Properties

Label 189.2.v.a.43.6
Level $189$
Weight $2$
Character 189.43
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.6
Character \(\chi\) \(=\) 189.43
Dual form 189.2.v.a.22.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.786541 + 0.659987i) q^{2} +(-0.244375 + 1.71472i) q^{3} +(-0.164231 - 0.931402i) q^{4} +(3.56827 + 1.29874i) q^{5} +(-1.32391 + 1.18742i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.51229 - 2.61937i) q^{8} +(-2.88056 - 0.838073i) q^{9} +O(q^{10})\) \(q+(0.786541 + 0.659987i) q^{2} +(-0.244375 + 1.71472i) q^{3} +(-0.164231 - 0.931402i) q^{4} +(3.56827 + 1.29874i) q^{5} +(-1.32391 + 1.18742i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.51229 - 2.61937i) q^{8} +(-2.88056 - 0.838073i) q^{9} +(1.94944 + 3.37653i) q^{10} +(-1.53871 + 0.560043i) q^{11} +(1.63723 - 0.0539997i) q^{12} +(-4.81098 + 4.03689i) q^{13} +(0.786541 - 0.659987i) q^{14} +(-3.09899 + 5.80122i) q^{15} +(1.14077 - 0.415205i) q^{16} +(0.424366 + 0.735023i) q^{17} +(-1.71256 - 2.56031i) q^{18} +(2.19397 - 3.80006i) q^{19} +(0.623631 - 3.53679i) q^{20} +(1.64624 + 0.538422i) q^{21} +(-1.57988 - 0.575028i) q^{22} +(-0.517102 - 2.93263i) q^{23} +(4.12193 + 3.23328i) q^{24} +(7.21559 + 6.05460i) q^{25} -6.44833 q^{26} +(2.14100 - 4.73456i) q^{27} -0.945770 q^{28} +(-5.54559 - 4.65331i) q^{29} +(-6.26621 + 2.51761i) q^{30} +(-0.831089 - 4.71334i) q^{31} +(-4.51308 - 1.64263i) q^{32} +(-0.584298 - 2.77532i) q^{33} +(-0.151324 + 0.858202i) q^{34} +(1.89864 - 3.28853i) q^{35} +(-0.307505 + 2.82060i) q^{36} +(4.25038 + 7.36187i) q^{37} +(4.23363 - 1.54092i) q^{38} +(-5.74647 - 9.23603i) q^{39} +(8.79817 - 7.38254i) q^{40} +(3.46354 - 2.90626i) q^{41} +(0.939484 + 1.50999i) q^{42} +(-7.40891 + 2.69662i) q^{43} +(0.774329 + 1.34118i) q^{44} +(-9.19018 - 6.73158i) q^{45} +(1.52878 - 2.64792i) q^{46} +(0.0270638 - 0.153487i) q^{47} +(0.433187 + 2.05756i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(1.67941 + 9.52438i) q^{50} +(-1.36407 + 0.548049i) q^{51} +(4.55008 + 3.81797i) q^{52} +12.6703 q^{53} +(4.80874 - 2.31090i) q^{54} -6.21787 q^{55} +(-2.31697 - 1.94417i) q^{56} +(5.97991 + 4.69069i) q^{57} +(-1.29072 - 7.32003i) q^{58} +(3.14407 + 1.14435i) q^{59} +(5.91222 + 1.93366i) q^{60} +(-1.76396 + 10.0039i) q^{61} +(2.45705 - 4.25574i) q^{62} +(-1.32555 + 2.69127i) q^{63} +(-3.67959 - 6.37324i) q^{64} +(-22.4098 + 8.15649i) q^{65} +(1.37210 - 2.56853i) q^{66} +(-3.56045 + 2.98758i) q^{67} +(0.614908 - 0.515969i) q^{68} +(5.15502 - 0.170025i) q^{69} +(3.66374 - 1.33349i) q^{70} +(-2.71831 - 4.70826i) q^{71} +(-6.55148 + 6.27785i) q^{72} +(0.756070 - 1.30955i) q^{73} +(-1.51564 + 8.59561i) q^{74} +(-12.1453 + 10.8932i) q^{75} +(-3.89970 - 1.41938i) q^{76} +(0.284341 + 1.61258i) q^{77} +(1.57581 - 11.0571i) q^{78} +(-4.73453 - 3.97274i) q^{79} +4.60980 q^{80} +(7.59527 + 4.82824i) q^{81} +4.64231 q^{82} +(1.62520 + 1.36370i) q^{83} +(0.231123 - 1.62174i) q^{84} +(0.559645 + 3.17390i) q^{85} +(-7.60715 - 2.76878i) q^{86} +(9.33434 - 8.37201i) q^{87} +(-0.860016 + 4.87739i) q^{88} +(-0.415312 + 0.719341i) q^{89} +(-2.78570 - 11.3601i) q^{90} +(3.14014 + 5.43889i) q^{91} +(-2.64654 + 0.963260i) q^{92} +(8.28518 - 0.273264i) q^{93} +(0.122586 - 0.102862i) q^{94} +(12.7640 - 10.7102i) q^{95} +(3.91954 - 7.33727i) q^{96} +(-8.94079 + 3.25418i) q^{97} +(-0.513378 - 0.889197i) q^{98} +(4.90169 - 0.323690i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.786541 + 0.659987i 0.556169 + 0.466681i 0.877024 0.480447i \(-0.159526\pi\)
−0.320855 + 0.947128i \(0.603970\pi\)
\(3\) −0.244375 + 1.71472i −0.141090 + 0.989997i
\(4\) −0.164231 0.931402i −0.0821157 0.465701i
\(5\) 3.56827 + 1.29874i 1.59578 + 0.580816i 0.978557 0.205974i \(-0.0660362\pi\)
0.617221 + 0.786790i \(0.288258\pi\)
\(6\) −1.32391 + 1.18742i −0.540483 + 0.484761i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) 1.51229 2.61937i 0.534677 0.926088i
\(9\) −2.88056 0.838073i −0.960187 0.279358i
\(10\) 1.94944 + 3.37653i 0.616466 + 1.06775i
\(11\) −1.53871 + 0.560043i −0.463937 + 0.168859i −0.563404 0.826182i \(-0.690509\pi\)
0.0994668 + 0.995041i \(0.468286\pi\)
\(12\) 1.63723 0.0539997i 0.472628 0.0155884i
\(13\) −4.81098 + 4.03689i −1.33433 + 1.11963i −0.351281 + 0.936270i \(0.614254\pi\)
−0.983045 + 0.183362i \(0.941302\pi\)
\(14\) 0.786541 0.659987i 0.210212 0.176389i
\(15\) −3.09899 + 5.80122i −0.800155 + 1.49787i
\(16\) 1.14077 0.415205i 0.285191 0.103801i
\(17\) 0.424366 + 0.735023i 0.102924 + 0.178269i 0.912888 0.408210i \(-0.133847\pi\)
−0.809964 + 0.586479i \(0.800514\pi\)
\(18\) −1.71256 2.56031i −0.403655 0.603471i
\(19\) 2.19397 3.80006i 0.503330 0.871794i −0.496662 0.867944i \(-0.665441\pi\)
0.999993 0.00384981i \(-0.00122544\pi\)
\(20\) 0.623631 3.53679i 0.139448 0.790850i
\(21\) 1.64624 + 0.538422i 0.359239 + 0.117493i
\(22\) −1.57988 0.575028i −0.336831 0.122596i
\(23\) −0.517102 2.93263i −0.107823 0.611496i −0.990055 0.140681i \(-0.955071\pi\)
0.882232 0.470815i \(-0.156040\pi\)
\(24\) 4.12193 + 3.23328i 0.841386 + 0.659990i
\(25\) 7.21559 + 6.05460i 1.44312 + 1.21092i
\(26\) −6.44833 −1.26462
\(27\) 2.14100 4.73456i 0.412036 0.911167i
\(28\) −0.945770 −0.178734
\(29\) −5.54559 4.65331i −1.02979 0.864097i −0.0389647 0.999241i \(-0.512406\pi\)
−0.990826 + 0.135144i \(0.956850\pi\)
\(30\) −6.26621 + 2.51761i −1.14405 + 0.459650i
\(31\) −0.831089 4.71334i −0.149268 0.846541i −0.963841 0.266479i \(-0.914140\pi\)
0.814573 0.580062i \(-0.196971\pi\)
\(32\) −4.51308 1.64263i −0.797807 0.290378i
\(33\) −0.584298 2.77532i −0.101713 0.483121i
\(34\) −0.151324 + 0.858202i −0.0259519 + 0.147180i
\(35\) 1.89864 3.28853i 0.320928 0.555864i
\(36\) −0.307505 + 2.82060i −0.0512508 + 0.470100i
\(37\) 4.25038 + 7.36187i 0.698758 + 1.21028i 0.968897 + 0.247463i \(0.0795967\pi\)
−0.270140 + 0.962821i \(0.587070\pi\)
\(38\) 4.23363 1.54092i 0.686786 0.249970i
\(39\) −5.74647 9.23603i −0.920172 1.47895i
\(40\) 8.79817 7.38254i 1.39111 1.16728i
\(41\) 3.46354 2.90626i 0.540915 0.453881i −0.330936 0.943653i \(-0.607364\pi\)
0.871851 + 0.489772i \(0.162920\pi\)
\(42\) 0.939484 + 1.50999i 0.144966 + 0.232996i
\(43\) −7.40891 + 2.69662i −1.12985 + 0.411231i −0.838237 0.545306i \(-0.816414\pi\)
−0.291611 + 0.956537i \(0.594191\pi\)
\(44\) 0.774329 + 1.34118i 0.116734 + 0.202190i
\(45\) −9.19018 6.73158i −1.36999 1.00349i
\(46\) 1.52878 2.64792i 0.225406 0.390414i
\(47\) 0.0270638 0.153487i 0.00394767 0.0223883i −0.982770 0.184831i \(-0.940826\pi\)
0.986718 + 0.162443i \(0.0519373\pi\)
\(48\) 0.433187 + 2.05756i 0.0625251 + 0.296984i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) 1.67941 + 9.52438i 0.237504 + 1.34695i
\(51\) −1.36407 + 0.548049i −0.191008 + 0.0767422i
\(52\) 4.55008 + 3.81797i 0.630983 + 0.529458i
\(53\) 12.6703 1.74040 0.870200 0.492699i \(-0.163990\pi\)
0.870200 + 0.492699i \(0.163990\pi\)
\(54\) 4.80874 2.31090i 0.654386 0.314473i
\(55\) −6.21787 −0.838417
\(56\) −2.31697 1.94417i −0.309618 0.259800i
\(57\) 5.97991 + 4.69069i 0.792058 + 0.621297i
\(58\) −1.29072 7.32003i −0.169480 0.961168i
\(59\) 3.14407 + 1.14435i 0.409323 + 0.148981i 0.538471 0.842644i \(-0.319002\pi\)
−0.129148 + 0.991625i \(0.541224\pi\)
\(60\) 5.91222 + 1.93366i 0.763264 + 0.249634i
\(61\) −1.76396 + 10.0039i −0.225852 + 1.28087i 0.635197 + 0.772350i \(0.280919\pi\)
−0.861050 + 0.508521i \(0.830192\pi\)
\(62\) 2.45705 4.25574i 0.312046 0.540480i
\(63\) −1.32555 + 2.69127i −0.167003 + 0.339068i
\(64\) −3.67959 6.37324i −0.459949 0.796655i
\(65\) −22.4098 + 8.15649i −2.77959 + 1.01169i
\(66\) 1.37210 2.56853i 0.168894 0.316164i
\(67\) −3.56045 + 2.98758i −0.434979 + 0.364990i −0.833826 0.552027i \(-0.813855\pi\)
0.398848 + 0.917017i \(0.369410\pi\)
\(68\) 0.614908 0.515969i 0.0745686 0.0625704i
\(69\) 5.15502 0.170025i 0.620592 0.0204686i
\(70\) 3.66374 1.33349i 0.437901 0.159383i
\(71\) −2.71831 4.70826i −0.322604 0.558767i 0.658420 0.752651i \(-0.271225\pi\)
−0.981025 + 0.193883i \(0.937892\pi\)
\(72\) −6.55148 + 6.27785i −0.772100 + 0.739851i
\(73\) 0.756070 1.30955i 0.0884913 0.153271i −0.818382 0.574674i \(-0.805129\pi\)
0.906874 + 0.421403i \(0.138462\pi\)
\(74\) −1.51564 + 8.59561i −0.176189 + 0.999219i
\(75\) −12.1453 + 10.8932i −1.40242 + 1.25783i
\(76\) −3.89970 1.41938i −0.447327 0.162814i
\(77\) 0.284341 + 1.61258i 0.0324037 + 0.183770i
\(78\) 1.57581 11.0571i 0.178426 1.25197i
\(79\) −4.73453 3.97274i −0.532677 0.446969i 0.336348 0.941738i \(-0.390808\pi\)
−0.869024 + 0.494769i \(0.835253\pi\)
\(80\) 4.60980 0.515392
\(81\) 7.59527 + 4.82824i 0.843919 + 0.536471i
\(82\) 4.64231 0.512658
\(83\) 1.62520 + 1.36370i 0.178389 + 0.149686i 0.727610 0.685991i \(-0.240631\pi\)
−0.549221 + 0.835677i \(0.685076\pi\)
\(84\) 0.231123 1.62174i 0.0252176 0.176946i
\(85\) 0.559645 + 3.17390i 0.0607020 + 0.344258i
\(86\) −7.60715 2.76878i −0.820300 0.298565i
\(87\) 9.33434 8.37201i 1.00075 0.897574i
\(88\) −0.860016 + 4.87739i −0.0916780 + 0.519932i
\(89\) −0.415312 + 0.719341i −0.0440229 + 0.0762500i −0.887197 0.461390i \(-0.847351\pi\)
0.843174 + 0.537640i \(0.180684\pi\)
\(90\) −2.78570 11.3601i −0.293639 1.19746i
\(91\) 3.14014 + 5.43889i 0.329177 + 0.570151i
\(92\) −2.64654 + 0.963260i −0.275920 + 0.100427i
\(93\) 8.28518 0.273264i 0.859133 0.0283362i
\(94\) 0.122586 0.102862i 0.0126438 0.0106094i
\(95\) 12.7640 10.7102i 1.30956 1.09885i
\(96\) 3.91954 7.33727i 0.400036 0.748857i
\(97\) −8.94079 + 3.25418i −0.907800 + 0.330412i −0.753374 0.657592i \(-0.771575\pi\)
−0.154426 + 0.988004i \(0.549353\pi\)
\(98\) −0.513378 0.889197i −0.0518591 0.0898225i
\(99\) 4.90169 0.323690i 0.492639 0.0325321i
\(100\) 4.45424 7.71497i 0.445424 0.771497i
\(101\) −1.09098 + 6.18723i −0.108556 + 0.615652i 0.881184 + 0.472773i \(0.156747\pi\)
−0.989740 + 0.142879i \(0.954364\pi\)
\(102\) −1.43460 0.469203i −0.142047 0.0464580i
\(103\) 5.73622 + 2.08781i 0.565207 + 0.205718i 0.608790 0.793331i \(-0.291655\pi\)
−0.0435833 + 0.999050i \(0.513877\pi\)
\(104\) 3.29850 + 18.7067i 0.323444 + 1.83434i
\(105\) 5.17495 + 4.05928i 0.505024 + 0.396145i
\(106\) 9.96571 + 8.36223i 0.967956 + 0.812211i
\(107\) 2.17406 0.210175 0.105087 0.994463i \(-0.466488\pi\)
0.105087 + 0.994463i \(0.466488\pi\)
\(108\) −4.76140 1.21657i −0.458166 0.117065i
\(109\) −3.76714 −0.360827 −0.180413 0.983591i \(-0.557744\pi\)
−0.180413 + 0.983591i \(0.557744\pi\)
\(110\) −4.89061 4.10371i −0.466301 0.391273i
\(111\) −13.6623 + 5.48917i −1.29676 + 0.521009i
\(112\) −0.210805 1.19553i −0.0199192 0.112967i
\(113\) −5.26699 1.91703i −0.495477 0.180339i 0.0821816 0.996617i \(-0.473811\pi\)
−0.577659 + 0.816279i \(0.696033\pi\)
\(114\) 1.60765 + 7.63608i 0.150570 + 0.715184i
\(115\) 1.96358 11.1360i 0.183105 1.03844i
\(116\) −3.42334 + 5.92940i −0.317849 + 0.550531i
\(117\) 17.2415 7.59656i 1.59398 0.702302i
\(118\) 1.71769 + 2.97512i 0.158126 + 0.273882i
\(119\) 0.797547 0.290283i 0.0731110 0.0266102i
\(120\) 10.5090 + 16.8905i 0.959333 + 1.54189i
\(121\) −6.37252 + 5.34718i −0.579320 + 0.486107i
\(122\) −7.98988 + 6.70431i −0.723370 + 0.606979i
\(123\) 4.13703 + 6.64924i 0.373023 + 0.599542i
\(124\) −4.25352 + 1.54816i −0.381978 + 0.139029i
\(125\) 8.39061 + 14.5330i 0.750479 + 1.29987i
\(126\) −2.81880 + 1.24195i −0.251118 + 0.110642i
\(127\) 2.50078 4.33148i 0.221908 0.384356i −0.733479 0.679712i \(-0.762105\pi\)
0.955387 + 0.295356i \(0.0954381\pi\)
\(128\) −0.355866 + 2.01822i −0.0314544 + 0.178387i
\(129\) −2.81341 13.3632i −0.247707 1.17657i
\(130\) −23.0094 8.37473i −2.01806 0.734512i
\(131\) 3.26034 + 18.4903i 0.284858 + 1.61551i 0.705794 + 0.708417i \(0.250591\pi\)
−0.420936 + 0.907090i \(0.638298\pi\)
\(132\) −2.48898 + 1.00001i −0.216638 + 0.0870397i
\(133\) −3.36135 2.82051i −0.291466 0.244569i
\(134\) −4.77220 −0.412256
\(135\) 13.7887 14.1136i 1.18674 1.21470i
\(136\) 2.56707 0.220124
\(137\) 6.28285 + 5.27194i 0.536780 + 0.450412i 0.870435 0.492283i \(-0.163838\pi\)
−0.333655 + 0.942695i \(0.608282\pi\)
\(138\) 4.16685 + 3.26852i 0.354706 + 0.278234i
\(139\) 1.63090 + 9.24931i 0.138331 + 0.784516i 0.972482 + 0.232979i \(0.0748474\pi\)
−0.834150 + 0.551537i \(0.814041\pi\)
\(140\) −3.37476 1.22831i −0.285220 0.103811i
\(141\) 0.256574 + 0.0839154i 0.0216074 + 0.00706695i
\(142\) 0.969320 5.49729i 0.0813436 0.461322i
\(143\) 5.14185 8.90594i 0.429983 0.744753i
\(144\) −3.63402 + 0.239978i −0.302835 + 0.0199981i
\(145\) −13.7447 23.8066i −1.14144 1.97703i
\(146\) 1.45897 0.531020i 0.120745 0.0439475i
\(147\) 0.816108 1.52773i 0.0673115 0.126005i
\(148\) 6.15881 5.16786i 0.506251 0.424795i
\(149\) 5.91863 4.96632i 0.484873 0.406857i −0.367312 0.930098i \(-0.619722\pi\)
0.852185 + 0.523241i \(0.175277\pi\)
\(150\) −16.7421 + 0.552193i −1.36699 + 0.0450864i
\(151\) −13.0432 + 4.74735i −1.06144 + 0.386334i −0.812970 0.582305i \(-0.802151\pi\)
−0.248473 + 0.968639i \(0.579929\pi\)
\(152\) −6.63585 11.4936i −0.538238 0.932256i
\(153\) −0.606409 2.47293i −0.0490252 0.199924i
\(154\) −0.840635 + 1.45602i −0.0677403 + 0.117330i
\(155\) 3.15587 17.8978i 0.253486 1.43759i
\(156\) −7.65870 + 6.86912i −0.613187 + 0.549970i
\(157\) 2.15757 + 0.785291i 0.172193 + 0.0626731i 0.426678 0.904404i \(-0.359684\pi\)
−0.254485 + 0.967077i \(0.581906\pi\)
\(158\) −1.10195 6.24946i −0.0876662 0.497180i
\(159\) −3.09631 + 21.7261i −0.245553 + 1.72299i
\(160\) −13.9705 11.7227i −1.10447 0.926759i
\(161\) −2.97787 −0.234689
\(162\) 2.78742 + 8.81039i 0.219000 + 0.692209i
\(163\) 15.3511 1.20239 0.601196 0.799102i \(-0.294691\pi\)
0.601196 + 0.799102i \(0.294691\pi\)
\(164\) −3.27572 2.74865i −0.255791 0.214634i
\(165\) 1.51949 10.6619i 0.118292 0.830030i
\(166\) 0.378260 + 2.14522i 0.0293587 + 0.166501i
\(167\) 7.28311 + 2.65084i 0.563584 + 0.205128i 0.608072 0.793882i \(-0.291943\pi\)
−0.0444876 + 0.999010i \(0.514166\pi\)
\(168\) 3.89992 3.49786i 0.300886 0.269866i
\(169\) 4.59161 26.0403i 0.353201 2.00310i
\(170\) −1.65455 + 2.86576i −0.126898 + 0.219794i
\(171\) −9.50458 + 9.10760i −0.726834 + 0.696476i
\(172\) 3.72842 + 6.45780i 0.284289 + 0.492403i
\(173\) 23.1418 8.42291i 1.75944 0.640382i 0.759487 0.650522i \(-0.225450\pi\)
0.999949 + 0.0101400i \(0.00322773\pi\)
\(174\) 12.8673 0.424392i 0.975465 0.0321731i
\(175\) 7.21559 6.05460i 0.545447 0.457685i
\(176\) −1.52277 + 1.27776i −0.114783 + 0.0963144i
\(177\) −2.73058 + 5.11157i −0.205243 + 0.384209i
\(178\) −0.801415 + 0.291691i −0.0600686 + 0.0218632i
\(179\) −9.86874 17.0932i −0.737624 1.27760i −0.953562 0.301196i \(-0.902614\pi\)
0.215938 0.976407i \(-0.430719\pi\)
\(180\) −4.76049 + 9.66529i −0.354826 + 0.720408i
\(181\) −9.02723 + 15.6356i −0.670989 + 1.16219i 0.306635 + 0.951827i \(0.400797\pi\)
−0.977624 + 0.210359i \(0.932537\pi\)
\(182\) −1.11974 + 6.35037i −0.0830007 + 0.470720i
\(183\) −16.7229 5.46942i −1.23619 0.404311i
\(184\) −8.46366 3.08052i −0.623950 0.227099i
\(185\) 5.60531 + 31.7893i 0.412110 + 2.33719i
\(186\) 6.69699 + 5.25317i 0.491047 + 0.385181i
\(187\) −1.06462 0.893321i −0.0778526 0.0653261i
\(188\) −0.147402 −0.0107504
\(189\) −4.29085 2.93063i −0.312114 0.213172i
\(190\) 17.1080 1.24114
\(191\) 8.15072 + 6.83926i 0.589765 + 0.494872i 0.888138 0.459578i \(-0.151999\pi\)
−0.298372 + 0.954450i \(0.596444\pi\)
\(192\) 11.8275 4.75202i 0.853580 0.342948i
\(193\) −2.99805 17.0028i −0.215805 1.22389i −0.879505 0.475890i \(-0.842126\pi\)
0.663700 0.747999i \(-0.268985\pi\)
\(194\) −9.18002 3.34125i −0.659087 0.239888i
\(195\) −8.50973 40.4198i −0.609395 2.89452i
\(196\) −0.164231 + 0.931402i −0.0117308 + 0.0665287i
\(197\) −0.358511 + 0.620959i −0.0255428 + 0.0442415i −0.878514 0.477716i \(-0.841465\pi\)
0.852971 + 0.521958i \(0.174798\pi\)
\(198\) 4.06902 + 2.98046i 0.289172 + 0.211812i
\(199\) −2.58197 4.47210i −0.183031 0.317018i 0.759880 0.650063i \(-0.225257\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(200\) 26.7713 9.74397i 1.89302 0.689003i
\(201\) −4.25278 6.83529i −0.299968 0.482124i
\(202\) −4.94159 + 4.14648i −0.347689 + 0.291745i
\(203\) −5.54559 + 4.65331i −0.389224 + 0.326598i
\(204\) 0.734477 + 1.18049i 0.0514236 + 0.0826507i
\(205\) 16.1333 5.87206i 1.12680 0.410122i
\(206\) 3.13385 + 5.42798i 0.218345 + 0.378185i
\(207\) −0.968216 + 8.88100i −0.0672957 + 0.617272i
\(208\) −3.81206 + 6.60269i −0.264319 + 0.457814i
\(209\) −1.24767 + 7.07589i −0.0863032 + 0.489450i
\(210\) 1.39125 + 6.60819i 0.0960051 + 0.456008i
\(211\) 2.23549 + 0.813652i 0.153897 + 0.0560141i 0.417820 0.908530i \(-0.362794\pi\)
−0.263923 + 0.964544i \(0.585016\pi\)
\(212\) −2.08086 11.8011i −0.142914 0.810506i
\(213\) 8.73765 3.51058i 0.598694 0.240541i
\(214\) 1.70999 + 1.43485i 0.116893 + 0.0980845i
\(215\) −29.9392 −2.04184
\(216\) −9.16376 12.7681i −0.623515 0.868762i
\(217\) −4.78605 −0.324898
\(218\) −2.96301 2.48626i −0.200681 0.168391i
\(219\) 2.06075 + 1.61647i 0.139253 + 0.109231i
\(220\) 1.02117 + 5.79134i 0.0688472 + 0.390452i
\(221\) −5.00883 1.82306i −0.336930 0.122633i
\(222\) −14.3687 4.69946i −0.964365 0.315407i
\(223\) −1.63131 + 9.25162i −0.109241 + 0.619535i 0.880201 + 0.474601i \(0.157408\pi\)
−0.989441 + 0.144933i \(0.953703\pi\)
\(224\) −2.40136 + 4.15928i −0.160448 + 0.277903i
\(225\) −15.7107 23.4878i −1.04738 1.56586i
\(226\) −2.87749 4.98397i −0.191408 0.331528i
\(227\) −19.8649 + 7.23025i −1.31848 + 0.479888i −0.902972 0.429700i \(-0.858619\pi\)
−0.415511 + 0.909588i \(0.636397\pi\)
\(228\) 3.38683 6.34006i 0.224298 0.419880i
\(229\) −6.21523 + 5.21520i −0.410714 + 0.344630i −0.824617 0.565691i \(-0.808610\pi\)
0.413903 + 0.910321i \(0.364165\pi\)
\(230\) 8.89405 7.46299i 0.586456 0.492095i
\(231\) −2.83462 + 0.0934922i −0.186504 + 0.00615133i
\(232\) −20.5753 + 7.48880i −1.35084 + 0.491664i
\(233\) −4.51226 7.81546i −0.295608 0.512008i 0.679518 0.733659i \(-0.262189\pi\)
−0.975126 + 0.221651i \(0.928855\pi\)
\(234\) 18.5748 + 5.40417i 1.21427 + 0.353282i
\(235\) 0.295911 0.512533i 0.0193031 0.0334339i
\(236\) 0.549493 3.11633i 0.0357690 0.202856i
\(237\) 7.96917 7.14758i 0.517653 0.464285i
\(238\) 0.818887 + 0.298050i 0.0530806 + 0.0193197i
\(239\) −1.06860 6.06031i −0.0691217 0.392009i −0.999666 0.0258303i \(-0.991777\pi\)
0.930545 0.366179i \(-0.119334\pi\)
\(240\) −1.12652 + 7.90454i −0.0727167 + 0.510236i
\(241\) 13.7022 + 11.4975i 0.882639 + 0.740622i 0.966720 0.255837i \(-0.0823511\pi\)
−0.0840812 + 0.996459i \(0.526796\pi\)
\(242\) −8.54132 −0.549057
\(243\) −10.1352 + 11.8439i −0.650174 + 0.759786i
\(244\) 9.60737 0.615049
\(245\) −2.90888 2.44084i −0.185842 0.155940i
\(246\) −1.13447 + 7.96029i −0.0723310 + 0.507529i
\(247\) 4.78531 + 27.1388i 0.304482 + 1.72680i
\(248\) −13.6028 4.95103i −0.863781 0.314391i
\(249\) −2.73554 + 2.45351i −0.173358 + 0.155485i
\(250\) −2.99200 + 16.9685i −0.189231 + 1.07318i
\(251\) 13.4328 23.2663i 0.847870 1.46855i −0.0352362 0.999379i \(-0.511218\pi\)
0.883106 0.469174i \(-0.155448\pi\)
\(252\) 2.72435 + 0.792625i 0.171618 + 0.0499307i
\(253\) 2.43807 + 4.22286i 0.153280 + 0.265489i
\(254\) 4.82568 1.75640i 0.302790 0.110207i
\(255\) −5.57913 + 0.184013i −0.349379 + 0.0115233i
\(256\) −12.8868 + 10.8133i −0.805426 + 0.675833i
\(257\) 10.8465 9.10130i 0.676587 0.567724i −0.238420 0.971162i \(-0.576630\pi\)
0.915007 + 0.403438i \(0.132185\pi\)
\(258\) 6.60669 12.3675i 0.411314 0.769970i
\(259\) 7.98809 2.90743i 0.496356 0.180659i
\(260\) 11.2774 + 19.5330i 0.699392 + 1.21138i
\(261\) 12.0746 + 18.0517i 0.747400 + 1.11737i
\(262\) −9.63897 + 16.6952i −0.595498 + 1.03143i
\(263\) −1.35568 + 7.68844i −0.0835947 + 0.474089i 0.914056 + 0.405587i \(0.132933\pi\)
−0.997651 + 0.0685019i \(0.978178\pi\)
\(264\) −8.15322 2.66661i −0.501796 0.164118i
\(265\) 45.2110 + 16.4555i 2.77729 + 1.01085i
\(266\) −0.782344 4.43689i −0.0479686 0.272043i
\(267\) −1.13198 0.887934i −0.0692760 0.0543407i
\(268\) 3.36737 + 2.82556i 0.205695 + 0.172599i
\(269\) 6.34578 0.386909 0.193455 0.981109i \(-0.438031\pi\)
0.193455 + 0.981109i \(0.438031\pi\)
\(270\) 20.1601 2.00059i 1.22691 0.121752i
\(271\) 17.3780 1.05564 0.527818 0.849357i \(-0.323010\pi\)
0.527818 + 0.849357i \(0.323010\pi\)
\(272\) 0.789287 + 0.662291i 0.0478576 + 0.0401573i
\(273\) −10.0936 + 4.05535i −0.610891 + 0.245441i
\(274\) 1.46231 + 8.29319i 0.0883416 + 0.501010i
\(275\) −14.4935 5.27520i −0.873991 0.318107i
\(276\) −1.00498 4.77348i −0.0604925 0.287330i
\(277\) −2.28304 + 12.9478i −0.137174 + 0.777955i 0.836146 + 0.548506i \(0.184803\pi\)
−0.973321 + 0.229449i \(0.926308\pi\)
\(278\) −4.82165 + 8.35134i −0.289183 + 0.500880i
\(279\) −1.55612 + 14.2736i −0.0931625 + 0.854537i
\(280\) −5.74260 9.94647i −0.343186 0.594415i
\(281\) −3.20684 + 1.16719i −0.191304 + 0.0696290i −0.435896 0.899997i \(-0.643568\pi\)
0.244592 + 0.969626i \(0.421346\pi\)
\(282\) 0.146423 + 0.235338i 0.00871934 + 0.0140142i
\(283\) −1.24498 + 1.04466i −0.0740063 + 0.0620987i −0.679040 0.734101i \(-0.737604\pi\)
0.605034 + 0.796200i \(0.293159\pi\)
\(284\) −3.93885 + 3.30509i −0.233728 + 0.196121i
\(285\) 15.2459 + 24.5040i 0.903090 + 1.45149i
\(286\) 9.92208 3.61134i 0.586705 0.213543i
\(287\) −2.26067 3.91559i −0.133443 0.231130i
\(288\) 11.6236 + 8.51398i 0.684925 + 0.501691i
\(289\) 8.13983 14.0986i 0.478813 0.829329i
\(290\) 4.90121 27.7962i 0.287809 1.63225i
\(291\) −3.39512 16.1262i −0.199025 0.945337i
\(292\) −1.34389 0.489136i −0.0786451 0.0286245i
\(293\) −1.96516 11.1450i −0.114806 0.651096i −0.986846 0.161662i \(-0.948315\pi\)
0.872041 0.489434i \(-0.162796\pi\)
\(294\) 1.65019 0.663005i 0.0962408 0.0386672i
\(295\) 9.73268 + 8.16669i 0.566658 + 0.475483i
\(296\) 25.7113 1.49444
\(297\) −0.642814 + 8.48415i −0.0372998 + 0.492301i
\(298\) 7.93295 0.459544
\(299\) 14.3265 + 12.0214i 0.828522 + 0.695213i
\(300\) 12.1405 + 9.52314i 0.700934 + 0.549819i
\(301\) 1.36911 + 7.76462i 0.0789143 + 0.447545i
\(302\) −13.3922 4.87437i −0.770636 0.280489i
\(303\) −10.3428 3.38273i −0.594178 0.194333i
\(304\) 0.924998 5.24592i 0.0530523 0.300874i
\(305\) −19.2868 + 33.4058i −1.10436 + 1.91281i
\(306\) 1.15513 2.34528i 0.0660347 0.134071i
\(307\) −0.844810 1.46325i −0.0482158 0.0835123i 0.840910 0.541175i \(-0.182020\pi\)
−0.889126 + 0.457662i \(0.848687\pi\)
\(308\) 1.45526 0.529672i 0.0829213 0.0301809i
\(309\) −4.98182 + 9.32583i −0.283406 + 0.530528i
\(310\) 14.2946 11.9946i 0.811876 0.681245i
\(311\) 12.9294 10.8491i 0.733159 0.615194i −0.197832 0.980236i \(-0.563390\pi\)
0.930991 + 0.365042i \(0.118945\pi\)
\(312\) −32.8829 + 1.08456i −1.86163 + 0.0614009i
\(313\) 28.6924 10.4432i 1.62179 0.590284i 0.638070 0.769978i \(-0.279733\pi\)
0.983723 + 0.179694i \(0.0575106\pi\)
\(314\) 1.17874 + 2.04163i 0.0665199 + 0.115216i
\(315\) −8.22517 + 7.88163i −0.463436 + 0.444080i
\(316\) −2.92266 + 5.06220i −0.164413 + 0.284771i
\(317\) 1.65848 9.40570i 0.0931494 0.528276i −0.902149 0.431424i \(-0.858011\pi\)
0.995299 0.0968526i \(-0.0308775\pi\)
\(318\) −16.7743 + 15.0449i −0.940656 + 0.843678i
\(319\) 11.1391 + 4.05430i 0.623669 + 0.226997i
\(320\) −4.85257 27.5203i −0.271267 1.53843i
\(321\) −0.531288 + 3.72792i −0.0296536 + 0.208072i
\(322\) −2.34222 1.96536i −0.130527 0.109525i
\(323\) 3.72418 0.207219
\(324\) 3.24965 7.86720i 0.180536 0.437066i
\(325\) −59.1558 −3.28137
\(326\) 12.0743 + 10.1315i 0.668732 + 0.561133i
\(327\) 0.920597 6.45961i 0.0509091 0.357217i
\(328\) −2.37467 13.4674i −0.131119 0.743614i
\(329\) −0.146455 0.0533053i −0.00807434 0.00293882i
\(330\) 8.23188 7.38320i 0.453150 0.406432i
\(331\) 3.29017 18.6595i 0.180844 1.02562i −0.750336 0.661057i \(-0.770108\pi\)
0.931180 0.364560i \(-0.118781\pi\)
\(332\) 1.00325 1.73768i 0.0550604 0.0953674i
\(333\) −6.07369 24.7684i −0.332836 1.35730i
\(334\) 3.97895 + 6.89175i 0.217719 + 0.377100i
\(335\) −16.5848 + 6.03636i −0.906122 + 0.329801i
\(336\) 2.10153 0.0693132i 0.114648 0.00378135i
\(337\) 8.81703 7.39837i 0.480294 0.403015i −0.370238 0.928937i \(-0.620724\pi\)
0.850533 + 0.525922i \(0.176280\pi\)
\(338\) 20.7978 17.4514i 1.13125 0.949231i
\(339\) 4.57430 8.56297i 0.248442 0.465076i
\(340\) 2.86427 1.04251i 0.155337 0.0565380i
\(341\) 3.91847 + 6.78700i 0.212197 + 0.367536i
\(342\) −13.4866 + 0.890610i −0.729274 + 0.0481587i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −4.14100 + 23.4848i −0.223268 + 1.26621i
\(345\) 18.6153 + 6.08836i 1.00222 + 0.327786i
\(346\) 23.7610 + 8.64828i 1.27740 + 0.464935i
\(347\) −0.113298 0.642546i −0.00608217 0.0344937i 0.981616 0.190868i \(-0.0611304\pi\)
−0.987698 + 0.156375i \(0.950019\pi\)
\(348\) −9.33070 7.31908i −0.500178 0.392344i
\(349\) −27.8354 23.3566i −1.48999 1.25025i −0.894640 0.446788i \(-0.852568\pi\)
−0.595353 0.803464i \(-0.702988\pi\)
\(350\) 9.67131 0.516953
\(351\) 8.81260 + 31.4209i 0.470382 + 1.67712i
\(352\) 7.86424 0.419166
\(353\) 1.15497 + 0.969131i 0.0614726 + 0.0515817i 0.673006 0.739637i \(-0.265003\pi\)
−0.611534 + 0.791218i \(0.709447\pi\)
\(354\) −5.52128 + 2.21831i −0.293453 + 0.117902i
\(355\) −3.58485 20.3307i −0.190264 1.07904i
\(356\) 0.738202 + 0.268684i 0.0391247 + 0.0142402i
\(357\) 0.302855 + 1.43851i 0.0160288 + 0.0761341i
\(358\) 3.51908 19.9577i 0.185989 1.05480i
\(359\) −18.6210 + 32.2526i −0.982781 + 1.70223i −0.331372 + 0.943500i \(0.607511\pi\)
−0.651409 + 0.758727i \(0.725822\pi\)
\(360\) −31.5308 + 13.8923i −1.66182 + 0.732191i
\(361\) −0.126974 0.219925i −0.00668284 0.0115750i
\(362\) −17.4196 + 6.34021i −0.915553 + 0.333234i
\(363\) −7.61166 12.2338i −0.399508 0.642110i
\(364\) 4.55008 3.81797i 0.238489 0.200116i
\(365\) 4.39863 3.69089i 0.230235 0.193190i
\(366\) −9.54351 15.3388i −0.498847 0.801773i
\(367\) −31.7489 + 11.5556i −1.65728 + 0.603200i −0.989931 0.141549i \(-0.954792\pi\)
−0.667346 + 0.744748i \(0.732570\pi\)
\(368\) −1.80754 3.13074i −0.0942243 0.163201i
\(369\) −12.4126 + 5.46895i −0.646175 + 0.284702i
\(370\) −16.5717 + 28.7030i −0.861521 + 1.49220i
\(371\) 2.20017 12.4778i 0.114227 0.647816i
\(372\) −1.61520 7.67195i −0.0837444 0.397772i
\(373\) −4.52370 1.64649i −0.234228 0.0852522i 0.222239 0.974992i \(-0.428663\pi\)
−0.456468 + 0.889740i \(0.650886\pi\)
\(374\) −0.247787 1.40527i −0.0128127 0.0726647i
\(375\) −26.9705 + 10.8361i −1.39275 + 0.559573i
\(376\) −0.361110 0.303007i −0.0186228 0.0156264i
\(377\) 45.4646 2.34155
\(378\) −1.44076 5.13696i −0.0741048 0.264217i
\(379\) −25.8902 −1.32989 −0.664946 0.746892i \(-0.731545\pi\)
−0.664946 + 0.746892i \(0.731545\pi\)
\(380\) −12.0718 10.1294i −0.619269 0.519629i
\(381\) 6.81616 + 5.34665i 0.349202 + 0.273917i
\(382\) 1.89705 + 10.7587i 0.0970617 + 0.550464i
\(383\) −19.1495 6.96983i −0.978491 0.356142i −0.197238 0.980356i \(-0.563197\pi\)
−0.781253 + 0.624214i \(0.785419\pi\)
\(384\) −3.37372 1.10342i −0.172165 0.0563084i
\(385\) −1.07972 + 6.12340i −0.0550277 + 0.312078i
\(386\) 8.86353 15.3521i 0.451142 0.781400i
\(387\) 23.6018 1.55858i 1.19975 0.0792270i
\(388\) 4.49931 + 7.79303i 0.228418 + 0.395631i
\(389\) 5.24106 1.90759i 0.265732 0.0967186i −0.205718 0.978611i \(-0.565953\pi\)
0.471450 + 0.881893i \(0.343731\pi\)
\(390\) 19.9833 37.4082i 1.01189 1.89424i
\(391\) 1.93611 1.62459i 0.0979134 0.0821591i
\(392\) −2.31697 + 1.94417i −0.117025 + 0.0981954i
\(393\) −32.5026 + 1.07201i −1.63954 + 0.0540757i
\(394\) −0.691808 + 0.251798i −0.0348528 + 0.0126854i
\(395\) −11.7345 20.3248i −0.590427 1.02265i
\(396\) −1.10650 4.51229i −0.0556036 0.226751i
\(397\) −6.96118 + 12.0571i −0.349371 + 0.605129i −0.986138 0.165928i \(-0.946938\pi\)
0.636766 + 0.771057i \(0.280272\pi\)
\(398\) 0.920700 5.22155i 0.0461505 0.261733i
\(399\) 5.65783 5.07453i 0.283246 0.254044i
\(400\) 10.7452 + 3.91093i 0.537260 + 0.195547i
\(401\) 0.134854 + 0.764794i 0.00673428 + 0.0381920i 0.987990 0.154520i \(-0.0493830\pi\)
−0.981255 + 0.192712i \(0.938272\pi\)
\(402\) 1.16621 8.18302i 0.0581652 0.408132i
\(403\) 23.0256 + 19.3208i 1.14699 + 0.962436i
\(404\) 5.94197 0.295624
\(405\) 20.8313 + 27.0928i 1.03512 + 1.34625i
\(406\) −7.43296 −0.368891
\(407\) −10.6630 8.94735i −0.528547 0.443504i
\(408\) −0.627328 + 4.40181i −0.0310574 + 0.217922i
\(409\) −2.69427 15.2800i −0.133223 0.755546i −0.976081 0.217409i \(-0.930239\pi\)
0.842857 0.538137i \(-0.180872\pi\)
\(410\) 16.5650 + 6.02917i 0.818088 + 0.297760i
\(411\) −10.5753 + 9.48503i −0.521641 + 0.467862i
\(412\) 1.00253 5.68561i 0.0493910 0.280110i
\(413\) 1.67293 2.89759i 0.0823193 0.142581i
\(414\) −6.62288 + 6.34626i −0.325497 + 0.311902i
\(415\) 4.02805 + 6.97678i 0.197729 + 0.342477i
\(416\) 28.3435 10.3162i 1.38965 0.505792i
\(417\) −16.2586 + 0.536245i −0.796186 + 0.0262600i
\(418\) −5.65134 + 4.74203i −0.276416 + 0.231940i
\(419\) −8.84945 + 7.42557i −0.432324 + 0.362763i −0.832828 0.553532i \(-0.813280\pi\)
0.400504 + 0.916295i \(0.368835\pi\)
\(420\) 2.93093 5.48662i 0.143015 0.267720i
\(421\) 25.5735 9.30801i 1.24638 0.453645i 0.367202 0.930141i \(-0.380316\pi\)
0.879176 + 0.476497i \(0.158094\pi\)
\(422\) 1.22131 + 2.11536i 0.0594522 + 0.102974i
\(423\) −0.206592 + 0.419446i −0.0100448 + 0.0203942i
\(424\) 19.1612 33.1882i 0.930552 1.61176i
\(425\) −1.38822 + 7.87299i −0.0673386 + 0.381896i
\(426\) 9.18946 + 3.00552i 0.445231 + 0.145618i
\(427\) 9.54563 + 3.47433i 0.461945 + 0.168134i
\(428\) −0.357049 2.02493i −0.0172586 0.0978786i
\(429\) 14.0147 + 10.9933i 0.676636 + 0.530759i
\(430\) −23.5484 19.7595i −1.13561 0.952887i
\(431\) −37.5351 −1.80800 −0.904001 0.427531i \(-0.859383\pi\)
−0.904001 + 0.427531i \(0.859383\pi\)
\(432\) 0.476569 6.28998i 0.0229289 0.302627i
\(433\) −32.9932 −1.58555 −0.792777 0.609512i \(-0.791366\pi\)
−0.792777 + 0.609512i \(0.791366\pi\)
\(434\) −3.76443 3.15873i −0.180698 0.151624i
\(435\) 44.1806 17.7507i 2.11830 0.851080i
\(436\) 0.618683 + 3.50872i 0.0296295 + 0.168037i
\(437\) −12.2787 4.46908i −0.587369 0.213785i
\(438\) 0.554018 + 2.63149i 0.0264720 + 0.125738i
\(439\) −0.424336 + 2.40653i −0.0202525 + 0.114857i −0.993258 0.115924i \(-0.963017\pi\)
0.973006 + 0.230781i \(0.0741282\pi\)
\(440\) −9.40325 + 16.2869i −0.448282 + 0.776448i
\(441\) 2.42020 + 1.77274i 0.115248 + 0.0844162i
\(442\) −2.73645 4.73967i −0.130160 0.225443i
\(443\) 26.2421 9.55136i 1.24680 0.453799i 0.367482 0.930031i \(-0.380220\pi\)
0.879320 + 0.476232i \(0.157998\pi\)
\(444\) 7.35639 + 11.8236i 0.349119 + 0.561122i
\(445\) −2.41618 + 2.02742i −0.114538 + 0.0961088i
\(446\) −7.38904 + 6.20014i −0.349881 + 0.293585i
\(447\) 7.06951 + 11.3625i 0.334376 + 0.537426i
\(448\) −6.91537 + 2.51699i −0.326720 + 0.118917i
\(449\) 7.90135 + 13.6855i 0.372888 + 0.645861i 0.990008 0.141008i \(-0.0450343\pi\)
−0.617121 + 0.786869i \(0.711701\pi\)
\(450\) 3.14450 28.8430i 0.148233 1.35967i
\(451\) −3.70174 + 6.41161i −0.174308 + 0.301911i
\(452\) −0.920519 + 5.22052i −0.0432976 + 0.245553i
\(453\) −4.95295 23.5257i −0.232710 1.10533i
\(454\) −20.3965 7.42371i −0.957254 0.348412i
\(455\) 4.14116 + 23.4857i 0.194140 + 1.10103i
\(456\) 21.3300 8.56989i 0.998871 0.401322i
\(457\) −29.9480 25.1293i −1.40091 1.17550i −0.960695 0.277606i \(-0.910459\pi\)
−0.440212 0.897894i \(-0.645097\pi\)
\(458\) −8.33050 −0.389259
\(459\) 4.38858 0.435501i 0.204842 0.0203274i
\(460\) −10.6946 −0.498637
\(461\) −15.2551 12.8006i −0.710503 0.596183i 0.214237 0.976782i \(-0.431273\pi\)
−0.924740 + 0.380599i \(0.875718\pi\)
\(462\) −2.29125 1.79727i −0.106598 0.0836167i
\(463\) 2.87004 + 16.2768i 0.133382 + 0.756447i 0.975973 + 0.217893i \(0.0699183\pi\)
−0.842591 + 0.538554i \(0.818971\pi\)
\(464\) −8.25830 3.00577i −0.383382 0.139540i
\(465\) 29.9186 + 9.78524i 1.38744 + 0.453780i
\(466\) 1.60902 9.12521i 0.0745365 0.422717i
\(467\) 15.1595 26.2570i 0.701497 1.21503i −0.266444 0.963850i \(-0.585849\pi\)
0.967941 0.251178i \(-0.0808180\pi\)
\(468\) −9.90705 14.8112i −0.457954 0.684648i
\(469\) 2.32392 + 4.02515i 0.107309 + 0.185864i
\(470\) 0.571011 0.207831i 0.0263388 0.00958653i
\(471\) −1.87382 + 3.50773i −0.0863408 + 0.161628i
\(472\) 7.75224 6.50490i 0.356826 0.299412i
\(473\) 9.88991 8.29862i 0.454738 0.381571i
\(474\) 10.9854 0.362323i 0.504575 0.0166421i
\(475\) 38.8386 14.1361i 1.78204 0.648608i
\(476\) −0.401353 0.695163i −0.0183960 0.0318628i
\(477\) −36.4976 10.6186i −1.67111 0.486194i
\(478\) 3.15923 5.47194i 0.144500 0.250281i
\(479\) 2.92440 16.5851i 0.133619 0.757792i −0.842192 0.539177i \(-0.818735\pi\)
0.975811 0.218614i \(-0.0701536\pi\)
\(480\) 23.5152 21.0909i 1.07332 0.962663i
\(481\) −50.1676 18.2595i −2.28744 0.832561i
\(482\) 3.18915 + 18.0866i 0.145262 + 0.823821i
\(483\) 0.727719 5.10623i 0.0331124 0.232342i
\(484\) 6.02694 + 5.05721i 0.273952 + 0.229873i
\(485\) −36.1295 −1.64056
\(486\) −15.7886 + 2.62661i −0.716184 + 0.119145i
\(487\) 16.6758 0.755654 0.377827 0.925876i \(-0.376671\pi\)
0.377827 + 0.925876i \(0.376671\pi\)
\(488\) 23.5364 + 19.7493i 1.06544 + 0.894011i
\(489\) −3.75143 + 26.3229i −0.169646 + 1.19036i
\(490\) −0.677033 3.83964i −0.0305852 0.173457i
\(491\) 8.19449 + 2.98255i 0.369812 + 0.134601i 0.520240 0.854020i \(-0.325843\pi\)
−0.150427 + 0.988621i \(0.548065\pi\)
\(492\) 5.51369 4.94525i 0.248576 0.222949i
\(493\) 1.06693 6.05084i 0.0480520 0.272516i
\(494\) −14.1474 + 24.5040i −0.636522 + 1.10249i
\(495\) 17.9109 + 5.21103i 0.805037 + 0.234218i
\(496\) −2.90508 5.03174i −0.130442 0.225932i
\(497\) −5.10876 + 1.85944i −0.229159 + 0.0834071i
\(498\) −3.77090 + 0.124373i −0.168978 + 0.00557328i
\(499\) −0.910677 + 0.764149i −0.0407675 + 0.0342080i −0.662944 0.748669i \(-0.730693\pi\)
0.622176 + 0.782877i \(0.286249\pi\)
\(500\) 12.1580 10.2018i 0.543724 0.456238i
\(501\) −6.32527 + 11.8407i −0.282592 + 0.529005i
\(502\) 25.9209 9.43442i 1.15690 0.421079i
\(503\) 9.32422 + 16.1500i 0.415747 + 0.720094i 0.995507 0.0946931i \(-0.0301870\pi\)
−0.579760 + 0.814787i \(0.696854\pi\)
\(504\) 5.04482 + 7.54209i 0.224714 + 0.335951i
\(505\) −11.9285 + 20.6608i −0.530812 + 0.919394i
\(506\) −0.869388 + 4.93054i −0.0386490 + 0.219189i
\(507\) 43.5299 + 14.2370i 1.93323 + 0.632286i
\(508\) −4.44505 1.61787i −0.197217 0.0717812i
\(509\) 0.201799 + 1.14446i 0.00894457 + 0.0507272i 0.988953 0.148227i \(-0.0473566\pi\)
−0.980009 + 0.198954i \(0.936246\pi\)
\(510\) −4.50967 3.53742i −0.199691 0.156640i
\(511\) −1.15837 0.971984i −0.0512431 0.0429981i
\(512\) −13.1740 −0.582212
\(513\) −13.2943 18.5234i −0.586960 0.817829i
\(514\) 14.5380 0.641242
\(515\) 17.7569 + 14.8998i 0.782460 + 0.656562i
\(516\) −11.9845 + 4.81508i −0.527588 + 0.211972i
\(517\) 0.0443158 + 0.251328i 0.00194901 + 0.0110534i
\(518\) 8.20183 + 2.98522i 0.360368 + 0.131163i
\(519\) 8.78770 + 41.7401i 0.385737 + 1.83219i
\(520\) −12.5253 + 71.0345i −0.549271 + 3.11507i
\(521\) −9.77759 + 16.9353i −0.428364 + 0.741949i −0.996728 0.0808288i \(-0.974243\pi\)
0.568364 + 0.822777i \(0.307577\pi\)
\(522\) −2.41673 + 22.1675i −0.105777 + 0.970246i
\(523\) 16.4835 + 28.5503i 0.720775 + 1.24842i 0.960689 + 0.277625i \(0.0895473\pi\)
−0.239914 + 0.970794i \(0.577119\pi\)
\(524\) 16.6865 6.07338i 0.728952 0.265317i
\(525\) 8.61866 + 13.8523i 0.376149 + 0.604566i
\(526\) −6.14056 + 5.15254i −0.267741 + 0.224662i
\(527\) 3.11173 2.61105i 0.135549 0.113739i
\(528\) −1.81887 2.92338i −0.0791562 0.127224i
\(529\) 13.2800 4.83352i 0.577391 0.210153i
\(530\) 24.7000 + 42.7816i 1.07290 + 1.85831i
\(531\) −8.09764 5.93133i −0.351408 0.257398i
\(532\) −2.07499 + 3.59399i −0.0899621 + 0.155819i
\(533\) −4.93079 + 27.9639i −0.213576 + 1.21125i
\(534\) −0.304324 1.44549i −0.0131694 0.0625524i
\(535\) 7.75765 + 2.82355i 0.335392 + 0.122073i
\(536\) 2.44111 + 13.8442i 0.105440 + 0.597980i
\(537\) 31.7217 12.7450i 1.36889 0.549988i
\(538\) 4.99122 + 4.18813i 0.215187 + 0.180563i
\(539\) 1.63746 0.0705302
\(540\) −15.4100 10.5249i −0.663139 0.452919i
\(541\) −22.5335 −0.968792 −0.484396 0.874849i \(-0.660961\pi\)
−0.484396 + 0.874849i \(0.660961\pi\)
\(542\) 13.6685 + 11.4692i 0.587112 + 0.492646i
\(543\) −24.6047 19.3002i −1.05589 0.828250i
\(544\) −0.707828 4.01429i −0.0303479 0.172111i
\(545\) −13.4422 4.89255i −0.575800 0.209574i
\(546\) −10.6155 3.47192i −0.454301 0.148584i
\(547\) 7.32502 41.5423i 0.313195 1.77622i −0.268970 0.963149i \(-0.586683\pi\)
0.582165 0.813070i \(-0.302206\pi\)
\(548\) 3.87845 6.71768i 0.165679 0.286965i
\(549\) 13.4652 27.3386i 0.574681 1.16678i
\(550\) −7.91817 13.7147i −0.337632 0.584796i
\(551\) −29.8497 + 10.8644i −1.27164 + 0.462839i
\(552\) 7.35056 13.7601i 0.312861 0.585667i
\(553\) −4.73453 + 3.97274i −0.201333 + 0.168938i
\(554\) −10.3410 + 8.67717i −0.439349 + 0.368657i
\(555\) −55.8797 + 1.84304i −2.37196 + 0.0782327i
\(556\) 8.34698 3.03805i 0.353991 0.128842i
\(557\) −5.00101 8.66200i −0.211900 0.367021i 0.740409 0.672156i \(-0.234632\pi\)
−0.952309 + 0.305135i \(0.901298\pi\)
\(558\) −10.6443 + 10.1997i −0.450610 + 0.431789i
\(559\) 24.7582 42.8824i 1.04716 1.81373i
\(560\) 0.800484 4.53977i 0.0338266 0.191840i
\(561\) 1.79197 1.60722i 0.0756569 0.0678570i
\(562\) −3.29265 1.19843i −0.138892 0.0505525i
\(563\) −1.92456 10.9147i −0.0811104 0.460000i −0.998128 0.0611539i \(-0.980522\pi\)
0.917018 0.398846i \(-0.130589\pi\)
\(564\) 0.0360215 0.252755i 0.00151678 0.0106429i
\(565\) −16.3043 13.6809i −0.685928 0.575562i
\(566\) −1.66869 −0.0701402
\(567\) 6.07379 6.64146i 0.255075 0.278915i
\(568\) −16.4436 −0.689957
\(569\) 4.51145 + 3.78556i 0.189130 + 0.158699i 0.732436 0.680836i \(-0.238383\pi\)
−0.543306 + 0.839535i \(0.682828\pi\)
\(570\) −4.18078 + 29.3355i −0.175113 + 1.22873i
\(571\) −3.77217 21.3930i −0.157860 0.895270i −0.956124 0.292962i \(-0.905359\pi\)
0.798264 0.602308i \(-0.205752\pi\)
\(572\) −9.13947 3.32649i −0.382140 0.139088i
\(573\) −13.7193 + 12.3049i −0.573132 + 0.514044i
\(574\) 0.806129 4.57178i 0.0336472 0.190823i
\(575\) 14.0247 24.2915i 0.584871 1.01303i
\(576\) 5.25805 + 21.4423i 0.219085 + 0.893428i
\(577\) −4.78131 8.28148i −0.199049 0.344762i 0.749172 0.662376i \(-0.230452\pi\)
−0.948220 + 0.317614i \(0.897119\pi\)
\(578\) 15.7072 5.71695i 0.653333 0.237794i
\(579\) 29.8878 0.985768i 1.24209 0.0409671i
\(580\) −19.9162 + 16.7116i −0.826973 + 0.693913i
\(581\) 1.62520 1.36370i 0.0674246 0.0565760i
\(582\) 7.97270 14.9247i 0.330479 0.618648i
\(583\) −19.4959 + 7.09591i −0.807436 + 0.293883i
\(584\) −2.28680 3.96085i −0.0946285 0.163901i
\(585\) 71.3884 4.71424i 2.95155 0.194910i
\(586\) 5.80985 10.0629i 0.240003 0.415697i
\(587\) −0.579987 + 3.28927i −0.0239386 + 0.135763i −0.994435 0.105354i \(-0.966402\pi\)
0.970496 + 0.241117i \(0.0775136\pi\)
\(588\) −1.55696 0.509223i −0.0642081 0.0210000i
\(589\) −19.7344 7.18272i −0.813140 0.295959i
\(590\) 2.26525 + 12.8469i 0.0932589 + 0.528897i
\(591\) −0.977163 0.766495i −0.0401951 0.0315294i
\(592\) 7.90537 + 6.63339i 0.324909 + 0.272631i
\(593\) −24.3048 −0.998080 −0.499040 0.866579i \(-0.666314\pi\)
−0.499040 + 0.866579i \(0.666314\pi\)
\(594\) −6.10503 + 6.24889i −0.250492 + 0.256395i
\(595\) 3.22287 0.132125
\(596\) −5.59767 4.69700i −0.229289 0.192397i
\(597\) 8.29938 3.33449i 0.339671 0.136472i
\(598\) 3.33445 + 18.9106i 0.136356 + 0.773311i
\(599\) −22.8148 8.30390i −0.932187 0.339288i −0.169111 0.985597i \(-0.554090\pi\)
−0.763076 + 0.646309i \(0.776312\pi\)
\(600\) 10.1660 + 48.2867i 0.415024 + 1.97129i
\(601\) 2.79563 15.8548i 0.114036 0.646730i −0.873187 0.487385i \(-0.837951\pi\)
0.987223 0.159345i \(-0.0509382\pi\)
\(602\) −4.04768 + 7.01079i −0.164971 + 0.285738i
\(603\) 12.7599 5.62197i 0.519624 0.228944i
\(604\) 6.56380 + 11.3688i 0.267077 + 0.462591i
\(605\) −29.6835 + 10.8039i −1.20681 + 0.439241i
\(606\) −5.90247 9.48676i −0.239772 0.385373i
\(607\) 7.84648 6.58398i 0.318479 0.267236i −0.469507 0.882929i \(-0.655568\pi\)
0.787986 + 0.615693i \(0.211124\pi\)
\(608\) −16.1436 + 13.5461i −0.654711 + 0.549367i
\(609\) −6.62393 10.6463i −0.268415 0.431411i
\(610\) −37.2172 + 13.5460i −1.50688 + 0.548460i
\(611\) 0.489405 + 0.847675i 0.0197992 + 0.0342933i
\(612\) −2.20370 + 0.970943i −0.0890793 + 0.0392480i
\(613\) 15.3227 26.5396i 0.618876 1.07192i −0.370815 0.928707i \(-0.620922\pi\)
0.989691 0.143218i \(-0.0457450\pi\)
\(614\) 0.301250 1.70847i 0.0121575 0.0689483i
\(615\) 6.12637 + 29.0992i 0.247039 + 1.17339i
\(616\) 4.65395 + 1.69390i 0.187513 + 0.0682492i
\(617\) 2.48396 + 14.0872i 0.100000 + 0.567131i 0.993100 + 0.117271i \(0.0374148\pi\)
−0.893099 + 0.449859i \(0.851474\pi\)
\(618\) −10.0733 + 4.04722i −0.405209 + 0.162803i
\(619\) −7.70903 6.46864i −0.309852 0.259997i 0.474579 0.880213i \(-0.342600\pi\)
−0.784431 + 0.620216i \(0.787045\pi\)
\(620\) −17.1884 −0.690302
\(621\) −14.9919 3.83052i −0.601602 0.153714i
\(622\) 17.3297 0.694860
\(623\) 0.636294 + 0.533914i 0.0254926 + 0.0213908i
\(624\) −10.3902 8.15018i −0.415942 0.326268i
\(625\) 2.88715 + 16.3739i 0.115486 + 0.654955i
\(626\) 29.4602 + 10.7226i 1.17747 + 0.428562i
\(627\) −11.8283 3.86858i −0.472377 0.154496i
\(628\) 0.377081 2.13853i 0.0150472 0.0853368i
\(629\) −3.60743 + 6.24825i −0.143838 + 0.249134i
\(630\) −11.6712 + 0.770725i −0.464992 + 0.0307064i
\(631\) 20.1736 + 34.9417i 0.803099 + 1.39101i 0.917567 + 0.397581i \(0.130150\pi\)
−0.114468 + 0.993427i \(0.536516\pi\)
\(632\) −17.5661 + 6.39354i −0.698742 + 0.254321i
\(633\) −1.94149 + 3.63441i −0.0771672 + 0.144455i
\(634\) 7.51209 6.30340i 0.298343 0.250340i
\(635\) 14.5489 12.2080i 0.577357 0.484460i
\(636\) 20.7442 0.684192i 0.822562 0.0271300i
\(637\) 5.90154 2.14799i 0.233828 0.0851063i
\(638\) 6.08557 + 10.5405i 0.240930 + 0.417303i
\(639\) 3.88440 + 15.8406i 0.153665 + 0.626643i
\(640\) −3.89097 + 6.73936i −0.153804 + 0.266397i
\(641\) 3.74680 21.2491i 0.147990 0.839291i −0.816928 0.576739i \(-0.804325\pi\)
0.964918 0.262552i \(-0.0845640\pi\)
\(642\) −2.87826 + 2.58152i −0.113596 + 0.101885i
\(643\) 26.3560 + 9.59278i 1.03938 + 0.378302i 0.804644 0.593757i \(-0.202356\pi\)
0.234733 + 0.972060i \(0.424578\pi\)
\(644\) 0.489060 + 2.77360i 0.0192717 + 0.109295i
\(645\) 7.31641 51.3375i 0.288083 2.02141i
\(646\) 2.92922 + 2.45791i 0.115249 + 0.0967051i
\(647\) 34.8829 1.37139 0.685695 0.727889i \(-0.259499\pi\)
0.685695 + 0.727889i \(0.259499\pi\)
\(648\) 24.1332 12.5931i 0.948043 0.494704i
\(649\) −5.47868 −0.215057
\(650\) −46.5285 39.0420i −1.82500 1.53136i
\(651\) 1.16959 8.20676i 0.0458400 0.321648i
\(652\) −2.52113 14.2980i −0.0987351 0.559955i
\(653\) 40.3590 + 14.6895i 1.57937 + 0.574844i 0.975067 0.221910i \(-0.0712291\pi\)
0.604304 + 0.796754i \(0.293451\pi\)
\(654\) 4.98734 4.47317i 0.195021 0.174915i
\(655\) −12.3804 + 70.2128i −0.483743 + 2.74344i
\(656\) 2.74440 4.75344i 0.107151 0.185591i
\(657\) −3.27540 + 3.13860i −0.127786 + 0.122448i
\(658\) −0.0800123 0.138585i −0.00311920 0.00540262i
\(659\) −2.84942 + 1.03711i −0.110998 + 0.0403999i −0.396922 0.917852i \(-0.629922\pi\)
0.285924 + 0.958252i \(0.407699\pi\)
\(660\) −10.1801 + 0.335763i −0.396260 + 0.0130696i
\(661\) 17.7441 14.8890i 0.690164 0.579116i −0.228793 0.973475i \(-0.573478\pi\)
0.918956 + 0.394359i \(0.129033\pi\)
\(662\) 14.9029 12.5050i 0.579216 0.486020i
\(663\) 4.35009 8.14325i 0.168943 0.316257i
\(664\) 6.02983 2.19468i 0.234003 0.0851701i
\(665\) −8.33109 14.4299i −0.323066 0.559566i
\(666\) 11.5696 23.4900i 0.448314 0.910217i
\(667\) −10.7788 + 18.6694i −0.417357 + 0.722883i
\(668\) 1.27288 7.21886i 0.0492492 0.279306i
\(669\) −15.4653 5.05812i −0.597924 0.195558i
\(670\) −17.0285 6.19787i −0.657869 0.239445i
\(671\) −2.88841 16.3810i −0.111506 0.632381i
\(672\) −6.54518 5.13410i −0.252486 0.198052i
\(673\) −18.0612 15.1551i −0.696208 0.584188i 0.224484 0.974478i \(-0.427930\pi\)
−0.920692 + 0.390290i \(0.872375\pi\)
\(674\) 11.8178 0.455204
\(675\) 44.1145 21.1998i 1.69797 0.815979i
\(676\) −25.0081 −0.961850
\(677\) 9.98972 + 8.38237i 0.383936 + 0.322161i 0.814245 0.580521i \(-0.197151\pi\)
−0.430309 + 0.902682i \(0.641595\pi\)
\(678\) 9.24932 3.71615i 0.355218 0.142718i
\(679\) 1.65219 + 9.37004i 0.0634053 + 0.359589i
\(680\) 9.15998 + 3.33396i 0.351269 + 0.127852i
\(681\) −7.54338 35.8298i −0.289063 1.37300i
\(682\) −1.39728 + 7.92439i −0.0535048 + 0.303441i
\(683\) 11.2143 19.4238i 0.429104 0.743230i −0.567690 0.823242i \(-0.692163\pi\)
0.996794 + 0.0800127i \(0.0254961\pi\)
\(684\) 10.0438 + 7.35683i 0.384034 + 0.281296i
\(685\) 15.5720 + 26.9715i 0.594976 + 1.03053i
\(686\) −0.964836 + 0.351172i −0.0368376 + 0.0134078i
\(687\) −7.42378 11.9319i −0.283235 0.455230i
\(688\) −7.33218 + 6.15243i −0.279537 + 0.234559i
\(689\) −60.9566 + 51.1486i −2.32226 + 1.94861i
\(690\) 10.6235 + 17.0746i 0.404429 + 0.650020i
\(691\) −15.4584 + 5.62641i −0.588067 + 0.214039i −0.618879 0.785486i \(-0.712413\pi\)
0.0308123 + 0.999525i \(0.490191\pi\)
\(692\) −11.6457 20.1710i −0.442704 0.766786i
\(693\) 0.532397 4.88343i 0.0202241 0.185506i
\(694\) 0.334958 0.580164i 0.0127148 0.0220227i
\(695\) −6.19298 + 35.1222i −0.234913 + 1.33226i
\(696\) −7.81313 37.1111i −0.296156 1.40669i
\(697\) 3.60598 + 1.31247i 0.136586 + 0.0497133i
\(698\) −6.47859 36.7419i −0.245218 1.39070i
\(699\) 14.5040 5.82737i 0.548593 0.220411i
\(700\) −6.82429 5.72626i −0.257934 0.216432i
\(701\) 22.8729 0.863899 0.431949 0.901898i \(-0.357826\pi\)
0.431949 + 0.901898i \(0.357826\pi\)
\(702\) −13.8059 + 30.5300i −0.521070 + 1.15228i
\(703\) 37.3007 1.40682
\(704\) 9.23109 + 7.74581i 0.347910 + 0.291931i
\(705\) 0.806539 + 0.632656i 0.0303760 + 0.0238272i
\(706\) 0.268815 + 1.52452i 0.0101170 + 0.0573762i
\(707\) 5.90378 + 2.14880i 0.222035 + 0.0808140i
\(708\) 5.20937 + 1.70379i 0.195780 + 0.0640322i
\(709\) 1.16037 6.58080i 0.0435787 0.247147i −0.955235 0.295849i \(-0.904397\pi\)
0.998813 + 0.0487022i \(0.0155085\pi\)
\(710\) 10.5984 18.3569i 0.397750 0.688923i
\(711\) 10.3087 + 15.4116i 0.386605 + 0.577981i
\(712\) 1.25615 + 2.17571i 0.0470761 + 0.0815382i
\(713\) −13.3927 + 4.87456i −0.501562 + 0.182554i
\(714\) −0.711190 + 1.33133i −0.0266156 + 0.0498237i
\(715\) 29.9140 25.1009i 1.11872 0.938719i
\(716\) −14.2999 + 11.9990i −0.534411 + 0.448424i
\(717\) 10.6529 0.351357i 0.397840 0.0131217i
\(718\) −35.9325 + 13.0784i −1.34099 + 0.488080i
\(719\) 16.4784 + 28.5413i 0.614539 + 1.06441i 0.990465 + 0.137763i \(0.0439912\pi\)
−0.375926 + 0.926650i \(0.622675\pi\)
\(720\) −13.2788 3.86335i −0.494872 0.143979i
\(721\) 3.05218 5.28653i 0.113669 0.196881i
\(722\) 0.0452775 0.256782i 0.00168505 0.00955642i
\(723\) −23.0636 + 20.6858i −0.857745 + 0.769315i
\(724\) 16.0456 + 5.84012i 0.596330 + 0.217046i
\(725\) −11.8408 67.1527i −0.439757 2.49399i
\(726\) 2.08729 14.6460i 0.0774666 0.543565i
\(727\) 12.4578 + 10.4534i 0.462035 + 0.387694i 0.843879 0.536533i \(-0.180266\pi\)
−0.381844 + 0.924227i \(0.624711\pi\)
\(728\) 18.9953 0.704013
\(729\) −17.8322 20.2734i −0.660452 0.750868i
\(730\) 5.89564 0.218208
\(731\) −5.12617 4.30137i −0.189598 0.159092i
\(732\) −2.34781 + 16.4740i −0.0867774 + 0.608896i
\(733\) 7.99914 + 45.3654i 0.295455 + 1.67561i 0.665347 + 0.746534i \(0.268284\pi\)
−0.369892 + 0.929075i \(0.620605\pi\)
\(734\) −32.5984 11.8648i −1.20323 0.437939i
\(735\) 4.89623 4.39145i 0.180600 0.161981i
\(736\) −2.48350 + 14.0846i −0.0915429 + 0.519166i
\(737\) 3.80532 6.59101i 0.140171 0.242783i
\(738\) −13.3725 3.89060i −0.492247 0.143215i
\(739\) −23.3972 40.5251i −0.860679 1.49074i −0.871275 0.490795i \(-0.836706\pi\)
0.0105964 0.999944i \(-0.496627\pi\)
\(740\) 28.6880 10.4416i 1.05459 0.383840i
\(741\) −47.7050 + 1.57342i −1.75249 + 0.0578011i
\(742\) 9.96571 8.36223i 0.365853 0.306987i
\(743\) 12.6273 10.5955i 0.463249 0.388712i −0.381076 0.924544i \(-0.624446\pi\)
0.844325 + 0.535832i \(0.180002\pi\)
\(744\) 11.8139 22.1152i 0.433117 0.810783i
\(745\) 27.5692 10.0344i 1.01006 0.367631i
\(746\) −2.47142 4.28062i −0.0904849 0.156725i
\(747\) −3.53860 5.29027i −0.129471 0.193561i
\(748\) −0.657198 + 1.13830i −0.0240295 + 0.0416204i
\(749\) 0.377522 2.14103i 0.0137944 0.0782317i
\(750\) −28.3651 9.27713i −1.03575 0.338753i
\(751\) −40.0385 14.5728i −1.46102 0.531769i −0.515377 0.856963i \(-0.672348\pi\)
−0.945647 + 0.325194i \(0.894570\pi\)
\(752\) −0.0328549 0.186329i −0.00119809 0.00679473i
\(753\) 36.6126 + 28.7192i 1.33424 + 1.04659i
\(754\) 35.7598 + 30.0060i 1.30230 + 1.09276i
\(755\) −52.7074 −1.91822
\(756\) −2.02490 + 4.47781i −0.0736448 + 0.162856i
\(757\) 24.6290 0.895155 0.447578 0.894245i \(-0.352287\pi\)
0.447578 + 0.894245i \(0.352287\pi\)
\(758\) −20.3637 17.0872i −0.739644 0.620635i
\(759\) −7.83684 + 3.14865i −0.284459 + 0.114289i
\(760\) −8.75122 49.6306i −0.317440 1.80029i
\(761\) 24.8848 + 9.05734i 0.902074 + 0.328328i 0.751084 0.660207i \(-0.229531\pi\)
0.150991 + 0.988535i \(0.451754\pi\)
\(762\) 1.83247 + 8.70394i 0.0663835 + 0.315310i
\(763\) −0.654157 + 3.70991i −0.0236821 + 0.134308i
\(764\) 5.03150 8.71482i 0.182033 0.315291i
\(765\) 1.04787 9.61165i 0.0378859 0.347510i
\(766\) −10.4618 18.1204i −0.378002 0.654718i
\(767\) −19.7457 + 7.18684i −0.712975 + 0.259502i