Properties

Label 189.2.v.a.43.7
Level $189$
Weight $2$
Character 189.43
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.7
Character \(\chi\) \(=\) 189.43
Dual form 189.2.v.a.22.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.969537 + 0.813538i) q^{2} +(-0.430185 - 1.67778i) q^{3} +(-0.0691389 - 0.392106i) q^{4} +(-0.855069 - 0.311220i) q^{5} +(0.947857 - 1.97664i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.51760 - 2.62856i) q^{8} +(-2.62988 + 1.44351i) q^{9} +O(q^{10})\) \(q+(0.969537 + 0.813538i) q^{2} +(-0.430185 - 1.67778i) q^{3} +(-0.0691389 - 0.392106i) q^{4} +(-0.855069 - 0.311220i) q^{5} +(0.947857 - 1.97664i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.51760 - 2.62856i) q^{8} +(-2.62988 + 1.44351i) q^{9} +(-0.575832 - 0.997370i) q^{10} +(5.60170 - 2.03885i) q^{11} +(-0.628125 + 0.284678i) q^{12} +(-2.54437 + 2.13498i) q^{13} +(0.969537 - 0.813538i) q^{14} +(-0.154320 + 1.56850i) q^{15} +(2.86152 - 1.04151i) q^{16} +(0.518461 + 0.898001i) q^{17} +(-3.72412 - 0.739974i) q^{18} +(-1.02967 + 1.78343i) q^{19} +(-0.0629126 + 0.356795i) q^{20} +(-1.72699 + 0.132306i) q^{21} +(7.08973 + 2.58045i) q^{22} +(0.554384 + 3.14407i) q^{23} +(-5.06299 - 1.41543i) q^{24} +(-3.19594 - 2.68171i) q^{25} -4.20376 q^{26} +(3.55322 + 3.79139i) q^{27} -0.398155 q^{28} +(5.59972 + 4.69872i) q^{29} +(-1.42565 + 1.39517i) q^{30} +(1.21241 + 6.87590i) q^{31} +(-2.08266 - 0.758027i) q^{32} +(-5.83050 - 8.52132i) q^{33} +(-0.227891 + 1.29243i) q^{34} +(-0.454973 + 0.788036i) q^{35} +(0.747836 + 0.931390i) q^{36} +(1.93726 + 3.35543i) q^{37} +(-2.44919 + 0.891432i) q^{38} +(4.67658 + 3.35046i) q^{39} +(-2.11571 + 1.77529i) q^{40} +(4.36990 - 3.66678i) q^{41} +(-1.78202 - 1.27670i) q^{42} +(-4.17077 + 1.51804i) q^{43} +(-1.18674 - 2.05550i) q^{44} +(2.69798 - 0.415829i) q^{45} +(-2.02032 + 3.49930i) q^{46} +(1.09019 - 6.18276i) q^{47} +(-2.97840 - 4.35295i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(-0.916906 - 5.20003i) q^{50} +(1.28361 - 1.25617i) q^{51} +(1.01306 + 0.850054i) q^{52} +1.64075 q^{53} +(0.360545 + 6.56657i) q^{54} -5.42437 q^{55} +(-2.32510 - 1.95099i) q^{56} +(3.43515 + 0.960346i) q^{57} +(1.60654 + 9.11117i) q^{58} +(-9.01389 - 3.28079i) q^{59} +(0.625687 - 0.0479343i) q^{60} +(2.19228 - 12.4331i) q^{61} +(-4.41833 + 7.65277i) q^{62} +(0.964905 + 2.84059i) q^{63} +(-4.44770 - 7.70364i) q^{64} +(2.84006 - 1.03370i) q^{65} +(1.27953 - 13.0051i) q^{66} +(-7.72379 + 6.48103i) q^{67} +(0.316266 - 0.265378i) q^{68} +(5.03657 - 2.28267i) q^{69} +(-1.08221 + 0.393892i) q^{70} +(-2.11115 - 3.65661i) q^{71} +(-0.196759 + 9.10348i) q^{72} +(2.29380 - 3.97297i) q^{73} +(-0.851527 + 4.82925i) q^{74} +(-3.12447 + 6.51571i) q^{75} +(0.770485 + 0.280434i) q^{76} +(-1.03515 - 5.87064i) q^{77} +(1.80839 + 7.05297i) q^{78} +(11.0138 + 9.24166i) q^{79} -2.77093 q^{80} +(4.83256 - 7.59252i) q^{81} +7.21984 q^{82} +(13.1807 + 11.0599i) q^{83} +(0.171280 + 0.668016i) q^{84} +(-0.163844 - 0.929208i) q^{85} +(-5.27869 - 1.92129i) q^{86} +(5.47450 - 11.4164i) q^{87} +(3.14189 - 17.8186i) q^{88} +(-0.379514 + 0.657337i) q^{89} +(2.95408 + 1.79175i) q^{90} +(1.66072 + 2.87646i) q^{91} +(1.19448 - 0.434755i) q^{92} +(11.0147 - 4.99205i) q^{93} +(6.08689 - 5.10751i) q^{94} +(1.43548 - 1.20451i) q^{95} +(-0.375872 + 3.82034i) q^{96} +(-9.76000 + 3.55235i) q^{97} +(-0.632820 - 1.09608i) q^{98} +(-11.7887 + 13.4480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.969537 + 0.813538i 0.685566 + 0.575258i 0.917627 0.397443i \(-0.130102\pi\)
−0.232061 + 0.972701i \(0.574547\pi\)
\(3\) −0.430185 1.67778i −0.248367 0.968666i
\(4\) −0.0691389 0.392106i −0.0345694 0.196053i
\(5\) −0.855069 0.311220i −0.382398 0.139182i 0.143666 0.989626i \(-0.454111\pi\)
−0.526065 + 0.850445i \(0.676333\pi\)
\(6\) 0.947857 1.97664i 0.386961 0.806960i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) 1.51760 2.62856i 0.536553 0.929337i
\(9\) −2.62988 + 1.44351i −0.876627 + 0.481170i
\(10\) −0.575832 0.997370i −0.182094 0.315396i
\(11\) 5.60170 2.03885i 1.68898 0.614737i 0.694479 0.719513i \(-0.255635\pi\)
0.994496 + 0.104776i \(0.0334126\pi\)
\(12\) −0.628125 + 0.284678i −0.181324 + 0.0821794i
\(13\) −2.54437 + 2.13498i −0.705683 + 0.592138i −0.923384 0.383877i \(-0.874589\pi\)
0.217701 + 0.976015i \(0.430144\pi\)
\(14\) 0.969537 0.813538i 0.259120 0.217427i
\(15\) −0.154320 + 1.56850i −0.0398453 + 0.404984i
\(16\) 2.86152 1.04151i 0.715379 0.260377i
\(17\) 0.518461 + 0.898001i 0.125745 + 0.217797i 0.922024 0.387133i \(-0.126534\pi\)
−0.796279 + 0.604930i \(0.793201\pi\)
\(18\) −3.72412 0.739974i −0.877783 0.174414i
\(19\) −1.02967 + 1.78343i −0.236222 + 0.409148i −0.959627 0.281276i \(-0.909242\pi\)
0.723405 + 0.690424i \(0.242576\pi\)
\(20\) −0.0629126 + 0.356795i −0.0140677 + 0.0797818i
\(21\) −1.72699 + 0.132306i −0.376860 + 0.0288715i
\(22\) 7.08973 + 2.58045i 1.51154 + 0.550154i
\(23\) 0.554384 + 3.14407i 0.115597 + 0.655584i 0.986453 + 0.164045i \(0.0524543\pi\)
−0.870856 + 0.491539i \(0.836435\pi\)
\(24\) −5.06299 1.41543i −1.03348 0.288924i
\(25\) −3.19594 2.68171i −0.639187 0.536342i
\(26\) −4.20376 −0.824424
\(27\) 3.55322 + 3.79139i 0.683818 + 0.729652i
\(28\) −0.398155 −0.0752442
\(29\) 5.59972 + 4.69872i 1.03984 + 0.872531i 0.991989 0.126323i \(-0.0403177\pi\)
0.0478528 + 0.998854i \(0.484762\pi\)
\(30\) −1.42565 + 1.39517i −0.260287 + 0.254722i
\(31\) 1.21241 + 6.87590i 0.217755 + 1.23495i 0.876062 + 0.482198i \(0.160162\pi\)
−0.658308 + 0.752749i \(0.728727\pi\)
\(32\) −2.08266 0.758027i −0.368166 0.134001i
\(33\) −5.83050 8.52132i −1.01496 1.48337i
\(34\) −0.227891 + 1.29243i −0.0390829 + 0.221650i
\(35\) −0.454973 + 0.788036i −0.0769044 + 0.133202i
\(36\) 0.747836 + 0.931390i 0.124639 + 0.155232i
\(37\) 1.93726 + 3.35543i 0.318483 + 0.551630i 0.980172 0.198149i \(-0.0634931\pi\)
−0.661688 + 0.749779i \(0.730160\pi\)
\(38\) −2.44919 + 0.891432i −0.397311 + 0.144609i
\(39\) 4.67658 + 3.35046i 0.748852 + 0.536503i
\(40\) −2.11571 + 1.77529i −0.334524 + 0.280699i
\(41\) 4.36990 3.66678i 0.682463 0.572654i −0.234262 0.972174i \(-0.575267\pi\)
0.916725 + 0.399519i \(0.130823\pi\)
\(42\) −1.78202 1.27670i −0.274971 0.196999i
\(43\) −4.17077 + 1.51804i −0.636036 + 0.231498i −0.639856 0.768494i \(-0.721006\pi\)
0.00382025 + 0.999993i \(0.498784\pi\)
\(44\) −1.18674 2.05550i −0.178908 0.309878i
\(45\) 2.69798 0.415829i 0.402191 0.0619881i
\(46\) −2.02032 + 3.49930i −0.297881 + 0.515944i
\(47\) 1.09019 6.18276i 0.159020 0.901849i −0.795997 0.605300i \(-0.793053\pi\)
0.955018 0.296549i \(-0.0958357\pi\)
\(48\) −2.97840 4.35295i −0.429895 0.628294i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) −0.916906 5.20003i −0.129670 0.735396i
\(51\) 1.28361 1.25617i 0.179742 0.175899i
\(52\) 1.01306 + 0.850054i 0.140486 + 0.117881i
\(53\) 1.64075 0.225374 0.112687 0.993631i \(-0.464054\pi\)
0.112687 + 0.993631i \(0.464054\pi\)
\(54\) 0.360545 + 6.56657i 0.0490640 + 0.893597i
\(55\) −5.42437 −0.731421
\(56\) −2.32510 1.95099i −0.310704 0.260712i
\(57\) 3.43515 + 0.960346i 0.454997 + 0.127201i
\(58\) 1.60654 + 9.11117i 0.210950 + 1.19636i
\(59\) −9.01389 3.28079i −1.17351 0.427122i −0.319604 0.947551i \(-0.603550\pi\)
−0.853905 + 0.520429i \(0.825772\pi\)
\(60\) 0.625687 0.0479343i 0.0807759 0.00618829i
\(61\) 2.19228 12.4331i 0.280693 1.59189i −0.439583 0.898202i \(-0.644874\pi\)
0.720276 0.693687i \(-0.244015\pi\)
\(62\) −4.41833 + 7.65277i −0.561128 + 0.971903i
\(63\) 0.964905 + 2.84059i 0.121567 + 0.357881i
\(64\) −4.44770 7.70364i −0.555962 0.962954i
\(65\) 2.84006 1.03370i 0.352267 0.128215i
\(66\) 1.27953 13.0051i 0.157500 1.60081i
\(67\) −7.72379 + 6.48103i −0.943612 + 0.791784i −0.978210 0.207617i \(-0.933429\pi\)
0.0345986 + 0.999401i \(0.488985\pi\)
\(68\) 0.316266 0.265378i 0.0383529 0.0321819i
\(69\) 5.03657 2.28267i 0.606331 0.274801i
\(70\) −1.08221 + 0.393892i −0.129349 + 0.0470791i
\(71\) −2.11115 3.65661i −0.250547 0.433960i 0.713130 0.701032i \(-0.247277\pi\)
−0.963676 + 0.267072i \(0.913944\pi\)
\(72\) −0.196759 + 9.10348i −0.0231883 + 1.07286i
\(73\) 2.29380 3.97297i 0.268469 0.465001i −0.699998 0.714145i \(-0.746816\pi\)
0.968467 + 0.249144i \(0.0801491\pi\)
\(74\) −0.851527 + 4.82925i −0.0989880 + 0.561389i
\(75\) −3.12447 + 6.51571i −0.360783 + 0.752369i
\(76\) 0.770485 + 0.280434i 0.0883807 + 0.0321680i
\(77\) −1.03515 5.87064i −0.117966 0.669021i
\(78\) 1.80839 + 7.05297i 0.204760 + 0.798592i
\(79\) 11.0138 + 9.24166i 1.23915 + 1.03977i 0.997590 + 0.0693810i \(0.0221024\pi\)
0.241557 + 0.970387i \(0.422342\pi\)
\(80\) −2.77093 −0.309800
\(81\) 4.83256 7.59252i 0.536951 0.843613i
\(82\) 7.21984 0.797298
\(83\) 13.1807 + 11.0599i 1.44677 + 1.21399i 0.934894 + 0.354927i \(0.115494\pi\)
0.511878 + 0.859058i \(0.328950\pi\)
\(84\) 0.171280 + 0.668016i 0.0186882 + 0.0728865i
\(85\) −0.163844 0.929208i −0.0177714 0.100787i
\(86\) −5.27869 1.92129i −0.569216 0.207178i
\(87\) 5.47450 11.4164i 0.586928 1.22397i
\(88\) 3.14189 17.8186i 0.334927 1.89947i
\(89\) −0.379514 + 0.657337i −0.0402284 + 0.0696776i −0.885439 0.464756i \(-0.846142\pi\)
0.845210 + 0.534434i \(0.179475\pi\)
\(90\) 2.95408 + 1.79175i 0.311388 + 0.188867i
\(91\) 1.66072 + 2.87646i 0.174091 + 0.301535i
\(92\) 1.19448 0.434755i 0.124533 0.0453263i
\(93\) 11.0147 4.99205i 1.14217 0.517652i
\(94\) 6.08689 5.10751i 0.627815 0.526799i
\(95\) 1.43548 1.20451i 0.147277 0.123580i
\(96\) −0.375872 + 3.82034i −0.0383623 + 0.389911i
\(97\) −9.76000 + 3.55235i −0.990978 + 0.360686i −0.786099 0.618101i \(-0.787902\pi\)
−0.204879 + 0.978787i \(0.565680\pi\)
\(98\) −0.632820 1.09608i −0.0639245 0.110720i
\(99\) −11.7887 + 13.4480i −1.18481 + 1.35158i
\(100\) −0.830551 + 1.43856i −0.0830551 + 0.143856i
\(101\) −2.50505 + 14.2068i −0.249262 + 1.41363i 0.561122 + 0.827733i \(0.310370\pi\)
−0.810384 + 0.585899i \(0.800741\pi\)
\(102\) 2.26645 0.173634i 0.224412 0.0171924i
\(103\) 2.58428 + 0.940602i 0.254637 + 0.0926803i 0.466185 0.884687i \(-0.345628\pi\)
−0.211548 + 0.977368i \(0.567850\pi\)
\(104\) 1.75059 + 9.92810i 0.171660 + 0.973530i
\(105\) 1.51787 + 0.424343i 0.148129 + 0.0414116i
\(106\) 1.59077 + 1.33481i 0.154509 + 0.129648i
\(107\) −4.35433 −0.420949 −0.210475 0.977599i \(-0.567501\pi\)
−0.210475 + 0.977599i \(0.567501\pi\)
\(108\) 1.24096 1.65537i 0.119411 0.159288i
\(109\) −16.1963 −1.55132 −0.775660 0.631151i \(-0.782583\pi\)
−0.775660 + 0.631151i \(0.782583\pi\)
\(110\) −5.25912 4.41293i −0.501438 0.420756i
\(111\) 4.79629 4.69375i 0.455244 0.445511i
\(112\) −0.528787 2.99890i −0.0499657 0.283369i
\(113\) −5.39706 1.96437i −0.507713 0.184792i 0.0754469 0.997150i \(-0.475962\pi\)
−0.583160 + 0.812357i \(0.698184\pi\)
\(114\) 2.54923 + 3.72572i 0.238757 + 0.348945i
\(115\) 0.504459 2.86093i 0.0470411 0.266783i
\(116\) 1.45524 2.52055i 0.135116 0.234027i
\(117\) 3.60954 9.28759i 0.333702 0.858638i
\(118\) −6.07025 10.5140i −0.558812 0.967891i
\(119\) 0.974388 0.354648i 0.0893220 0.0325105i
\(120\) 3.88870 + 2.78599i 0.354988 + 0.254325i
\(121\) 18.7956 15.7714i 1.70869 1.43376i
\(122\) 12.2403 10.2708i 1.10818 0.929874i
\(123\) −8.03190 5.75433i −0.724212 0.518850i
\(124\) 2.61226 0.950784i 0.234588 0.0853829i
\(125\) 4.17301 + 7.22786i 0.373245 + 0.646480i
\(126\) −1.37542 + 3.53904i −0.122532 + 0.315283i
\(127\) −1.26783 + 2.19594i −0.112501 + 0.194858i −0.916778 0.399397i \(-0.869220\pi\)
0.804277 + 0.594255i \(0.202553\pi\)
\(128\) 1.18527 6.72202i 0.104764 0.594149i
\(129\) 4.34113 + 6.34459i 0.382215 + 0.558610i
\(130\) 3.59450 + 1.30829i 0.315258 + 0.114745i
\(131\) 0.397749 + 2.25575i 0.0347515 + 0.197085i 0.997241 0.0742340i \(-0.0236512\pi\)
−0.962489 + 0.271319i \(0.912540\pi\)
\(132\) −2.93815 + 2.87533i −0.255733 + 0.250265i
\(133\) 1.57754 + 1.32371i 0.136790 + 0.114780i
\(134\) −12.7611 −1.10239
\(135\) −1.85830 4.34773i −0.159937 0.374193i
\(136\) 3.14727 0.269876
\(137\) −8.44087 7.08273i −0.721152 0.605118i 0.206552 0.978436i \(-0.433776\pi\)
−0.927704 + 0.373317i \(0.878220\pi\)
\(138\) 6.74017 + 1.88431i 0.573761 + 0.160403i
\(139\) −3.71019 21.0415i −0.314694 1.78472i −0.573928 0.818906i \(-0.694581\pi\)
0.259233 0.965815i \(-0.416530\pi\)
\(140\) 0.340450 + 0.123914i 0.0287733 + 0.0104726i
\(141\) −10.8423 + 0.830635i −0.913086 + 0.0699521i
\(142\) 0.927958 5.26271i 0.0778725 0.441637i
\(143\) −9.89990 + 17.1471i −0.827871 + 1.43392i
\(144\) −6.02203 + 6.86967i −0.501836 + 0.572472i
\(145\) −3.32581 5.76047i −0.276194 0.478381i
\(146\) 5.45608 1.98585i 0.451549 0.164350i
\(147\) −0.169593 + 1.72373i −0.0139878 + 0.142171i
\(148\) 1.18175 0.991602i 0.0971389 0.0815092i
\(149\) −6.07567 + 5.09809i −0.497738 + 0.417652i −0.856790 0.515666i \(-0.827545\pi\)
0.359052 + 0.933318i \(0.383100\pi\)
\(150\) −8.33006 + 3.77534i −0.680147 + 0.308255i
\(151\) 4.36436 1.58850i 0.355166 0.129270i −0.158274 0.987395i \(-0.550593\pi\)
0.513440 + 0.858125i \(0.328371\pi\)
\(152\) 3.12524 + 5.41308i 0.253491 + 0.439059i
\(153\) −2.65976 1.61323i −0.215029 0.130422i
\(154\) 3.77237 6.53393i 0.303986 0.526519i
\(155\) 1.10322 6.25669i 0.0886130 0.502549i
\(156\) 0.990402 2.06536i 0.0792957 0.165361i
\(157\) −20.5332 7.47348i −1.63873 0.596449i −0.651913 0.758294i \(-0.726033\pi\)
−0.986816 + 0.161845i \(0.948255\pi\)
\(158\) 3.15982 + 17.9203i 0.251382 + 1.42566i
\(159\) −0.705825 2.75281i −0.0559755 0.218312i
\(160\) 1.54491 + 1.29633i 0.122136 + 0.102484i
\(161\) 3.19257 0.251610
\(162\) 10.8621 3.42975i 0.853411 0.269467i
\(163\) −13.0830 −1.02474 −0.512369 0.858765i \(-0.671232\pi\)
−0.512369 + 0.858765i \(0.671232\pi\)
\(164\) −1.73990 1.45995i −0.135863 0.114003i
\(165\) 2.33348 + 9.10089i 0.181661 + 0.708503i
\(166\) 3.78151 + 21.4460i 0.293502 + 1.66453i
\(167\) −3.36251 1.22386i −0.260199 0.0947047i 0.208627 0.977995i \(-0.433101\pi\)
−0.468826 + 0.883291i \(0.655323\pi\)
\(168\) −2.27311 + 4.74029i −0.175374 + 0.365721i
\(169\) −0.341739 + 1.93810i −0.0262876 + 0.149085i
\(170\) 0.597093 1.03419i 0.0457949 0.0793191i
\(171\) 0.133498 6.17655i 0.0102088 0.472333i
\(172\) 0.883593 + 1.53043i 0.0673733 + 0.116694i
\(173\) −4.02819 + 1.46614i −0.306258 + 0.111469i −0.490577 0.871398i \(-0.663214\pi\)
0.184320 + 0.982866i \(0.440992\pi\)
\(174\) 14.5954 6.61491i 1.10648 0.501475i
\(175\) −3.19594 + 2.68171i −0.241590 + 0.202718i
\(176\) 13.9059 11.6684i 1.04819 0.879540i
\(177\) −1.62680 + 16.5347i −0.122278 + 1.24282i
\(178\) −0.902721 + 0.328564i −0.0676618 + 0.0246269i
\(179\) 8.76305 + 15.1780i 0.654981 + 1.13446i 0.981899 + 0.189408i \(0.0606568\pi\)
−0.326917 + 0.945053i \(0.606010\pi\)
\(180\) −0.349584 1.02914i −0.0260565 0.0767079i
\(181\) −0.687118 + 1.19012i −0.0510731 + 0.0884611i −0.890432 0.455117i \(-0.849597\pi\)
0.839359 + 0.543578i \(0.182931\pi\)
\(182\) −0.729974 + 4.13989i −0.0541093 + 0.306869i
\(183\) −21.8030 + 1.67034i −1.61172 + 0.123475i
\(184\) 9.10572 + 3.31421i 0.671282 + 0.244327i
\(185\) −0.612214 3.47204i −0.0450109 0.255269i
\(186\) 14.7404 + 4.12087i 1.08082 + 0.302157i
\(187\) 4.73515 + 3.97326i 0.346269 + 0.290554i
\(188\) −2.49967 −0.182307
\(189\) 4.35080 2.84087i 0.316474 0.206643i
\(190\) 2.37166 0.172058
\(191\) 5.23350 + 4.39143i 0.378683 + 0.317753i 0.812185 0.583400i \(-0.198278\pi\)
−0.433502 + 0.901152i \(0.642722\pi\)
\(192\) −11.0117 + 10.7762i −0.794698 + 0.777708i
\(193\) −0.457288 2.59341i −0.0329163 0.186678i 0.963916 0.266205i \(-0.0857699\pi\)
−0.996833 + 0.0795276i \(0.974659\pi\)
\(194\) −12.3526 4.49600i −0.886868 0.322794i
\(195\) −2.95607 4.32032i −0.211689 0.309384i
\(196\) −0.0691389 + 0.392106i −0.00493849 + 0.0280076i
\(197\) −0.219915 + 0.380905i −0.0156683 + 0.0271383i −0.873753 0.486369i \(-0.838321\pi\)
0.858085 + 0.513508i \(0.171654\pi\)
\(198\) −22.3701 + 3.44781i −1.58977 + 0.245025i
\(199\) 10.7197 + 18.5671i 0.759899 + 1.31618i 0.942902 + 0.333071i \(0.108085\pi\)
−0.183003 + 0.983112i \(0.558582\pi\)
\(200\) −11.8992 + 4.33095i −0.841400 + 0.306245i
\(201\) 14.1964 + 10.1708i 1.00134 + 0.717391i
\(202\) −13.9865 + 11.7361i −0.984089 + 0.825748i
\(203\) 5.59972 4.69872i 0.393023 0.329786i
\(204\) −0.581299 0.416462i −0.0406991 0.0291582i
\(205\) −4.87773 + 1.77535i −0.340676 + 0.123996i
\(206\) 1.74034 + 3.01436i 0.121255 + 0.210020i
\(207\) −5.99646 7.46828i −0.416783 0.519081i
\(208\) −5.05717 + 8.75928i −0.350652 + 0.607347i
\(209\) −2.13172 + 12.0896i −0.147454 + 0.836255i
\(210\) 1.12641 + 1.64626i 0.0777299 + 0.113603i
\(211\) −9.87861 3.59552i −0.680071 0.247526i −0.0211932 0.999775i \(-0.506747\pi\)
−0.658878 + 0.752250i \(0.728969\pi\)
\(212\) −0.113439 0.643347i −0.00779106 0.0441853i
\(213\) −5.22680 + 5.11505i −0.358135 + 0.350478i
\(214\) −4.22168 3.54241i −0.288588 0.242154i
\(215\) 4.03874 0.275440
\(216\) 15.3583 3.58606i 1.04500 0.244000i
\(217\) 6.98197 0.473967
\(218\) −15.7029 13.1763i −1.06353 0.892409i
\(219\) −7.65253 2.13937i −0.517110 0.144565i
\(220\) 0.375035 + 2.12693i 0.0252848 + 0.143397i
\(221\) −3.23638 1.17794i −0.217702 0.0792371i
\(222\) 8.46872 0.648795i 0.568383 0.0435442i
\(223\) −2.24722 + 12.7446i −0.150485 + 0.853441i 0.812314 + 0.583221i \(0.198208\pi\)
−0.962798 + 0.270220i \(0.912903\pi\)
\(224\) −1.10816 + 1.91939i −0.0740421 + 0.128245i
\(225\) 12.2760 + 2.43922i 0.818401 + 0.162614i
\(226\) −3.63456 6.29524i −0.241767 0.418753i
\(227\) −5.72511 + 2.08377i −0.379989 + 0.138305i −0.524951 0.851133i \(-0.675916\pi\)
0.144962 + 0.989437i \(0.453694\pi\)
\(228\) 0.139055 1.41334i 0.00920913 0.0936009i
\(229\) 15.3246 12.8589i 1.01268 0.849738i 0.0239882 0.999712i \(-0.492364\pi\)
0.988690 + 0.149974i \(0.0479191\pi\)
\(230\) 2.81657 2.36338i 0.185719 0.155837i
\(231\) −9.40432 + 4.26221i −0.618759 + 0.280433i
\(232\) 20.8490 7.58842i 1.36881 0.498204i
\(233\) −13.5795 23.5205i −0.889625 1.54088i −0.840319 0.542092i \(-0.817632\pi\)
−0.0493064 0.998784i \(-0.515701\pi\)
\(234\) 11.0554 6.06816i 0.722713 0.396688i
\(235\) −2.85638 + 4.94740i −0.186330 + 0.322733i
\(236\) −0.663206 + 3.76123i −0.0431711 + 0.244835i
\(237\) 10.7675 22.4543i 0.699424 1.45856i
\(238\) 1.23322 + 0.448857i 0.0799381 + 0.0290951i
\(239\) 1.97250 + 11.1866i 0.127591 + 0.723602i 0.979735 + 0.200296i \(0.0641904\pi\)
−0.852145 + 0.523306i \(0.824698\pi\)
\(240\) 1.19201 + 4.64901i 0.0769440 + 0.300092i
\(241\) −5.06797 4.25253i −0.326457 0.273930i 0.464798 0.885417i \(-0.346127\pi\)
−0.791254 + 0.611487i \(0.790572\pi\)
\(242\) 31.0536 1.99620
\(243\) −14.8175 4.84179i −0.950540 0.310601i
\(244\) −5.02665 −0.321798
\(245\) 0.697058 + 0.584902i 0.0445334 + 0.0373680i
\(246\) −3.10586 12.1133i −0.198023 0.772315i
\(247\) −1.18775 6.73605i −0.0755745 0.428604i
\(248\) 19.9137 + 7.24798i 1.26452 + 0.460247i
\(249\) 12.8860 26.8721i 0.816616 1.70295i
\(250\) −1.83426 + 10.4026i −0.116008 + 0.657917i
\(251\) 8.13620 14.0923i 0.513552 0.889499i −0.486324 0.873778i \(-0.661663\pi\)
0.999876 0.0157201i \(-0.00500406\pi\)
\(252\) 1.04710 0.574740i 0.0659611 0.0362052i
\(253\) 9.51578 + 16.4818i 0.598252 + 1.03620i
\(254\) −3.01568 + 1.09762i −0.189221 + 0.0688707i
\(255\) −1.48852 + 0.674625i −0.0932148 + 0.0422467i
\(256\) −7.01074 + 5.88271i −0.438172 + 0.367670i
\(257\) 10.2219 8.57718i 0.637624 0.535030i −0.265664 0.964066i \(-0.585591\pi\)
0.903287 + 0.429036i \(0.141147\pi\)
\(258\) −0.952682 + 9.68298i −0.0593114 + 0.602836i
\(259\) 3.64086 1.32516i 0.226232 0.0823417i
\(260\) −0.601679 1.04214i −0.0373145 0.0646306i
\(261\) −21.5093 4.27384i −1.33139 0.264544i
\(262\) −1.44950 + 2.51061i −0.0895505 + 0.155106i
\(263\) 3.92210 22.2433i 0.241847 1.37158i −0.585855 0.810416i \(-0.699241\pi\)
0.827702 0.561167i \(-0.189648\pi\)
\(264\) −31.2472 + 2.39387i −1.92313 + 0.147332i
\(265\) −1.40295 0.510633i −0.0861827 0.0313679i
\(266\) 0.452592 + 2.56678i 0.0277502 + 0.157379i
\(267\) 1.26613 + 0.353964i 0.0774857 + 0.0216622i
\(268\) 3.07527 + 2.58045i 0.187852 + 0.157626i
\(269\) 1.28401 0.0782877 0.0391439 0.999234i \(-0.487537\pi\)
0.0391439 + 0.999234i \(0.487537\pi\)
\(270\) 1.73535 5.72708i 0.105610 0.348539i
\(271\) 13.7466 0.835049 0.417525 0.908666i \(-0.362898\pi\)
0.417525 + 0.908666i \(0.362898\pi\)
\(272\) 2.41886 + 2.02966i 0.146665 + 0.123066i
\(273\) 4.11164 4.02373i 0.248848 0.243527i
\(274\) −2.42166 13.7339i −0.146298 0.829697i
\(275\) −23.3703 8.50608i −1.40928 0.512936i
\(276\) −1.24327 1.81705i −0.0748360 0.109373i
\(277\) −1.61921 + 9.18301i −0.0972891 + 0.551754i 0.896733 + 0.442572i \(0.145934\pi\)
−0.994022 + 0.109181i \(0.965177\pi\)
\(278\) 13.5209 23.4189i 0.810931 1.40457i
\(279\) −13.1139 16.3327i −0.785109 0.977812i
\(280\) 1.38093 + 2.39185i 0.0825266 + 0.142940i
\(281\) 9.29228 3.38211i 0.554331 0.201760i −0.0496387 0.998767i \(-0.515807\pi\)
0.603970 + 0.797007i \(0.293585\pi\)
\(282\) −11.1878 8.01528i −0.666221 0.477303i
\(283\) −12.8295 + 10.7652i −0.762635 + 0.639927i −0.938811 0.344432i \(-0.888072\pi\)
0.176176 + 0.984359i \(0.443627\pi\)
\(284\) −1.28782 + 1.08061i −0.0764179 + 0.0641222i
\(285\) −2.63841 1.89025i −0.156286 0.111969i
\(286\) −23.5482 + 8.57083i −1.39243 + 0.506804i
\(287\) −2.85225 4.94024i −0.168363 0.291613i
\(288\) 6.57137 1.01282i 0.387222 0.0596810i
\(289\) 7.96240 13.7913i 0.468376 0.811251i
\(290\) 1.46187 8.29066i 0.0858438 0.486845i
\(291\) 10.1587 + 14.8470i 0.595511 + 0.870344i
\(292\) −1.71642 0.624725i −0.100446 0.0365593i
\(293\) 2.69578 + 15.2885i 0.157489 + 0.893167i 0.956475 + 0.291816i \(0.0942594\pi\)
−0.798985 + 0.601351i \(0.794629\pi\)
\(294\) −1.56674 + 1.53325i −0.0913744 + 0.0894208i
\(295\) 6.68645 + 5.61060i 0.389300 + 0.326662i
\(296\) 11.7599 0.683533
\(297\) 27.6341 + 13.9937i 1.60350 + 0.811997i
\(298\) −10.0381 −0.581490
\(299\) −8.12310 6.81609i −0.469771 0.394185i
\(300\) 2.77087 + 0.774636i 0.159976 + 0.0447236i
\(301\) 0.770727 + 4.37101i 0.0444240 + 0.251941i
\(302\) 5.52370 + 2.01046i 0.317853 + 0.115689i
\(303\) 24.9135 1.90864i 1.43125 0.109649i
\(304\) −1.08895 + 6.17573i −0.0624555 + 0.354202i
\(305\) −5.74396 + 9.94883i −0.328898 + 0.569669i
\(306\) −1.26631 3.72791i −0.0723902 0.213110i
\(307\) −1.74046 3.01457i −0.0993335 0.172051i 0.812075 0.583552i \(-0.198338\pi\)
−0.911409 + 0.411502i \(0.865004\pi\)
\(308\) −2.23034 + 0.811778i −0.127086 + 0.0462554i
\(309\) 0.466403 4.74049i 0.0265328 0.269677i
\(310\) 6.15967 5.16858i 0.349846 0.293555i
\(311\) 10.6115 8.90413i 0.601725 0.504907i −0.290275 0.956943i \(-0.593747\pi\)
0.891999 + 0.452036i \(0.149302\pi\)
\(312\) 15.9041 7.20802i 0.900391 0.408074i
\(313\) −9.67485 + 3.52136i −0.546855 + 0.199039i −0.600649 0.799513i \(-0.705091\pi\)
0.0537937 + 0.998552i \(0.482869\pi\)
\(314\) −13.8277 23.9504i −0.780345 1.35160i
\(315\) 0.0589879 2.72920i 0.00332359 0.153773i
\(316\) 2.86223 4.95753i 0.161013 0.278883i
\(317\) 4.94275 28.0317i 0.277613 1.57442i −0.452926 0.891548i \(-0.649620\pi\)
0.730539 0.682871i \(-0.239269\pi\)
\(318\) 1.55519 3.24317i 0.0872110 0.181868i
\(319\) 40.9479 + 14.9038i 2.29264 + 0.834454i
\(320\) 1.40556 + 7.97135i 0.0785734 + 0.445612i
\(321\) 1.87317 + 7.30560i 0.104550 + 0.407759i
\(322\) 3.09532 + 2.59728i 0.172495 + 0.144741i
\(323\) −2.13537 −0.118815
\(324\) −3.31119 1.36994i −0.183955 0.0761077i
\(325\) 13.8571 0.768652
\(326\) −12.6844 10.6435i −0.702526 0.589489i
\(327\) 6.96738 + 27.1737i 0.385297 + 1.50271i
\(328\) −3.00659 17.0512i −0.166011 0.941497i
\(329\) −5.89952 2.14725i −0.325251 0.118382i
\(330\) −5.14152 + 10.7220i −0.283031 + 0.590228i
\(331\) −4.67529 + 26.5149i −0.256977 + 1.45739i 0.533969 + 0.845504i \(0.320700\pi\)
−0.790946 + 0.611886i \(0.790411\pi\)
\(332\) 3.42537 5.93291i 0.187991 0.325611i
\(333\) −9.93836 6.02794i −0.544619 0.330329i
\(334\) −2.26443 3.92210i −0.123904 0.214608i
\(335\) 8.62140 3.13793i 0.471037 0.171444i
\(336\) −4.80401 + 2.17727i −0.262080 + 0.118780i
\(337\) 3.56596 2.99220i 0.194250 0.162995i −0.540475 0.841360i \(-0.681755\pi\)
0.734725 + 0.678365i \(0.237311\pi\)
\(338\) −1.90805 + 1.60104i −0.103784 + 0.0870852i
\(339\) −0.974045 + 9.90012i −0.0529029 + 0.537701i
\(340\) −0.353020 + 0.128489i −0.0191452 + 0.00696828i
\(341\) 20.8105 + 36.0448i 1.12695 + 1.95193i
\(342\) 5.15429 5.87979i 0.278712 0.317943i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −2.33931 + 13.2669i −0.126127 + 0.715303i
\(345\) −5.01702 + 0.384357i −0.270107 + 0.0206931i
\(346\) −5.09824 1.85561i −0.274083 0.0997581i
\(347\) 1.36919 + 7.76507i 0.0735020 + 0.416851i 0.999250 + 0.0387107i \(0.0123251\pi\)
−0.925748 + 0.378140i \(0.876564\pi\)
\(348\) −4.85494 1.35727i −0.260252 0.0727572i
\(349\) 8.63445 + 7.24516i 0.462191 + 0.387825i 0.843937 0.536443i \(-0.180232\pi\)
−0.381745 + 0.924268i \(0.624677\pi\)
\(350\) −5.28025 −0.282241
\(351\) −17.1353 2.06063i −0.914614 0.109988i
\(352\) −13.2119 −0.704199
\(353\) 14.1108 + 11.8404i 0.751043 + 0.630200i 0.935779 0.352588i \(-0.114698\pi\)
−0.184735 + 0.982788i \(0.559143\pi\)
\(354\) −15.0288 + 14.7075i −0.798772 + 0.781694i
\(355\) 0.667165 + 3.78368i 0.0354095 + 0.200817i
\(356\) 0.283985 + 0.103362i 0.0150512 + 0.00547818i
\(357\) −1.01419 1.48224i −0.0536765 0.0784486i
\(358\) −3.85182 + 21.8447i −0.203575 + 1.15453i
\(359\) 9.58093 16.5947i 0.505662 0.875832i −0.494316 0.869282i \(-0.664582\pi\)
0.999979 0.00655044i \(-0.00208508\pi\)
\(360\) 3.00142 7.72286i 0.158189 0.407031i
\(361\) 7.37958 + 12.7818i 0.388399 + 0.672726i
\(362\) −1.63440 + 0.594871i −0.0859019 + 0.0312657i
\(363\) −34.5465 24.7503i −1.81322 1.29905i
\(364\) 1.01306 0.850054i 0.0530985 0.0445550i
\(365\) −3.19782 + 2.68329i −0.167382 + 0.140450i
\(366\) −22.4977 16.1181i −1.17597 0.842507i
\(367\) −5.88643 + 2.14249i −0.307269 + 0.111837i −0.491053 0.871130i \(-0.663388\pi\)
0.183783 + 0.982967i \(0.441166\pi\)
\(368\) 4.86095 + 8.41942i 0.253395 + 0.438892i
\(369\) −6.19929 + 15.9512i −0.322722 + 0.830385i
\(370\) 2.23107 3.86433i 0.115988 0.200897i
\(371\) 0.284913 1.61582i 0.0147919 0.0838893i
\(372\) −2.71896 3.97378i −0.140971 0.206031i
\(373\) −18.0622 6.57411i −0.935227 0.340395i −0.170948 0.985280i \(-0.554683\pi\)
−0.764279 + 0.644885i \(0.776905\pi\)
\(374\) 1.35850 + 7.70445i 0.0702465 + 0.398388i
\(375\) 10.3316 10.1107i 0.533521 0.522114i
\(376\) −14.5973 12.2486i −0.752798 0.631673i
\(377\) −24.2795 −1.25046
\(378\) 6.52942 + 0.785205i 0.335837 + 0.0403866i
\(379\) 30.6727 1.57555 0.787775 0.615963i \(-0.211233\pi\)
0.787775 + 0.615963i \(0.211233\pi\)
\(380\) −0.571541 0.479580i −0.0293195 0.0246019i
\(381\) 4.22970 + 1.18247i 0.216694 + 0.0605799i
\(382\) 1.50148 + 8.51530i 0.0768223 + 0.435681i
\(383\) 3.67776 + 1.33860i 0.187925 + 0.0683991i 0.434268 0.900783i \(-0.357007\pi\)
−0.246344 + 0.969183i \(0.579229\pi\)
\(384\) −11.7880 + 0.903083i −0.601551 + 0.0460853i
\(385\) −0.941931 + 5.34196i −0.0480053 + 0.272251i
\(386\) 1.66648 2.88643i 0.0848216 0.146915i
\(387\) 8.77733 10.0128i 0.446177 0.508979i
\(388\) 2.06769 + 3.58135i 0.104971 + 0.181815i
\(389\) −25.3344 + 9.22096i −1.28450 + 0.467521i −0.891919 0.452194i \(-0.850641\pi\)
−0.392585 + 0.919716i \(0.628419\pi\)
\(390\) 0.648724 6.59358i 0.0328494 0.333879i
\(391\) −2.53595 + 2.12792i −0.128249 + 0.107613i
\(392\) −2.32510 + 1.95099i −0.117435 + 0.0985399i
\(393\) 3.61354 1.63772i 0.182279 0.0826121i
\(394\) −0.523096 + 0.190392i −0.0263532 + 0.00959179i
\(395\) −6.54135 11.3300i −0.329131 0.570072i
\(396\) 6.08811 + 3.69264i 0.305939 + 0.185562i
\(397\) −1.99273 + 3.45151i −0.100012 + 0.173226i −0.911689 0.410880i \(-0.865222\pi\)
0.811677 + 0.584106i \(0.198555\pi\)
\(398\) −4.71187 + 26.7223i −0.236184 + 1.33947i
\(399\) 1.54226 3.21620i 0.0772098 0.161012i
\(400\) −11.9382 4.34517i −0.596912 0.217258i
\(401\) 5.30540 + 30.0884i 0.264939 + 1.50254i 0.769209 + 0.638997i \(0.220650\pi\)
−0.504270 + 0.863546i \(0.668238\pi\)
\(402\) 5.48961 + 21.4102i 0.273797 + 1.06785i
\(403\) −17.7647 14.9064i −0.884925 0.742540i
\(404\) 5.74378 0.285764
\(405\) −6.49511 + 4.98814i −0.322745 + 0.247863i
\(406\) 9.25172 0.459155
\(407\) 17.6932 + 14.8463i 0.877018 + 0.735905i
\(408\) −1.35391 5.28042i −0.0670283 0.261420i
\(409\) −5.57941 31.6424i −0.275884 1.56462i −0.736140 0.676830i \(-0.763353\pi\)
0.460256 0.887786i \(-0.347758\pi\)
\(410\) −6.17346 2.24695i −0.304885 0.110969i
\(411\) −8.25212 + 17.2088i −0.407047 + 0.848847i
\(412\) 0.190141 1.07835i 0.00936759 0.0531263i
\(413\) −4.79619 + 8.30724i −0.236005 + 0.408773i
\(414\) 0.261938 12.1191i 0.0128736 0.595622i
\(415\) −7.82835 13.5591i −0.384279 0.665590i
\(416\) 6.91745 2.51774i 0.339156 0.123443i
\(417\) −33.7070 + 15.2766i −1.65064 + 0.748100i
\(418\) −11.9021 + 9.98707i −0.582152 + 0.488483i
\(419\) −3.87959 + 3.25537i −0.189531 + 0.159035i −0.732615 0.680643i \(-0.761701\pi\)
0.543085 + 0.839678i \(0.317256\pi\)
\(420\) 0.0614433 0.624505i 0.00299813 0.0304727i
\(421\) −10.0867 + 3.67125i −0.491594 + 0.178926i −0.575909 0.817514i \(-0.695352\pi\)
0.0843153 + 0.996439i \(0.473130\pi\)
\(422\) −6.65258 11.5226i −0.323843 0.560912i
\(423\) 6.05781 + 17.8336i 0.294541 + 0.867101i
\(424\) 2.49000 4.31281i 0.120925 0.209448i
\(425\) 0.751209 4.26032i 0.0364390 0.206656i
\(426\) −9.22886 + 0.707030i −0.447140 + 0.0342557i
\(427\) −11.8635 4.31795i −0.574114 0.208960i
\(428\) 0.301054 + 1.70736i 0.0145520 + 0.0825283i
\(429\) 33.0279 + 9.23341i 1.59460 + 0.445793i
\(430\) 3.91570 + 3.28566i 0.188832 + 0.158449i
\(431\) 34.2002 1.64736 0.823682 0.567052i \(-0.191916\pi\)
0.823682 + 0.567052i \(0.191916\pi\)
\(432\) 14.1164 + 7.14841i 0.679174 + 0.343928i
\(433\) 36.4825 1.75324 0.876619 0.481185i \(-0.159793\pi\)
0.876619 + 0.481185i \(0.159793\pi\)
\(434\) 6.76927 + 5.68010i 0.324936 + 0.272653i
\(435\) −8.23409 + 8.05804i −0.394794 + 0.386354i
\(436\) 1.11979 + 6.35065i 0.0536283 + 0.304141i
\(437\) −6.17807 2.24863i −0.295537 0.107567i
\(438\) −5.67894 8.29982i −0.271350 0.396581i
\(439\) 6.89969 39.1301i 0.329304 1.86758i −0.148215 0.988955i \(-0.547353\pi\)
0.477519 0.878622i \(-0.341536\pi\)
\(440\) −8.23202 + 14.2583i −0.392446 + 0.679737i
\(441\) 2.96499 0.456982i 0.141190 0.0217610i
\(442\) −2.17948 3.77498i −0.103667 0.179557i
\(443\) 4.39345 1.59909i 0.208739 0.0759749i −0.235534 0.971866i \(-0.575684\pi\)
0.444274 + 0.895891i \(0.353462\pi\)
\(444\) −2.17206 1.55613i −0.103081 0.0738509i
\(445\) 0.529087 0.443956i 0.0250811 0.0210455i
\(446\) −12.5470 + 10.5282i −0.594116 + 0.498523i
\(447\) 11.1671 + 8.00051i 0.528187 + 0.378411i
\(448\) −8.35893 + 3.04240i −0.394923 + 0.143740i
\(449\) −11.7994 20.4371i −0.556848 0.964488i −0.997757 0.0669369i \(-0.978677\pi\)
0.440910 0.897552i \(-0.354656\pi\)
\(450\) 9.91765 + 12.3519i 0.467522 + 0.582275i
\(451\) 17.0028 29.4497i 0.800631 1.38673i
\(452\) −0.397095 + 2.25204i −0.0186778 + 0.105927i
\(453\) −4.54262 6.63908i −0.213431 0.311931i
\(454\) −7.24592 2.63730i −0.340068 0.123775i
\(455\) −0.524823 2.97642i −0.0246041 0.139537i
\(456\) 7.73752 7.57209i 0.362343 0.354596i
\(457\) −14.0954 11.8274i −0.659353 0.553263i 0.250540 0.968106i \(-0.419392\pi\)
−0.909893 + 0.414843i \(0.863836\pi\)
\(458\) 25.3189 1.18308
\(459\) −1.56246 + 5.15648i −0.0729294 + 0.240684i
\(460\) −1.15667 −0.0539299
\(461\) 0.430417 + 0.361163i 0.0200465 + 0.0168210i 0.652756 0.757568i \(-0.273613\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(462\) −12.5853 3.51840i −0.585521 0.163691i
\(463\) 4.26861 + 24.2085i 0.198379 + 1.12506i 0.907524 + 0.420001i \(0.137970\pi\)
−0.709144 + 0.705063i \(0.750919\pi\)
\(464\) 20.9174 + 7.61333i 0.971068 + 0.353440i
\(465\) −10.9719 + 0.840567i −0.508811 + 0.0389804i
\(466\) 5.96892 33.8514i 0.276505 1.56814i
\(467\) 7.39203 12.8034i 0.342062 0.592470i −0.642753 0.766073i \(-0.722208\pi\)
0.984816 + 0.173604i \(0.0555412\pi\)
\(468\) −3.89128 0.773189i −0.179874 0.0357407i
\(469\) 5.04135 + 8.73187i 0.232788 + 0.403200i
\(470\) −6.79427 + 2.47291i −0.313396 + 0.114067i
\(471\) −3.70577 + 37.6652i −0.170753 + 1.73552i
\(472\) −22.3032 + 18.7146i −1.02659 + 0.861411i
\(473\) −20.2683 + 17.0071i −0.931939 + 0.781989i
\(474\) 28.7069 13.0105i 1.31855 0.597592i
\(475\) 8.07340 2.93848i 0.370433 0.134827i
\(476\) −0.206428 0.357543i −0.00946160 0.0163880i
\(477\) −4.31498 + 2.36843i −0.197569 + 0.108443i
\(478\) −7.18832 + 12.4505i −0.328786 + 0.569474i
\(479\) 1.66574 9.44691i 0.0761098 0.431640i −0.922813 0.385247i \(-0.874116\pi\)
0.998923 0.0463931i \(-0.0147727\pi\)
\(480\) 1.51036 3.14967i 0.0689382 0.143762i
\(481\) −12.0929 4.40146i −0.551389 0.200689i
\(482\) −1.45399 8.24597i −0.0662273 0.375594i
\(483\) −1.37340 5.35643i −0.0624917 0.243726i
\(484\) −7.48356 6.27945i −0.340162 0.285430i
\(485\) 9.45103 0.429149
\(486\) −10.4271 16.7489i −0.472983 0.759743i
\(487\) −10.5107 −0.476284 −0.238142 0.971230i \(-0.576538\pi\)
−0.238142 + 0.971230i \(0.576538\pi\)
\(488\) −29.3540 24.6310i −1.32879 1.11499i
\(489\) 5.62810 + 21.9504i 0.254511 + 0.992629i
\(490\) 0.199984 + 1.13417i 0.00903437 + 0.0512364i
\(491\) −30.4235 11.0732i −1.37299 0.499728i −0.452945 0.891538i \(-0.649627\pi\)
−0.920046 + 0.391810i \(0.871849\pi\)
\(492\) −1.70099 + 3.54721i −0.0766865 + 0.159920i
\(493\) −1.31622 + 7.46466i −0.0592796 + 0.336191i
\(494\) 4.32846 7.49712i 0.194747 0.337311i
\(495\) 14.2654 7.83012i 0.641184 0.351938i
\(496\) 10.6306 + 18.4128i 0.477329 + 0.826758i
\(497\) −3.96765 + 1.44411i −0.177974 + 0.0647771i
\(498\) 34.3549 15.5703i 1.53948 0.697721i
\(499\) 8.50526 7.13676i 0.380748 0.319485i −0.432248 0.901755i \(-0.642280\pi\)
0.812996 + 0.582269i \(0.197835\pi\)
\(500\) 2.54557 2.13599i 0.113841 0.0955243i
\(501\) −0.606856 + 6.16804i −0.0271123 + 0.275568i
\(502\) 19.3530 7.04390i 0.863765 0.314385i
\(503\) 8.24287 + 14.2771i 0.367531 + 0.636583i 0.989179 0.146714i \(-0.0468697\pi\)
−0.621648 + 0.783297i \(0.713536\pi\)
\(504\) 8.93101 + 1.77457i 0.397819 + 0.0790457i
\(505\) 6.56343 11.3682i 0.292069 0.505878i
\(506\) −4.18268 + 23.7212i −0.185943 + 1.05454i
\(507\) 3.39871 0.260378i 0.150942 0.0115638i
\(508\) 0.948697 + 0.345297i 0.0420916 + 0.0153201i
\(509\) −0.0998034 0.566013i −0.00442371 0.0250881i 0.982516 0.186178i \(-0.0596102\pi\)
−0.986940 + 0.161090i \(0.948499\pi\)
\(510\) −1.99201 0.556895i −0.0882077 0.0246597i
\(511\) −3.51430 2.94885i −0.155464 0.130449i
\(512\) −25.2344 −1.11521
\(513\) −10.4203 + 2.43308i −0.460068 + 0.107423i
\(514\) 16.8884 0.744913
\(515\) −1.91701 1.60856i −0.0844734 0.0708816i
\(516\) 2.18761 2.14084i 0.0963042 0.0942452i
\(517\) −6.49883 36.8567i −0.285818 1.62096i
\(518\) 4.60801 + 1.67718i 0.202465 + 0.0736911i
\(519\) 4.19273 + 6.12770i 0.184040 + 0.268976i
\(520\) 1.59294 9.03403i 0.0698552 0.396168i
\(521\) −0.717246 + 1.24231i −0.0314231 + 0.0544264i −0.881309 0.472540i \(-0.843337\pi\)
0.849886 + 0.526966i \(0.176671\pi\)
\(522\) −17.3771 21.6422i −0.760574 0.947255i
\(523\) 8.90816 + 15.4294i 0.389527 + 0.674680i 0.992386 0.123167i \(-0.0393052\pi\)
−0.602859 + 0.797848i \(0.705972\pi\)
\(524\) 0.856992 0.311919i 0.0374378 0.0136263i
\(525\) 5.87416 + 4.20845i 0.256369 + 0.183672i
\(526\) 21.8984 18.3750i 0.954816 0.801186i
\(527\) −5.54598 + 4.65363i −0.241586 + 0.202715i
\(528\) −25.5591 18.3114i −1.11232 0.796902i
\(529\) 12.0351 4.38042i 0.523265 0.190453i
\(530\) −0.944795 1.63643i −0.0410393 0.0710821i
\(531\) 28.4413 4.38354i 1.23425 0.190230i
\(532\) 0.409967 0.710083i 0.0177743 0.0307860i
\(533\) −3.29014 + 18.6593i −0.142512 + 0.808225i
\(534\) 0.939594 + 1.37322i 0.0406602 + 0.0594252i
\(535\) 3.72325 + 1.35515i 0.160970 + 0.0585884i
\(536\) 5.31416 + 30.1381i 0.229537 + 1.30177i
\(537\) 21.6957 21.2318i 0.936238 0.916221i
\(538\) 1.24490 + 1.04459i 0.0536714 + 0.0450357i
\(539\) −5.96120 −0.256767
\(540\) −1.57629 + 1.02925i −0.0678327 + 0.0442917i
\(541\) 2.90252 0.124789 0.0623946 0.998052i \(-0.480126\pi\)
0.0623946 + 0.998052i \(0.480126\pi\)
\(542\) 13.3279 + 11.1834i 0.572481 + 0.480369i
\(543\) 2.29235 + 0.640859i 0.0983741 + 0.0275019i
\(544\) −0.399070 2.26324i −0.0171100 0.0970356i
\(545\) 13.8489 + 5.04059i 0.593222 + 0.215915i
\(546\) 7.25984 0.556182i 0.310693 0.0238024i
\(547\) −5.04161 + 28.5924i −0.215564 + 1.22252i 0.664362 + 0.747411i \(0.268703\pi\)
−0.879925 + 0.475112i \(0.842408\pi\)
\(548\) −2.19359 + 3.79941i −0.0937055 + 0.162303i
\(549\) 12.1818 + 35.8620i 0.519906 + 1.53055i
\(550\) −15.7383 27.2596i −0.671084 1.16235i
\(551\) −14.1457 + 5.14862i −0.602627 + 0.219338i
\(552\) 1.64337 16.7031i 0.0699465 0.710931i
\(553\) 11.0138 9.24166i 0.468354 0.392995i
\(554\) −9.04061 + 7.58598i −0.384099 + 0.322297i
\(555\) −5.56195 + 2.52078i −0.236091 + 0.107001i
\(556\) −7.99400 + 2.90958i −0.339021 + 0.123394i
\(557\) −16.6830 28.8958i −0.706882 1.22436i −0.966008 0.258513i \(-0.916768\pi\)
0.259125 0.965844i \(-0.416566\pi\)
\(558\) 0.572843 26.5038i 0.0242504 1.12199i
\(559\) 7.37102 12.7670i 0.311761 0.539986i
\(560\) −0.481167 + 2.72883i −0.0203330 + 0.115314i
\(561\) 4.62927 9.65377i 0.195448 0.407583i
\(562\) 11.7607 + 4.28054i 0.496095 + 0.180564i
\(563\) −4.36987 24.7827i −0.184168 1.04447i −0.927020 0.375012i \(-0.877639\pi\)
0.742852 0.669456i \(-0.233473\pi\)
\(564\) 1.07532 + 4.19390i 0.0452792 + 0.176595i
\(565\) 4.00351 + 3.35934i 0.168429 + 0.141329i
\(566\) −21.1966 −0.890960
\(567\) −6.63800 6.07757i −0.278770 0.255234i
\(568\) −12.8155 −0.537726
\(569\) −23.6612 19.8541i −0.991927 0.832326i −0.00608162 0.999982i \(-0.501936\pi\)
−0.985846 + 0.167656i \(0.946380\pi\)
\(570\) −1.02025 3.97912i −0.0427336 0.166667i
\(571\) 6.41747 + 36.3953i 0.268563 + 1.52309i 0.758695 + 0.651446i \(0.225837\pi\)
−0.490132 + 0.871648i \(0.663051\pi\)
\(572\) 7.40796 + 2.69628i 0.309743 + 0.112737i
\(573\) 5.11647 10.6698i 0.213744 0.445736i
\(574\) 1.25371 7.11015i 0.0523289 0.296772i
\(575\) 6.65971 11.5349i 0.277729 0.481041i
\(576\) 22.8172 + 13.8394i 0.950716 + 0.576640i
\(577\) −18.9831 32.8798i −0.790278 1.36880i −0.925794 0.378027i \(-0.876603\pi\)
0.135516 0.990775i \(-0.456731\pi\)
\(578\) 18.9396 6.89344i 0.787782 0.286729i
\(579\) −4.15445 + 1.88287i −0.172653 + 0.0782495i
\(580\) −2.02877 + 1.70234i −0.0842403 + 0.0706860i
\(581\) 13.1807 11.0599i 0.546828 0.458843i
\(582\) −2.22937 + 22.6591i −0.0924103 + 0.939251i
\(583\) 9.19097 3.34524i 0.380651 0.138546i
\(584\) −6.96214 12.0588i −0.288095 0.498996i
\(585\) −5.97688 + 6.81817i −0.247114 + 0.281896i
\(586\) −9.82415 + 17.0159i −0.405832 + 0.702922i
\(587\) 6.44293 36.5397i 0.265928 1.50815i −0.500451 0.865765i \(-0.666833\pi\)
0.766379 0.642388i \(-0.222056\pi\)
\(588\) 0.687610 0.0526782i 0.0283565 0.00217241i
\(589\) −13.5111 4.91763i −0.556714 0.202627i
\(590\) 1.91832 + 10.8794i 0.0789762 + 0.447896i
\(591\) 0.733678 + 0.205110i 0.0301795 + 0.00843710i
\(592\) 9.03821 + 7.58396i 0.371468 + 0.311699i
\(593\) −26.3991 −1.08408 −0.542041 0.840352i \(-0.682348\pi\)
−0.542041 + 0.840352i \(0.682348\pi\)
\(594\) 15.4079 + 36.0488i 0.632195 + 1.47910i
\(595\) −0.943542 −0.0386815
\(596\) 2.41906 + 2.02983i 0.0990884 + 0.0831451i
\(597\) 26.5400 25.9725i 1.08621 1.06299i
\(598\) −2.33050 13.2169i −0.0953011 0.540479i
\(599\) −2.34587 0.853828i −0.0958498 0.0348865i 0.293650 0.955913i \(-0.405130\pi\)
−0.389500 + 0.921026i \(0.627352\pi\)
\(600\) 12.3852 + 18.1011i 0.505625 + 0.738975i
\(601\) −6.87743 + 39.0039i −0.280536 + 1.59100i 0.440270 + 0.897865i \(0.354883\pi\)
−0.720807 + 0.693136i \(0.756229\pi\)
\(602\) −2.80873 + 4.86487i −0.114475 + 0.198277i
\(603\) 10.9572 28.1937i 0.446213 1.14814i
\(604\) −0.924606 1.60146i −0.0376217 0.0651626i
\(605\) −20.9799 + 7.63606i −0.852954 + 0.310450i
\(606\) 25.7074 + 18.4176i 1.04429 + 0.748164i
\(607\) −5.54784 + 4.65519i −0.225180 + 0.188948i −0.748397 0.663251i \(-0.769176\pi\)
0.523217 + 0.852199i \(0.324732\pi\)
\(608\) 3.49634 2.93377i 0.141795 0.118980i
\(609\) −10.2923 7.37377i −0.417066 0.298800i
\(610\) −13.6627 + 4.97283i −0.553188 + 0.201344i
\(611\) 10.4263 + 18.0588i 0.421801 + 0.730581i
\(612\) −0.448666 + 1.15445i −0.0181362 + 0.0466657i
\(613\) −8.97274 + 15.5412i −0.362405 + 0.627705i −0.988356 0.152158i \(-0.951378\pi\)
0.625951 + 0.779863i \(0.284711\pi\)
\(614\) 0.765025 4.33867i 0.0308739 0.175095i
\(615\) 5.07697 + 7.42003i 0.204723 + 0.299205i
\(616\) −17.0023 6.18832i −0.685041 0.249335i
\(617\) 0.248854 + 1.41132i 0.0100185 + 0.0568177i 0.989407 0.145167i \(-0.0463720\pi\)
−0.979389 + 0.201985i \(0.935261\pi\)
\(618\) 4.30876 4.21664i 0.173324 0.169618i
\(619\) −31.7747 26.6621i −1.27713 1.07164i −0.993633 0.112669i \(-0.964060\pi\)
−0.283500 0.958972i \(-0.591496\pi\)
\(620\) −2.52956 −0.101590
\(621\) −9.95053 + 13.2735i −0.399301 + 0.532646i
\(622\) 17.5321 0.702974
\(623\) 0.581449 + 0.487893i 0.0232953 + 0.0195470i
\(624\) 16.8716 + 4.71671i 0.675406 + 0.188819i
\(625\) 2.30354 + 13.0640i 0.0921417 + 0.522562i
\(626\) −12.2449 4.45677i −0.489404 0.178128i
\(627\) 21.2007 1.62420i 0.846674 0.0648643i
\(628\) −1.51075 + 8.56791i −0.0602856 + 0.341897i
\(629\) −2.00879 + 3.47932i −0.0800956 + 0.138730i
\(630\) 2.27750 2.59807i 0.0907377 0.103510i
\(631\) −11.2346 19.4589i −0.447243 0.774647i 0.550963 0.834530i \(-0.314261\pi\)
−0.998205 + 0.0598827i \(0.980927\pi\)
\(632\) 41.0068 14.9252i 1.63116 0.593694i
\(633\) −1.78286 + 18.1209i −0.0708623 + 0.720239i
\(634\) 27.5971 23.1567i 1.09602 0.919669i
\(635\) 1.76750 1.48311i 0.0701410 0.0588553i
\(636\) −1.03059 + 0.467084i −0.0408657 + 0.0185211i
\(637\) 3.12114 1.13600i 0.123664 0.0450100i
\(638\) 27.5757 + 47.7625i 1.09173 + 1.89094i
\(639\) 10.8304 + 6.56900i 0.428445 + 0.259866i
\(640\) −3.10552 + 5.37891i −0.122756 + 0.212620i
\(641\) 3.90028 22.1196i 0.154052 0.873672i −0.805596 0.592466i \(-0.798154\pi\)
0.959647 0.281206i \(-0.0907344\pi\)
\(642\) −4.12728 + 8.60694i −0.162891 + 0.339689i
\(643\) 28.7088 + 10.4492i 1.13217 + 0.412075i 0.839078 0.544011i \(-0.183095\pi\)
0.293088 + 0.956085i \(0.405317\pi\)
\(644\) −0.220731 1.25183i −0.00869802 0.0493289i
\(645\) −1.73740 6.77611i −0.0684101 0.266809i
\(646\) −2.07032 1.73720i −0.0814555 0.0683493i
\(647\) −36.1118 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(648\) −12.6235 24.2251i −0.495898 0.951652i
\(649\) −57.1821 −2.24459
\(650\) 13.4349 + 11.2733i 0.526962 + 0.442173i
\(651\) −3.00354 11.7142i −0.117718 0.459116i
\(652\) 0.904543 + 5.12992i 0.0354246 + 0.200903i
\(653\) 12.9734 + 4.72193i 0.507688 + 0.184783i 0.583149 0.812365i \(-0.301820\pi\)
−0.0754605 + 0.997149i \(0.524043\pi\)
\(654\) −15.3517 + 32.0141i −0.600300 + 1.25185i
\(655\) 0.361930 2.05260i 0.0141418 0.0802019i
\(656\) 8.68556 15.0438i 0.339114 0.587363i
\(657\) −0.297394 + 13.7596i −0.0116025 + 0.536812i
\(658\) −3.97294 6.88133i −0.154881 0.268262i
\(659\) −0.168341 + 0.0612712i −0.00655764 + 0.00238679i −0.345297 0.938494i \(-0.612222\pi\)
0.338739 + 0.940880i \(0.390000\pi\)
\(660\) 3.40718 1.54420i 0.132624 0.0601078i
\(661\) −2.00117 + 1.67918i −0.0778365 + 0.0653126i −0.680876 0.732399i \(-0.738401\pi\)
0.603039 + 0.797711i \(0.293956\pi\)
\(662\) −26.1037 + 21.9036i −1.01455 + 0.851309i
\(663\) −0.584091 + 5.93666i −0.0226842 + 0.230561i
\(664\) 49.0748 17.8618i 1.90447 0.693171i
\(665\) −0.936940 1.62283i −0.0363330 0.0629305i
\(666\) −4.73165 13.9295i −0.183348 0.539759i
\(667\) −11.6687 + 20.2108i −0.451815 + 0.782566i
\(668\) −0.247401 + 1.40308i −0.00957221 + 0.0542867i
\(669\) 22.3493 1.71220i 0.864075 0.0661974i
\(670\) 10.9116 + 3.97149i 0.421551 + 0.153432i
\(671\) −13.0686 74.1159i −0.504509 2.86121i
\(672\) 3.69703 + 1.03356i 0.142616 + 0.0398703i
\(673\) −18.6504 15.6496i −0.718921 0.603247i 0.208165 0.978094i \(-0.433251\pi\)
−0.927087 + 0.374847i \(0.877695\pi\)
\(674\) 5.89160 0.226936
\(675\) −1.18848 21.6457i −0.0457448 0.833145i
\(676\) 0.783568 0.0301372
\(677\) 23.0383 + 19.3315i 0.885435 + 0.742968i 0.967289 0.253676i \(-0.0816397\pi\)
−0.0818541 + 0.996644i \(0.526084\pi\)
\(678\) −8.99849 + 8.80610i −0.345585 + 0.338196i
\(679\) 1.80357 + 10.2286i 0.0692149 + 0.392537i
\(680\) −2.69113 0.979491i −0.103200 0.0375618i
\(681\) 5.95895 + 8.70905i 0.228348 + 0.333732i
\(682\) −9.14728 + 51.8768i −0.350268 + 1.98647i
\(683\) −0.986904 + 1.70937i −0.0377628 + 0.0654071i −0.884289 0.466940i \(-0.845356\pi\)
0.846526 + 0.532347i \(0.178690\pi\)
\(684\) −2.43109 + 0.374695i −0.0929552 + 0.0143268i
\(685\) 5.01324 + 8.68319i 0.191546 + 0.331767i
\(686\) −1.18931 + 0.432874i −0.0454082 + 0.0165272i
\(687\) −28.1667 20.1796i −1.07463 0.769900i
\(688\) −10.3537 + 8.68777i −0.394730 + 0.331218i
\(689\) −4.17468 + 3.50297i −0.159043 + 0.133453i
\(690\) −5.17688 3.70889i −0.197080 0.141195i
\(691\) 24.9545 9.08268i 0.949313 0.345522i 0.179476 0.983762i \(-0.442560\pi\)
0.769837 + 0.638241i \(0.220338\pi\)
\(692\) 0.853387 + 1.47811i 0.0324409 + 0.0561893i
\(693\) 11.1966 + 13.9448i 0.425325 + 0.529720i
\(694\) −4.98969 + 8.64240i −0.189406 + 0.328061i
\(695\) −3.37607 + 19.1467i −0.128062 + 0.726274i
\(696\) −21.7006 31.7156i −0.822560 1.20218i
\(697\) 5.55839 + 2.02309i 0.210539 + 0.0766299i
\(698\) 2.47720 + 14.0489i 0.0937634 + 0.531759i
\(699\) −33.6204 + 32.9016i −1.27164 + 1.24445i
\(700\) 1.27248 + 1.06774i 0.0480952 + 0.0403566i
\(701\) 6.58398 0.248673 0.124337 0.992240i \(-0.460320\pi\)
0.124337 + 0.992240i \(0.460320\pi\)
\(702\) −14.9369 15.9381i −0.563756 0.601543i
\(703\) −7.97892 −0.300931
\(704\) −40.6212 34.0852i −1.53097 1.28464i
\(705\) 9.52942 + 2.66408i 0.358899 + 0.100335i
\(706\) 4.04836 + 22.9594i 0.152362 + 0.864087i
\(707\) 13.5560 + 4.93398i 0.509826 + 0.185561i
\(708\) 6.59581 0.505310i 0.247886 0.0189907i
\(709\) 1.99560 11.3176i 0.0749462 0.425041i −0.924130 0.382077i \(-0.875209\pi\)
0.999077 0.0429637i \(-0.0136800\pi\)
\(710\) −2.43133 + 4.21118i −0.0912461 + 0.158043i
\(711\) −42.3054 8.40598i −1.58657 0.315249i
\(712\) 1.15190 + 1.99515i 0.0431693 + 0.0747714i
\(713\) −20.9462 + 7.62378i −0.784440 + 0.285513i
\(714\) 0.222569 2.26217i 0.00832942 0.0846596i
\(715\) 13.8016 11.5809i 0.516151 0.433102i
\(716\) 5.34554 4.48544i 0.199772 0.167629i
\(717\) 17.9201 8.12173i 0.669239 0.303312i
\(718\) 22.7894 8.29468i 0.850494 0.309555i
\(719\) 22.7233 + 39.3580i 0.847438 + 1.46781i 0.883487 + 0.468455i \(0.155189\pi\)
−0.0360492 + 0.999350i \(0.511477\pi\)
\(720\) 7.28722 3.99986i 0.271579 0.149066i
\(721\) 1.37507 2.38169i 0.0512102 0.0886987i
\(722\) −3.24371 + 18.3960i −0.120718 + 0.684628i
\(723\) −4.95465 + 10.3323i −0.184265 + 0.384263i
\(724\) 0.514161 + 0.187139i 0.0191086 + 0.00695498i
\(725\) −5.29574 30.0336i −0.196679 1.11542i
\(726\) −13.3588 52.1011i −0.495791 1.93365i
\(727\) 19.7408 + 16.5645i 0.732146 + 0.614344i 0.930716 0.365743i \(-0.119185\pi\)
−0.198570 + 0.980087i \(0.563630\pi\)
\(728\) 10.0813 0.373636
\(729\) −1.74921 + 26.9433i −0.0647854 + 0.997899i
\(730\) −5.28336 −0.195546
\(731\) −3.52558 2.95831i −0.130398 0.109417i
\(732\) 2.16239 + 8.43360i 0.0799241 + 0.311715i
\(733\) −2.27159 12.8828i −0.0839030 0.475837i −0.997588 0.0694142i \(-0.977887\pi\)
0.913685 0.406423i \(-0.133224\pi\)
\(734\) −7.45010 2.71162i −0.274988 0.100088i
\(735\) 0.681471 1.42113i 0.0251365 0.0524190i
\(736\) 1.22869 6.96827i 0.0452903 0.256854i
\(737\) −30.0525 + 52.0524i −1.10700 + 1.91738i
\(738\) −18.9873 + 10.4219i −0.698933 + 0.383635i
\(739\) 10.4383 + 18.0797i 0.383981 + 0.665074i 0.991627 0.129133i \(-0.0412196\pi\)
−0.607646 + 0.794208i \(0.707886\pi\)
\(740\) −1.31908 + 0.480106i −0.0484903 + 0.0176490i
\(741\) −10.7906 + 4.89052i −0.396404 + 0.179658i
\(742\) 1.59077 1.33481i 0.0583988 0.0490024i
\(743\) 13.2930 11.1541i 0.487672 0.409205i −0.365519 0.930804i \(-0.619109\pi\)
0.853191 + 0.521599i \(0.174664\pi\)
\(744\) 3.59396 36.5287i 0.131761 1.33921i
\(745\) 6.78174 2.46835i 0.248464 0.0904334i
\(746\) −12.1637 21.0682i −0.445345 0.771360i
\(747\) −50.6288 10.0598i −1.85241 0.368070i
\(748\) 1.23056 2.13139i 0.0449936 0.0779313i
\(749\) −0.756122 + 4.28818i −0.0276281 + 0.156687i
\(750\) 18.2423 1.39755i 0.666114 0.0510315i
\(751\) −5.99632 2.18248i −0.218809 0.0796399i 0.230290 0.973122i \(-0.426033\pi\)
−0.449099 + 0.893482i \(0.648255\pi\)
\(752\) −3.31980 18.8275i −0.121061 0.686569i
\(753\) −27.1438 7.58844i −0.989176 0.276538i
\(754\) −23.5399 19.7523i −0.857271 0.719336i
\(755\) −4.22620 −0.153807
\(756\) −1.41473 1.50956i −0.0514534 0.0549021i
\(757\) −8.80999 −0.320205 −0.160102 0.987100i \(-0.551182\pi\)
−0.160102 + 0.987100i \(0.551182\pi\)
\(758\) 29.7383 + 24.9534i 1.08014 + 0.906348i
\(759\) 23.5593 23.0556i 0.855149 0.836865i
\(760\) −0.987642 5.60119i −0.0358255 0.203177i
\(761\) −6.43543 2.34231i −0.233284 0.0849085i 0.222733 0.974880i \(-0.428502\pi\)
−0.456017 + 0.889971i \(0.650724\pi\)
\(762\) 3.13886 + 4.58747i 0.113709 + 0.166186i
\(763\) −2.81245 + 15.9502i −0.101818 + 0.577436i
\(764\) 1.36007 2.35571i 0.0492055 0.0852264i
\(765\) 1.77221 + 2.20720i 0.0640744 + 0.0798014i
\(766\) 2.47673 + 4.28982i 0.0894878 + 0.154997i
\(767\) 29.9391 10.8970i 1.08104 0.393466i