26.4930i 0.200286 + 1.13588i
\(545\) −36.2819 13.2055i −1.55415 0.565663i
\(546\) 2.62752 + 10.4318i 0.112448 + 0.446441i
\(547\) −3.84645 + 21.8143i −0.164462 + 0.932712i 0.785155 + 0.619300i \(0.212583\pi\)
−0.949617 + 0.313413i \(0.898528\pi\)
\(548\) −22.1455 + 38.3572i −0.946011 + 1.63854i
\(549\) −1.68750 2.13869i −0.0720208 0.0912771i
\(550\) −3.14147 5.44118i −0.133953 0.232013i
\(551\) −46.1161 + 16.7849i −1.96461 + 0.715060i
\(552\) −57.8535 + 4.18489i −2.46241 + 0.178121i
\(553\) −0.653105 + 0.548021i −0.0277729 + 0.0233042i
\(554\) 24.5293 20.5825i 1.04215 0.874468i
\(555\) −11.6213 17.1406i −0.493298 0.727576i
\(556\) 81.2977 29.5900i 3.44779 1.25489i
\(557\) 0.700682 + 1.21362i 0.0296888 + 0.0514226i 0.880488 0.474068i \(-0.157215\pi\)
−0.850799 + 0.525491i \(0.823882\pi\)
\(558\) 24.1984 + 73.2777i 1.02440 + 3.10209i
\(559\) −1.06641 + 1.84707i −0.0451041 + 0.0781226i
\(560\) 5.89588 33.4372i 0.249146 1.41298i
\(561\) 1.40444 + 0.399076i 0.0592956 + 0.0168490i
\(562\) −32.8005 11.9384i −1.38361 0.503592i
\(563\) −1.05858 6.00352i −0.0446139 0.253018i 0.954341 0.298718i \(-0.0965592\pi\)
−0.998955 + 0.0457004i \(0.985448\pi\)
\(564\) −38.4806 + 17.2433i −1.62033 + 0.726075i
\(565\) 3.34864 + 2.80985i 0.140879 + 0.118211i
\(566\) −7.87183 −0.330878
\(567\) −8.98368 0.541694i −0.377279 0.0227490i
\(568\) 80.8770 3.39352
\(569\) 18.8667 + 15.8311i 0.790935 + 0.663673i 0.945977 0.324235i \(-0.105107\pi\)
−0.155042 + 0.987908i \(0.549551\pi\)
\(570\) −72.6600 + 32.5592i −3.04339 + 1.36376i
\(571\) −4.75575 26.9712i −0.199022 1.12871i −0.906574 0.422047i \(-0.861312\pi\)
0.707552 0.706661i \(-0.249800\pi\)
\(572\) 3.54680 + 1.29093i 0.148299 + 0.0539765i
\(573\) −0.635641 0.180619i −0.0265543 0.00754548i
\(574\) −3.06994 + 17.4105i −0.128137 + 0.726699i
\(575\) −16.5467 + 28.6598i −0.690046 + 1.19519i
\(576\) −23.7053 4.92005i −0.987720 0.205002i
\(577\) 20.5067 + 35.5186i 0.853705 + 1.47866i 0.877842 + 0.478951i \(0.158983\pi\)
−0.0241371 + 0.999709i \(0.507684\pi\)
\(578\) 25.6070 9.32018i 1.06511 0.387669i
\(579\) −10.4287 15.3816i −0.433404 0.639237i
\(580\) −127.130 + 106.675i −5.27879 + 4.42943i
\(581\) −1.71116 + 1.43583i −0.0709908 + 0.0595684i
\(582\) −13.1291 + 0.949710i −0.544220 + 0.0393667i
\(583\) −2.15576 + 0.784633i −0.0892825 + 0.0324962i
\(584\) 21.8374 + 37.8235i 0.903638 + 1.56515i
\(585\) 9.25937 23.2379i 0.382828 0.960769i
\(586\) 5.55461 9.62087i 0.229459 0.397434i
\(587\) −1.87320 + 10.6235i −0.0773154 + 0.438477i 0.921436 + 0.388529i \(0.127017\pi\)
−0.998752 + 0.0499481i \(0.984094\pi\)
\(588\) −2.04374 8.11410i −0.0842826 0.334620i
\(589\) 46.3594 + 16.8735i 1.91021 + 0.695258i
\(590\) −11.6652 66.1568i −0.480250 2.72363i
\(591\) 0.0734102 0.714933i 0.00301969 0.0294084i
\(592\) −25.2585 21.1944i −1.03812 0.871084i
\(593\) 33.8232 1.38895 0.694475 0.719516i \(-0.255637\pi\)
0.694475 + 0.719516i \(0.255637\pi\)
\(594\) −2.72357 + 3.53817i −0.111749 + 0.145173i
\(595\) 8.99630 0.368812
\(596\) 74.1617 + 62.2290i 3.03778 + 2.54900i
\(597\) −27.6790 20.0088i −1.13283 0.818905i
\(598\) −4.88144 27.6840i −0.199617 1.13208i
\(599\) −45.6141 16.6022i −1.86374 0.678347i −0.975907 0.218186i \(-0.929986\pi\)
−0.887836 0.460161i \(-0.847792\pi\)
\(600\) −67.2493 + 65.2542i −2.74544 + 2.66399i
\(601\) 1.44066 8.17040i 0.0587658 0.333277i −0.941224 0.337783i \(-0.890323\pi\)
0.999990 + 0.00450545i \(0.00143414\pi\)
\(602\) 1.17287 2.03147i 0.0478026 0.0827965i
\(603\) 0.526932 17.4936i 0.0214583 0.712395i
\(604\) 1.37879 + 2.38814i 0.0561024 + 0.0971722i
\(605\) 35.9128 13.0712i 1.46006 0.531420i
\(606\) −10.9044 + 22.4941i −0.442963 + 0.913761i
\(607\) 0.953898 0.800415i 0.0387175 0.0324879i −0.623224 0.782044i \(-0.714177\pi\)
0.661941 + 0.749556i \(0.269733\pi\)
\(608\) −40.2900 + 33.8074i −1.63398 + 1.37107i
\(609\) −7.39707 + 15.2590i −0.299745 + 0.618325i
\(610\) −7.82558 + 2.84828i −0.316849 + 0.115323i
\(611\) −5.98776 10.3711i −0.242239 0.419570i
\(612\) 1.11877 37.1420i 0.0452236 1.50138i
\(613\) 21.5040 37.2460i 0.868539 1.50435i 0.00504868 0.999987i \(-0.498393\pi\)
0.863490 0.504366i \(-0.168274\pi\)
\(614\) −11.0698 + 62.7802i −0.446743 + 2.53360i
\(615\) 29.5028 28.6276i 1.18967 1.15437i
\(616\) −2.28595 0.832018i −0.0921035 0.0335229i
\(617\) −3.75376 21.2886i −0.151121 0.857048i −0.962247 0.272177i \(-0.912256\pi\)
0.811127 0.584871i \(-0.198855\pi\)
\(618\) −16.2086 11.7170i −0.652006 0.471326i
\(619\) −19.4601 16.3289i −0.782166 0.656315i 0.161627 0.986852i \(-0.448326\pi\)
−0.943793 + 0.330537i \(0.892770\pi\)
\(620\) 166.832 6.70015
\(621\) 23.3122 + 3.10553i 0.935487 + 0.124621i
\(622\) −37.1865 −1.49104
\(623\) −0.164688 0.138189i −0.00659807 0.00553644i
\(624\) 4.06825 39.6202i 0.162860 1.58608i
\(625\) −1.40607 7.97420i −0.0562427 0.318968i
\(626\) −19.0306 6.92656i −0.760615 0.276841i
\(627\) 0.697201 + 2.76804i 0.0278435 + 0.110545i
\(628\) 6.75506 38.3099i 0.269556 1.52873i
\(629\) 4.36826 7.56606i 0.174174 0.301678i
\(630\) −10.1838 + 25.5578i −0.405731 + 1.01825i
\(631\) −15.2296 26.3784i −0.606279 1.05011i −0.991848 0.127427i \(-0.959328\pi\)
0.385569 0.922679i \(-0.374005\pi\)
\(632\) 5.92783 2.15755i 0.235797 0.0858229i
\(633\) −28.7645 + 2.08071i −1.14329 + 0.0827008i
\(634\) 25.3340 21.2577i 1.00614 0.844253i
\(635\) −34.3870 + 28.8541i −1.36461 + 1.14504i
\(636\) 32.7652 + 48.3261i 1.29922 + 1.91626i
\(637\) 2.23306 0.812767i 0.0884771 0.0322030i
\(638\) 4.20640 + 7.28570i 0.166533 + 0.288443i
\(639\) −32.1075 6.66395i −1.27015 0.263622i
\(640\) −0.188519 + 0.326525i −0.00745188 + 0.0129070i
\(641\) −2.47840 + 14.0557i −0.0978909 + 0.555167i 0.895932 + 0.444191i \(0.146509\pi\)
−0.993823 + 0.110976i \(0.964602\pi\)
\(642\) −59.3275 16.8581i −2.34147 0.665335i
\(643\) 20.4760 + 7.45266i 0.807496 + 0.293904i 0.712589 0.701582i \(-0.247523\pi\)
0.0949066 + 0.995486i \(0.469745\pi\)
\(644\) 3.79689 + 21.5332i 0.149618 + 0.848528i
\(645\) −4.97763 + 2.23050i −0.195994 + 0.0878258i
\(646\) −25.7317 21.5915i −1.01240 0.849504i
\(647\) 44.4776 1.74860 0.874298 0.485389i \(-0.161322\pi\)
0.874298 + 0.485389i \(0.161322\pi\)
\(648\) 61.0919 + 26.5009i 2.39992 + 1.04105i
\(649\) −2.40836 −0.0945364
\(650\) −34.7881 29.1907i −1.36450 1.14495i
\(651\) 15.5564 6.97090i 0.609705 0.273211i
\(652\) −1.58429 8.98498i −0.0620458 0.351879i
\(653\) −2.67503 0.973633i −0.104682 0.0381012i 0.289148 0.957284i \(-0.406628\pi\)
−0.393830 + 0.919183i \(0.628850\pi\)
\(654\) 47.9166 + 13.6156i 1.87369 + 0.532414i
\(655\) −4.39450 + 24.9225i −0.171707 + 0.973801i
\(656\) 32.7270 56.6848i 1.27777 2.21317i
\(657\) −5.55278 16.8150i −0.216634 0.656014i
\(658\) 6.58555 + 11.4065i 0.256731 + 0.444672i
\(659\) 14.5443 5.29368i 0.566564 0.206212i −0.0428267 0.999083i \(-0.513636\pi\)
0.609391 + 0.792870i \(0.291414\pi\)
\(660\) 5.41699 + 7.98964i 0.210856 + 0.310996i
\(661\) 10.2102 8.56735i 0.397130 0.333231i −0.422253 0.906478i \(-0.638761\pi\)
0.819383 + 0.573247i \(0.194316\pi\)
\(662\) 2.05363 1.72320i 0.0798166 0.0669741i
\(663\) 10.5256 0.761380i 0.408780 0.0295695i
\(664\) 15.5311 5.65286i 0.602724 0.219374i
\(665\) 8.79423 + 15.2320i 0.341025 + 0.590673i
\(666\) 16.5498 + 20.9747i 0.641290 + 0.812752i
\(667\) 22.1559 38.3752i 0.857881 1.48589i
\(668\) 4.22676 23.9712i 0.163538 0.927472i
\(669\) 4.01370 + 15.9352i 0.155178 + 0.616091i
\(670\) −50.2739 18.2982i −1.94225 0.706921i
\(671\) 0.0518441 + 0.294023i 0.00200142 + 0.0113506i
\(672\) −1.85631 + 18.0784i −0.0716086 + 0.697388i
\(673\) 10.7285 + 9.00232i 0.413555 + 0.347014i 0.825705 0.564102i \(-0.190778\pi\)
−0.412150 + 0.911116i \(0.635222\pi\)
\(674\) 33.7874 1.30144
\(675\) 32.0742 20.3643i 1.23454 0.783824i
\(676\) −35.5216 −1.36621
\(677\) −19.5771 16.4272i −0.752410 0.631347i 0.183729 0.982977i \(-0.441183\pi\)
−0.936139 + 0.351630i \(0.885628\pi\)
\(678\) −4.57057 3.30400i −0.175532 0.126889i
\(679\) 0.504937 + 2.86364i 0.0193777 + 0.109896i
\(680\) −62.5505 22.7665i −2.39870 0.873056i
\(681\) 17.4165 16.8998i 0.667400 0.647600i
\(682\) 1.46858 8.32871i 0.0562347 0.318923i
\(683\) −1.69604 + 2.93763i −0.0648971 + 0.112405i −0.896648 0.442743i \(-0.854005\pi\)
0.831751 + 0.555149i \(0.187339\pi\)
\(684\) 63.9804 34.4135i 2.44635 1.31583i
\(685\) −16.0846 27.8593i −0.614560 1.06445i
\(686\) −2.45600 + 0.893910i −0.0937704 + 0.0341296i
\(687\) −15.5417 + 32.0600i −0.592953 + 1.22317i
\(688\) −6.65289 + 5.58244i −0.253639 + 0.212828i
\(689\) −12.7023 + 10.6585i −0.483920 + 0.406057i
\(690\) 31.3606 64.6919i 1.19388 2.46278i
\(691\) 1.64934 0.600311i 0.0627439 0.0228369i −0.310458 0.950587i \(-0.600482\pi\)
0.373201 + 0.927750i \(0.378260\pi\)
\(692\) 41.8720 + 72.5244i 1.59173 + 2.75696i
\(693\) 0.838950 + 0.518658i 0.0318691 + 0.0197022i
\(694\) −36.0094 + 62.3702i −1.36690 + 2.36754i
\(695\) −10.9115 + 61.8824i −0.413898 + 2.34733i
\(696\) 90.0464 87.3749i 3.41320 3.31194i
\(697\) 16.2970 + 5.93162i 0.617293 + 0.224676i
\(698\) 10.0765 + 57.1469i 0.381403 + 2.16304i
\(699\) 22.0419 + 15.9338i 0.833703 + 0.602673i
\(700\) 27.0589 + 22.7051i 1.02273 + 0.858174i
\(701\) −49.6210 −1.87416 −0.937079 0.349118i \(-0.886481\pi\)
−0.937079 + 0.349118i \(0.886481\pi\)
\(702\) −9.75190 + 30.7643i −0.368062 + 1.16112i
\(703\) 17.0806 0.644206
\(704\) 2.03253 + 1.70549i 0.0766037 + 0.0642781i
\(705\) 3.12834 30.4665i 0.117820 1.14744i
\(706\) 6.28372 + 35.6367i 0.236491 + 1.34121i
\(707\) 5.18903 + 1.88865i 0.195153 + 0.0710301i
\(708\) 14.9709 + 59.4376i 0.562641 + 2.23380i
\(709\) 1.44806 8.21236i 0.0543831 0.308422i −0.945467 0.325717i \(-0.894394\pi\)
0.999850 + 0.0172952i \(0.00550550\pi\)
\(710\) −50.1205 + 86.8113i −1.88099 + 3.25797i
\(711\) −2.53108 + 0.368103i −0.0949229 + 0.0138049i
\(712\) 0.795349 + 1.37758i 0.0298070 + 0.0516272i
\(713\) −41.8593 + 15.2355i −1.56764 + 0.570575i
\(714\) −11.5764 + 0.837392i −0.433236 + 0.0313386i
\(715\) −2.10004 + 1.76215i −0.0785372 + 0.0659005i
\(716\) −43.4216 + 36.4350i −1.62274 + 1.36164i
\(717\) 27.4807 + 40.5319i 1.02628 + 1.51369i
\(718\) 5.81255 2.11560i 0.216923 0.0789534i
\(719\) 9.33949 + 16.1765i 0.348304 + 0.603280i 0.985948 0.167051i \(-0.0534243\pi\)
−0.637644 + 0.770331i \(0.720091\pi\)
\(720\) 67.7933 76.0219i 2.52651 2.83317i
\(721\) −2.20903 + 3.82615i −0.0822685 + 0.142493i
\(722\) 2.78062 15.7697i 0.103484 0.586886i
\(723\) 40.0507 + 11.3805i 1.48950 + 0.423246i
\(724\) −59.8470 21.7825i −2.22420 0.809541i
\(725\) −12.4305 70.4969i −0.461658 2.61819i
\(726\) −44.9958 + 20.1628i −1.66995 + 0.748311i
\(727\) 3.52947 + 2.96158i 0.130901 + 0.109839i 0.705888 0.708324i \(-0.250548\pi\)
−0.574987 + 0.818163i \(0.694993\pi\)
\(728\) −17.5831 −0.651673
\(729\) −22.0695 15.5544i −0.817387 0.576089i
\(730\) −54.1317 −2.00350
\(731\) −1.76277 1.47914i −0.0651985 0.0547080i
\(732\) 6.93412 3.10721i 0.256293 0.114846i
\(733\) −6.38556 36.2143i −0.235856 1.33761i −0.840803 0.541341i \(-0.817917\pi\)
0.604947 0.796265i \(-0.293194\pi\)
\(734\) −20.9723 7.63329i −0.774102 0.281750i
\(735\) 5.84600 + 1.66116i 0.215633 + 0.0612728i
\(736\) 8.24646 46.7680i 0.303969 1.72389i
\(737\) −0.959015 + 1.66106i −0.0353258 + 0.0611860i
\(738\) −35.2994 + 39.5840i −1.29939 + 1.45711i
\(739\) 15.7426 + 27.2670i 0.579101 + 1.00303i 0.995583 + 0.0938889i \(0.0299298\pi\)
−0.416481 + 0.909144i \(0.636737\pi\)
\(740\) 54.2771 19.7552i 1.99526 0.726217i
\(741\) 11.5783 + 17.0771i 0.425339 + 0.627342i
\(742\) 13.9705 11.7226i 0.512872 0.430350i
\(743\) 33.0732 27.7517i 1.21334 1.01811i 0.214191 0.976792i \(-0.431289\pi\)
0.999146 0.0413184i \(-0.0131558\pi\)
\(744\) −125.803 + 9.10012i −4.61218 + 0.333627i
\(745\) −66.0746 + 24.0492i −2.42079 + 0.881094i
\(746\) −47.2977 81.9220i −1.73169 2.99938i
\(747\) −6.63151 + 0.964441i −0.242634 + 0.0352871i
\(748\) −2.03616 + 3.52673i −0.0744492 + 0.128950i
\(749\) −2.36584 + 13.4173i −0.0864458 + 0.490258i
\(750\) −8.96870 35.6076i −0.327491 1.30021i
\(751\) 34.1005 + 12.4116i 1.24435 + 0.452905i 0.878487 0.477766i \(-0.158553\pi\)
0.365858 + 0.930671i \(0.380776\pi\)
\(752\) −8.46777 48.0231i −0.308788 1.75122i
\(753\) 2.75707 26.8508i 0.100473 0.978497i
\(754\) 46.5810 + 39.0861i 1.69638 + 1.42343i
\(755\) −2.00287 −0.0728919
\(756\) 7.58524 23.9291i 0.275872 0.870294i
\(757\) 40.9390 1.48795 0.743977 0.668205i \(-0.232937\pi\)
0.743977 + 0.668205i \(0.232937\pi\)
\(758\) −17.1677 14.4054i −0.623559 0.523229i
\(759\) −2.08879 1.50996i −0.0758182 0.0548079i
\(760\) −22.5984 128.162i −0.819732 4.64893i
\(761\) −4.78591 1.74193i −0.173489 0.0631449i 0.253815 0.967253i \(-0.418314\pi\)
−0.427304 + 0.904108i \(0.640537\pi\)
\(762\) 41.5633 40.3302i 1.50568 1.46101i
\(763\) 1.91080 10.8367i 0.0691756 0.392314i
\(764\) 0.921550 1.59617i 0.0333405 0.0577474i
\(765\) 22.9562 + 14.1920i 0.829983 + 0.513115i
\(766\) −4.55267 7.88545i −0.164495 0.284913i
\(767\) −16.3577 + 5.95371i −0.590642 + 0.214976i
\(768\)