Properties

Label 189.2.v.a.43.5
Level $189$
Weight $2$
Character 189.43
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.5
Character \(\chi\) \(=\) 189.43
Dual form 189.2.v.a.22.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.731503 + 0.613803i) q^{2} +(-1.57520 + 0.720230i) q^{3} +(-0.188955 - 1.07162i) q^{4} +(-3.78665 - 1.37823i) q^{5} +(-1.59435 - 0.440016i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.47445 - 2.55382i) q^{8} +(1.96254 - 2.26902i) q^{9} +O(q^{10})\) \(q+(0.731503 + 0.613803i) q^{2} +(-1.57520 + 0.720230i) q^{3} +(-0.188955 - 1.07162i) q^{4} +(-3.78665 - 1.37823i) q^{5} +(-1.59435 - 0.440016i) q^{6} +(0.173648 - 0.984808i) q^{7} +(1.47445 - 2.55382i) q^{8} +(1.96254 - 2.26902i) q^{9} +(-1.92398 - 3.33244i) q^{10} +(-3.90983 + 1.42306i) q^{11} +(1.06945 + 1.55193i) q^{12} +(0.402272 - 0.337546i) q^{13} +(0.731503 - 0.613803i) q^{14} +(6.95740 - 0.556267i) q^{15} +(0.601058 - 0.218767i) q^{16} +(-1.49397 - 2.58763i) q^{17} +(2.82833 - 0.455179i) q^{18} +(-1.44865 + 2.50914i) q^{19} +(-0.761427 + 4.31827i) q^{20} +(0.435756 + 1.67634i) q^{21} +(-3.73353 - 1.35889i) q^{22} +(-0.299868 - 1.70064i) q^{23} +(-0.483222 + 5.08474i) q^{24} +(8.60901 + 7.22382i) q^{25} +0.501450 q^{26} +(-1.45719 + 4.98765i) q^{27} -1.08815 q^{28} +(0.978952 + 0.821438i) q^{29} +(5.43079 + 3.86356i) q^{30} +(-1.14367 - 6.48610i) q^{31} +(-4.96817 - 1.80826i) q^{32} +(5.13385 - 5.05759i) q^{33} +(0.495454 - 2.80986i) q^{34} +(-2.01484 + 3.48980i) q^{35} +(-2.80235 - 1.67435i) q^{36} +(-2.51013 - 4.34766i) q^{37} +(-2.59981 + 0.946255i) q^{38} +(-0.390550 + 0.821433i) q^{39} +(-9.10299 + 7.63831i) q^{40} +(7.74629 - 6.49991i) q^{41} +(-0.710187 + 1.49372i) q^{42} +(5.92226 - 2.15553i) q^{43} +(2.26376 + 3.92095i) q^{44} +(-10.5587 + 5.88716i) q^{45} +(0.824503 - 1.42808i) q^{46} +(-1.47781 + 8.38105i) q^{47} +(-0.789226 + 0.777503i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(1.86351 + 10.5685i) q^{50} +(4.21699 + 3.00004i) q^{51} +(-0.437732 - 0.367301i) q^{52} -10.6125 q^{53} +(-4.12737 + 2.75405i) q^{54} +16.7665 q^{55} +(-2.25899 - 1.89552i) q^{56} +(0.474767 - 4.99577i) q^{57} +(0.211904 + 1.20177i) q^{58} +(12.4329 + 4.52520i) q^{59} +(-1.91074 - 7.35056i) q^{60} +(1.79378 - 10.1730i) q^{61} +(3.14459 - 5.44659i) q^{62} +(-1.89376 - 2.32673i) q^{63} +(-3.16394 - 5.48010i) q^{64} +(-1.98848 + 0.723748i) q^{65} +(6.85979 - 0.548464i) q^{66} +(2.09084 - 1.75442i) q^{67} +(-2.49066 + 2.08991i) q^{68} +(1.69720 + 2.46288i) q^{69} +(-3.61591 + 1.31608i) q^{70} +(-0.743219 - 1.28729i) q^{71} +(-2.90100 - 8.35753i) q^{72} +(-1.01768 + 1.76267i) q^{73} +(0.832449 - 4.72105i) q^{74} +(-18.7638 - 5.17853i) q^{75} +(2.96257 + 1.07829i) q^{76} +(0.722508 + 4.09754i) q^{77} +(-0.789887 + 0.361159i) q^{78} +(3.06523 + 2.57203i) q^{79} -2.57751 q^{80} +(-1.29689 - 8.90607i) q^{81} +9.65610 q^{82} +(-3.89731 - 3.27024i) q^{83} +(1.71406 - 0.783717i) q^{84} +(2.09079 + 11.8575i) q^{85} +(5.65522 + 2.05833i) q^{86} +(-2.13367 - 0.588863i) q^{87} +(-2.13060 + 12.0833i) q^{88} +(5.12426 - 8.87547i) q^{89} +(-11.3373 - 2.17448i) q^{90} +(-0.262564 - 0.454775i) q^{91} +(-1.76577 + 0.642689i) q^{92} +(6.47301 + 9.39323i) q^{93} +(-6.22534 + 5.22368i) q^{94} +(8.94372 - 7.50467i) q^{95} +(9.12824 - 0.729834i) q^{96} +(-11.3317 + 4.12439i) q^{97} +(-0.477454 - 0.826975i) q^{98} +(-4.44424 + 11.6643i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.731503 + 0.613803i 0.517250 + 0.434025i 0.863672 0.504054i \(-0.168159\pi\)
−0.346422 + 0.938079i \(0.612603\pi\)
\(3\) −1.57520 + 0.720230i −0.909445 + 0.415825i
\(4\) −0.188955 1.07162i −0.0944776 0.535809i
\(5\) −3.78665 1.37823i −1.69344 0.616363i −0.698391 0.715716i \(-0.746100\pi\)
−0.995052 + 0.0993536i \(0.968323\pi\)
\(6\) −1.59435 0.440016i −0.650889 0.179636i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) 1.47445 2.55382i 0.521297 0.902913i
\(9\) 1.96254 2.26902i 0.654180 0.756339i
\(10\) −1.92398 3.33244i −0.608417 1.05381i
\(11\) −3.90983 + 1.42306i −1.17886 + 0.429069i −0.855799 0.517309i \(-0.826934\pi\)
−0.323060 + 0.946379i \(0.604712\pi\)
\(12\) 1.06945 + 1.55193i 0.308725 + 0.448003i
\(13\) 0.402272 0.337546i 0.111570 0.0936185i −0.585296 0.810820i \(-0.699022\pi\)
0.696866 + 0.717201i \(0.254577\pi\)
\(14\) 0.731503 0.613803i 0.195502 0.164046i
\(15\) 6.95740 0.556267i 1.79639 0.143628i
\(16\) 0.601058 0.218767i 0.150264 0.0546918i
\(17\) −1.49397 2.58763i −0.362340 0.627592i 0.626005 0.779819i \(-0.284689\pi\)
−0.988346 + 0.152227i \(0.951356\pi\)
\(18\) 2.82833 0.455179i 0.666644 0.107287i
\(19\) −1.44865 + 2.50914i −0.332344 + 0.575636i −0.982971 0.183761i \(-0.941173\pi\)
0.650627 + 0.759397i \(0.274506\pi\)
\(20\) −0.761427 + 4.31827i −0.170260 + 0.965594i
\(21\) 0.435756 + 1.67634i 0.0950898 + 0.365807i
\(22\) −3.73353 1.35889i −0.795992 0.289717i
\(23\) −0.299868 1.70064i −0.0625269 0.354608i −0.999979 0.00649317i \(-0.997933\pi\)
0.937452 0.348115i \(-0.113178\pi\)
\(24\) −0.483222 + 5.08474i −0.0986372 + 1.03792i
\(25\) 8.60901 + 7.22382i 1.72180 + 1.44476i
\(26\) 0.501450 0.0983425
\(27\) −1.45719 + 4.98765i −0.280435 + 0.959873i
\(28\) −1.08815 −0.205641
\(29\) 0.978952 + 0.821438i 0.181787 + 0.152537i 0.729140 0.684364i \(-0.239920\pi\)
−0.547353 + 0.836902i \(0.684365\pi\)
\(30\) 5.43079 + 3.86356i 0.991522 + 0.705387i
\(31\) −1.14367 6.48610i −0.205410 1.16494i −0.896793 0.442450i \(-0.854109\pi\)
0.691383 0.722488i \(-0.257002\pi\)
\(32\) −4.96817 1.80826i −0.878256 0.319659i
\(33\) 5.13385 5.05759i 0.893689 0.880414i
\(34\) 0.495454 2.80986i 0.0849697 0.481887i
\(35\) −2.01484 + 3.48980i −0.340570 + 0.589884i
\(36\) −2.80235 1.67435i −0.467059 0.279058i
\(37\) −2.51013 4.34766i −0.412662 0.714752i 0.582518 0.812818i \(-0.302068\pi\)
−0.995180 + 0.0980662i \(0.968734\pi\)
\(38\) −2.59981 + 0.946255i −0.421745 + 0.153503i
\(39\) −0.390550 + 0.821433i −0.0625380 + 0.131535i
\(40\) −9.10299 + 7.63831i −1.43931 + 1.20772i
\(41\) 7.74629 6.49991i 1.20977 1.01512i 0.210472 0.977600i \(-0.432500\pi\)
0.999296 0.0375159i \(-0.0119445\pi\)
\(42\) −0.710187 + 1.49372i −0.109584 + 0.230485i
\(43\) 5.92226 2.15553i 0.903137 0.328715i 0.151628 0.988438i \(-0.451549\pi\)
0.751509 + 0.659723i \(0.229326\pi\)
\(44\) 2.26376 + 3.92095i 0.341275 + 0.591106i
\(45\) −10.5587 + 5.88716i −1.57400 + 0.877606i
\(46\) 0.824503 1.42808i 0.121566 0.210559i
\(47\) −1.47781 + 8.38105i −0.215560 + 1.22250i 0.664372 + 0.747402i \(0.268699\pi\)
−0.879932 + 0.475100i \(0.842412\pi\)
\(48\) −0.789226 + 0.777503i −0.113915 + 0.112223i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) 1.86351 + 10.5685i 0.263540 + 1.49461i
\(51\) 4.21699 + 3.00004i 0.590497 + 0.420090i
\(52\) −0.437732 0.367301i −0.0607025 0.0509355i
\(53\) −10.6125 −1.45774 −0.728870 0.684652i \(-0.759954\pi\)
−0.728870 + 0.684652i \(0.759954\pi\)
\(54\) −4.12737 + 2.75405i −0.561664 + 0.374779i
\(55\) 16.7665 2.26079
\(56\) −2.25899 1.89552i −0.301870 0.253299i
\(57\) 0.474767 4.99577i 0.0628845 0.661706i
\(58\) 0.211904 + 1.20177i 0.0278244 + 0.157800i
\(59\) 12.4329 + 4.52520i 1.61862 + 0.589130i 0.983119 0.182967i \(-0.0585703\pi\)
0.635504 + 0.772098i \(0.280792\pi\)
\(60\) −1.91074 7.35056i −0.246676 0.948953i
\(61\) 1.79378 10.1730i 0.229670 1.30253i −0.623882 0.781518i \(-0.714446\pi\)
0.853553 0.521007i \(-0.174443\pi\)
\(62\) 3.14459 5.44659i 0.399363 0.691718i
\(63\) −1.89376 2.32673i −0.238591 0.293141i
\(64\) −3.16394 5.48010i −0.395492 0.685013i
\(65\) −1.98848 + 0.723748i −0.246641 + 0.0897699i
\(66\) 6.85979 0.548464i 0.844382 0.0675112i
\(67\) 2.09084 1.75442i 0.255436 0.214337i −0.506073 0.862491i \(-0.668903\pi\)
0.761509 + 0.648154i \(0.224459\pi\)
\(68\) −2.49066 + 2.08991i −0.302036 + 0.253439i
\(69\) 1.69720 + 2.46288i 0.204319 + 0.296496i
\(70\) −3.61591 + 1.31608i −0.432184 + 0.157302i
\(71\) −0.743219 1.28729i −0.0882039 0.152774i 0.818548 0.574438i \(-0.194779\pi\)
−0.906752 + 0.421664i \(0.861446\pi\)
\(72\) −2.90100 8.35753i −0.341887 0.984944i
\(73\) −1.01768 + 1.76267i −0.119110 + 0.206305i −0.919415 0.393288i \(-0.871338\pi\)
0.800305 + 0.599593i \(0.204671\pi\)
\(74\) 0.832449 4.72105i 0.0967702 0.548811i
\(75\) −18.7638 5.17853i −2.16665 0.597965i
\(76\) 2.96257 + 1.07829i 0.339830 + 0.123688i
\(77\) 0.722508 + 4.09754i 0.0823374 + 0.466959i
\(78\) −0.789887 + 0.361159i −0.0894370 + 0.0408932i
\(79\) 3.06523 + 2.57203i 0.344865 + 0.289376i 0.798724 0.601697i \(-0.205509\pi\)
−0.453859 + 0.891073i \(0.649953\pi\)
\(80\) −2.57751 −0.288174
\(81\) −1.29689 8.90607i −0.144098 0.989563i
\(82\) 9.65610 1.06634
\(83\) −3.89731 3.27024i −0.427786 0.358955i 0.403330 0.915055i \(-0.367853\pi\)
−0.831116 + 0.556100i \(0.812297\pi\)
\(84\) 1.71406 0.783717i 0.187019 0.0855106i
\(85\) 2.09079 + 11.8575i 0.226778 + 1.28612i
\(86\) 5.65522 + 2.05833i 0.609818 + 0.221956i
\(87\) −2.13367 0.588863i −0.228754 0.0631327i
\(88\) −2.13060 + 12.0833i −0.227123 + 1.28808i
\(89\) 5.12426 8.87547i 0.543170 0.940798i −0.455550 0.890210i \(-0.650557\pi\)
0.998720 0.0505877i \(-0.0161094\pi\)
\(90\) −11.3373 2.17448i −1.19505 0.229211i
\(91\) −0.262564 0.454775i −0.0275242 0.0476734i
\(92\) −1.76577 + 0.642689i −0.184095 + 0.0670049i
\(93\) 6.47301 + 9.39323i 0.671219 + 0.974033i
\(94\) −6.22534 + 5.22368i −0.642094 + 0.538781i
\(95\) 8.94372 7.50467i 0.917606 0.769963i
\(96\) 9.12824 0.729834i 0.931647 0.0744884i
\(97\) −11.3317 + 4.12439i −1.15056 + 0.418768i −0.845715 0.533635i \(-0.820826\pi\)
−0.304841 + 0.952403i \(0.598603\pi\)
\(98\) −0.477454 0.826975i −0.0482302 0.0835371i
\(99\) −4.44424 + 11.6643i −0.446663 + 1.17231i
\(100\) 6.11446 10.5905i 0.611446 1.05905i
\(101\) 1.91797 10.8773i 0.190845 1.08233i −0.727368 0.686247i \(-0.759257\pi\)
0.918213 0.396087i \(-0.129632\pi\)
\(102\) 1.24330 + 4.78294i 0.123105 + 0.473582i
\(103\) −12.9847 4.72605i −1.27942 0.465672i −0.389181 0.921161i \(-0.627242\pi\)
−0.890241 + 0.455490i \(0.849464\pi\)
\(104\) −0.268903 1.52503i −0.0263681 0.149541i
\(105\) 0.660323 6.94829i 0.0644409 0.678084i
\(106\) −7.76308 6.51400i −0.754017 0.632695i
\(107\) 8.62687 0.833991 0.416996 0.908908i \(-0.363083\pi\)
0.416996 + 0.908908i \(0.363083\pi\)
\(108\) 5.62019 + 0.619105i 0.540803 + 0.0595734i
\(109\) −15.8137 −1.51468 −0.757339 0.653022i \(-0.773501\pi\)
−0.757339 + 0.653022i \(0.773501\pi\)
\(110\) 12.2647 + 10.2913i 1.16940 + 0.981240i
\(111\) 7.08528 + 5.04059i 0.672505 + 0.478432i
\(112\) −0.111071 0.629915i −0.0104952 0.0595214i
\(113\) −7.59508 2.76438i −0.714485 0.260051i −0.0409026 0.999163i \(-0.513023\pi\)
−0.673583 + 0.739112i \(0.735246\pi\)
\(114\) 3.41372 3.36301i 0.319724 0.314974i
\(115\) −1.20837 + 6.85302i −0.112681 + 0.639047i
\(116\) 0.695290 1.20428i 0.0645560 0.111814i
\(117\) 0.0235757 1.57521i 0.00217957 0.145628i
\(118\) 6.31710 + 10.9415i 0.581536 + 1.00725i
\(119\) −2.80774 + 1.02193i −0.257385 + 0.0936806i
\(120\) 8.83773 18.5881i 0.806770 1.69686i
\(121\) 4.83519 4.05720i 0.439563 0.368837i
\(122\) 7.55641 6.34058i 0.684125 0.574049i
\(123\) −7.52057 + 15.8178i −0.678107 + 1.42624i
\(124\) −6.73452 + 2.45116i −0.604778 + 0.220121i
\(125\) −12.5691 21.7703i −1.12421 1.94719i
\(126\) 0.0428707 2.86441i 0.00381922 0.255182i
\(127\) −1.29622 + 2.24512i −0.115021 + 0.199222i −0.917788 0.397070i \(-0.870027\pi\)
0.802767 + 0.596293i \(0.203360\pi\)
\(128\) −0.786883 + 4.46263i −0.0695513 + 0.394445i
\(129\) −7.77630 + 7.66079i −0.684665 + 0.674495i
\(130\) −1.89882 0.691113i −0.166537 0.0606147i
\(131\) −0.180227 1.02212i −0.0157465 0.0893027i 0.975922 0.218121i \(-0.0699927\pi\)
−0.991668 + 0.128818i \(0.958882\pi\)
\(132\) −6.38987 4.54587i −0.556167 0.395667i
\(133\) 2.21947 + 1.86235i 0.192452 + 0.161486i
\(134\) 2.60632 0.225152
\(135\) 12.3920 16.8782i 1.06653 1.45264i
\(136\) −8.81113 −0.755548
\(137\) −2.68053 2.24923i −0.229013 0.192165i 0.521060 0.853520i \(-0.325537\pi\)
−0.750072 + 0.661356i \(0.769981\pi\)
\(138\) −0.270215 + 2.84335i −0.0230022 + 0.242042i
\(139\) 2.13974 + 12.1351i 0.181490 + 1.02928i 0.930382 + 0.366590i \(0.119475\pi\)
−0.748892 + 0.662692i \(0.769414\pi\)
\(140\) 4.12045 + 1.49972i 0.348241 + 0.126749i
\(141\) −3.70843 14.2662i −0.312307 1.20143i
\(142\) 0.246478 1.39785i 0.0206840 0.117305i
\(143\) −1.09247 + 1.89221i −0.0913566 + 0.158234i
\(144\) 0.683212 1.79315i 0.0569344 0.149429i
\(145\) −2.57482 4.45972i −0.213827 0.370360i
\(146\) −1.82637 + 0.664744i −0.151151 + 0.0550146i
\(147\) 1.72654 0.138043i 0.142403 0.0113856i
\(148\) −4.18473 + 3.51141i −0.343983 + 0.288636i
\(149\) 9.04012 7.58556i 0.740595 0.621433i −0.192402 0.981316i \(-0.561628\pi\)
0.932997 + 0.359883i \(0.117183\pi\)
\(150\) −10.5471 15.3054i −0.861170 1.24968i
\(151\) 18.5755 6.76092i 1.51165 0.550195i 0.552603 0.833444i \(-0.313634\pi\)
0.959046 + 0.283249i \(0.0914123\pi\)
\(152\) 4.27193 + 7.39921i 0.346500 + 0.600155i
\(153\) −8.80335 1.68848i −0.711708 0.136506i
\(154\) −1.98657 + 3.44084i −0.160082 + 0.277271i
\(155\) −4.60864 + 26.1369i −0.370175 + 2.09936i
\(156\) 0.954059 + 0.263306i 0.0763858 + 0.0210814i
\(157\) 12.8719 + 4.68501i 1.02729 + 0.373904i 0.800050 0.599934i \(-0.204806\pi\)
0.227244 + 0.973838i \(0.427029\pi\)
\(158\) 0.663500 + 3.76289i 0.0527852 + 0.299360i
\(159\) 16.7169 7.64345i 1.32573 0.606165i
\(160\) 16.3205 + 13.6945i 1.29025 + 1.08265i
\(161\) −1.72687 −0.136097
\(162\) 4.51790 7.31085i 0.354960 0.574394i
\(163\) −20.4893 −1.60485 −0.802423 0.596755i \(-0.796456\pi\)
−0.802423 + 0.596755i \(0.796456\pi\)
\(164\) −8.42913 7.07288i −0.658204 0.552299i
\(165\) −26.4106 + 12.0757i −2.05607 + 0.940094i
\(166\) −0.843614 4.78437i −0.0654771 0.371339i
\(167\) −11.8892 4.32732i −0.920016 0.334858i −0.161771 0.986828i \(-0.551721\pi\)
−0.758245 + 0.651970i \(0.773943\pi\)
\(168\) 4.92358 + 1.35884i 0.379862 + 0.104836i
\(169\) −2.20954 + 12.5309i −0.169965 + 0.963918i
\(170\) −5.74874 + 9.95712i −0.440909 + 0.763676i
\(171\) 2.85025 + 8.21131i 0.217964 + 0.627934i
\(172\) −3.42894 5.93911i −0.261455 0.452853i
\(173\) 12.0873 4.39941i 0.918979 0.334481i 0.161147 0.986930i \(-0.448481\pi\)
0.757832 + 0.652449i \(0.226259\pi\)
\(174\) −1.19934 1.74041i −0.0909218 0.131940i
\(175\) 8.60901 7.22382i 0.650780 0.546069i
\(176\) −2.03872 + 1.71069i −0.153674 + 0.128948i
\(177\) −22.8435 + 1.82642i −1.71702 + 0.137282i
\(178\) 9.19620 3.34714i 0.689284 0.250879i
\(179\) 8.24968 + 14.2889i 0.616610 + 1.06800i 0.990100 + 0.140366i \(0.0448279\pi\)
−0.373489 + 0.927634i \(0.621839\pi\)
\(180\) 8.30390 + 10.2025i 0.618936 + 0.760447i
\(181\) −1.08979 + 1.88756i −0.0810032 + 0.140302i −0.903681 0.428206i \(-0.859146\pi\)
0.822678 + 0.568508i \(0.192479\pi\)
\(182\) 0.0870759 0.493832i 0.00645450 0.0366053i
\(183\) 4.50136 + 17.3166i 0.332750 + 1.28008i
\(184\) −4.78527 1.74170i −0.352775 0.128400i
\(185\) 3.51290 + 19.9226i 0.258273 + 1.46474i
\(186\) −1.03058 + 10.8443i −0.0755656 + 0.795144i
\(187\) 9.52352 + 7.99118i 0.696429 + 0.584373i
\(188\) 9.26052 0.675393
\(189\) 4.65883 + 2.30114i 0.338880 + 0.167384i
\(190\) 11.1487 0.808815
\(191\) 12.0821 + 10.1381i 0.874229 + 0.733565i 0.964984 0.262308i \(-0.0844837\pi\)
−0.0907554 + 0.995873i \(0.528928\pi\)
\(192\) 8.93078 + 6.35352i 0.644524 + 0.458526i
\(193\) 1.52376 + 8.64167i 0.109683 + 0.622041i 0.989246 + 0.146260i \(0.0467235\pi\)
−0.879564 + 0.475781i \(0.842165\pi\)
\(194\) −10.8207 3.93841i −0.776881 0.282762i
\(195\) 2.61100 2.57221i 0.186978 0.184200i
\(196\) −0.188955 + 1.07162i −0.0134968 + 0.0765441i
\(197\) 4.91970 8.52117i 0.350514 0.607108i −0.635826 0.771833i \(-0.719340\pi\)
0.986340 + 0.164725i \(0.0526736\pi\)
\(198\) −10.4106 + 5.80457i −0.739846 + 0.412513i
\(199\) 9.74282 + 16.8751i 0.690650 + 1.19624i 0.971625 + 0.236526i \(0.0760089\pi\)
−0.280975 + 0.959715i \(0.590658\pi\)
\(200\) 31.1419 11.3347i 2.20207 0.801486i
\(201\) −2.02991 + 4.26946i −0.143179 + 0.301144i
\(202\) 8.07953 6.77953i 0.568474 0.477006i
\(203\) 0.978952 0.821438i 0.0687089 0.0576536i
\(204\) 2.41808 5.08588i 0.169299 0.356083i
\(205\) −38.2909 + 13.9368i −2.67435 + 0.973385i
\(206\) −6.59749 11.4272i −0.459669 0.796170i
\(207\) −4.44728 2.65716i −0.309108 0.184686i
\(208\) 0.167945 0.290889i 0.0116449 0.0201695i
\(209\) 2.09333 11.8718i 0.144798 0.821193i
\(210\) 4.74791 4.67739i 0.327637 0.322770i
\(211\) −11.4983 4.18503i −0.791574 0.288109i −0.0855838 0.996331i \(-0.527276\pi\)
−0.705990 + 0.708222i \(0.749498\pi\)
\(212\) 2.00529 + 11.3726i 0.137724 + 0.781070i
\(213\) 2.09787 + 1.49246i 0.143744 + 0.102262i
\(214\) 6.31058 + 5.29521i 0.431382 + 0.361973i
\(215\) −25.3964 −1.73202
\(216\) 10.5890 + 11.0754i 0.720491 + 0.753588i
\(217\) −6.58616 −0.447098
\(218\) −11.5678 9.70651i −0.783468 0.657408i
\(219\) 0.333524 3.50953i 0.0225375 0.237152i
\(220\) −3.16811 17.9673i −0.213594 1.21135i
\(221\) −1.47443 0.536647i −0.0991806 0.0360988i
\(222\) 2.08896 + 8.03618i 0.140202 + 0.539353i
\(223\) 3.06689 17.3932i 0.205374 1.16474i −0.691475 0.722400i \(-0.743039\pi\)
0.896849 0.442336i \(-0.145850\pi\)
\(224\) −2.64351 + 4.57869i −0.176627 + 0.305926i
\(225\) 33.2865 5.35698i 2.21910 0.357132i
\(226\) −3.85903 6.68404i −0.256699 0.444616i
\(227\) −12.2133 + 4.44528i −0.810626 + 0.295044i −0.713883 0.700265i \(-0.753065\pi\)
−0.0967438 + 0.995309i \(0.530843\pi\)
\(228\) −5.44327 + 0.435208i −0.360489 + 0.0288223i
\(229\) 6.30393 5.28962i 0.416575 0.349548i −0.410283 0.911958i \(-0.634570\pi\)
0.826859 + 0.562410i \(0.190126\pi\)
\(230\) −5.09033 + 4.27130i −0.335647 + 0.281641i
\(231\) −4.08927 5.93410i −0.269054 0.390435i
\(232\) 3.54122 1.28890i 0.232493 0.0846204i
\(233\) 2.31536 + 4.01032i 0.151684 + 0.262725i 0.931847 0.362852i \(-0.118197\pi\)
−0.780163 + 0.625577i \(0.784864\pi\)
\(234\) 0.984115 1.13780i 0.0643336 0.0743803i
\(235\) 17.1469 29.6994i 1.11854 1.93737i
\(236\) 2.50003 14.1784i 0.162738 0.922932i
\(237\) −6.68081 1.84381i −0.433965 0.119768i
\(238\) −2.68114 0.975854i −0.173792 0.0632552i
\(239\) 0.763043 + 4.32743i 0.0493571 + 0.279918i 0.999490 0.0319265i \(-0.0101643\pi\)
−0.950133 + 0.311845i \(0.899053\pi\)
\(240\) 4.06010 1.85640i 0.262079 0.119830i
\(241\) −3.27879 2.75123i −0.211205 0.177222i 0.531048 0.847342i \(-0.321798\pi\)
−0.742253 + 0.670120i \(0.766243\pi\)
\(242\) 6.02728 0.387448
\(243\) 8.45728 + 13.0948i 0.542534 + 0.840034i
\(244\) −11.2406 −0.719603
\(245\) 3.08691 + 2.59022i 0.197215 + 0.165483i
\(246\) −15.2103 + 6.95461i −0.969776 + 0.443410i
\(247\) 0.264199 + 1.49835i 0.0168106 + 0.0953374i
\(248\) −18.2506 6.64269i −1.15892 0.421811i
\(249\) 8.49439 + 2.34433i 0.538310 + 0.148566i
\(250\) 4.16836 23.6400i 0.263631 1.49512i
\(251\) 1.21897 2.11132i 0.0769407 0.133265i −0.824988 0.565150i \(-0.808818\pi\)
0.901929 + 0.431885i \(0.142151\pi\)
\(252\) −2.13554 + 2.46903i −0.134526 + 0.155534i
\(253\) 3.59255 + 6.22248i 0.225862 + 0.391204i
\(254\) −2.32625 + 0.846686i −0.145962 + 0.0531258i
\(255\) −11.8335 17.1721i −0.741045 1.07536i
\(256\) −13.0097 + 10.9164i −0.813104 + 0.682275i
\(257\) 4.71050 3.95258i 0.293833 0.246555i −0.483939 0.875102i \(-0.660794\pi\)
0.777772 + 0.628547i \(0.216350\pi\)
\(258\) −10.3906 + 0.830764i −0.646891 + 0.0517211i
\(259\) −4.71749 + 1.71703i −0.293131 + 0.106691i
\(260\) 1.15132 + 1.99414i 0.0714015 + 0.123671i
\(261\) 3.78509 0.609155i 0.234291 0.0377058i
\(262\) 0.495542 0.858305i 0.0306147 0.0530262i
\(263\) 3.30355 18.7354i 0.203706 1.15527i −0.695757 0.718277i \(-0.744931\pi\)
0.899463 0.436996i \(-0.143958\pi\)
\(264\) −5.34658 20.5681i −0.329059 1.26588i
\(265\) 40.1859 + 14.6265i 2.46860 + 0.898497i
\(266\) 0.480426 + 2.72463i 0.0294568 + 0.167058i
\(267\) −1.67937 + 17.6713i −0.102776 + 1.08147i
\(268\) −2.27514 1.90907i −0.138977 0.116615i
\(269\) 19.8948 1.21301 0.606505 0.795080i \(-0.292571\pi\)
0.606505 + 0.795080i \(0.292571\pi\)
\(270\) 19.4246 4.74017i 1.18215 0.288478i
\(271\) −5.49656 −0.333892 −0.166946 0.985966i \(-0.553391\pi\)
−0.166946 + 0.985966i \(0.553391\pi\)
\(272\) −1.46405 1.22848i −0.0887710 0.0744877i
\(273\) 0.741135 + 0.527257i 0.0448555 + 0.0319110i
\(274\) −0.580227 3.29063i −0.0350528 0.198794i
\(275\) −43.9397 15.9928i −2.64967 0.964399i
\(276\) 2.31857 2.28413i 0.139562 0.137488i
\(277\) 1.42916 8.10515i 0.0858697 0.486991i −0.911296 0.411752i \(-0.864917\pi\)
0.997166 0.0752391i \(-0.0239720\pi\)
\(278\) −5.88332 + 10.1902i −0.352858 + 0.611168i
\(279\) −16.9616 10.1342i −1.01546 0.606719i
\(280\) 5.94155 + 10.2911i 0.355076 + 0.615009i
\(281\) −19.2111 + 6.99226i −1.14604 + 0.417123i −0.844090 0.536201i \(-0.819859\pi\)
−0.301947 + 0.953325i \(0.597637\pi\)
\(282\) 6.04393 12.7120i 0.359911 0.756990i
\(283\) 10.2575 8.60709i 0.609747 0.511638i −0.284815 0.958582i \(-0.591932\pi\)
0.894562 + 0.446944i \(0.147488\pi\)
\(284\) −1.23905 + 1.03969i −0.0735242 + 0.0616941i
\(285\) −8.68310 + 18.2629i −0.514343 + 1.08180i
\(286\) −1.96059 + 0.713595i −0.115932 + 0.0421957i
\(287\) −5.05603 8.75731i −0.298448 0.516928i
\(288\) −13.8532 + 7.72407i −0.816308 + 0.455145i
\(289\) 4.03612 6.99076i 0.237419 0.411221i
\(290\) 0.853904 4.84273i 0.0501430 0.284375i
\(291\) 14.8792 14.6582i 0.872233 0.859276i
\(292\) 2.08121 + 0.757498i 0.121793 + 0.0443292i
\(293\) 0.775443 + 4.39776i 0.0453019 + 0.256920i 0.999044 0.0437047i \(-0.0139161\pi\)
−0.953743 + 0.300624i \(0.902805\pi\)
\(294\) 1.34770 + 0.958778i 0.0785995 + 0.0559171i
\(295\) −40.8422 34.2707i −2.37793 1.99532i
\(296\) −14.8042 −0.860478
\(297\) −1.40038 21.5745i −0.0812583 1.25188i
\(298\) 11.2689 0.652790
\(299\) −0.694673 0.582900i −0.0401740 0.0337100i
\(300\) −2.00389 + 21.0861i −0.115695 + 1.21741i
\(301\) −1.09439 6.20659i −0.0630796 0.357742i
\(302\) 17.7379 + 6.45606i 1.02070 + 0.371504i
\(303\) 4.81298 + 18.5154i 0.276499 + 1.06368i
\(304\) −0.321807 + 1.82506i −0.0184569 + 0.104674i
\(305\) −20.8132 + 36.0496i −1.19176 + 2.06419i
\(306\) −5.40327 6.63865i −0.308885 0.379506i
\(307\) 2.01673 + 3.49307i 0.115101 + 0.199360i 0.917820 0.396997i \(-0.129948\pi\)
−0.802719 + 0.596357i \(0.796614\pi\)
\(308\) 4.25448 1.54850i 0.242422 0.0882342i
\(309\) 23.8574 1.90748i 1.35720 0.108513i
\(310\) −19.4141 + 16.2904i −1.10265 + 0.925232i
\(311\) 12.6142 10.5846i 0.715284 0.600195i −0.210792 0.977531i \(-0.567604\pi\)
0.926076 + 0.377336i \(0.123160\pi\)
\(312\) 1.52195 + 2.20856i 0.0861633 + 0.125035i
\(313\) −3.97424 + 1.44651i −0.224637 + 0.0817613i −0.451887 0.892075i \(-0.649249\pi\)
0.227250 + 0.973837i \(0.427027\pi\)
\(314\) 6.54019 + 11.3279i 0.369084 + 0.639273i
\(315\) 3.96422 + 11.4206i 0.223359 + 0.643476i
\(316\) 2.17704 3.77075i 0.122468 0.212121i
\(317\) −1.85839 + 10.5395i −0.104378 + 0.591956i 0.887089 + 0.461598i \(0.152724\pi\)
−0.991467 + 0.130358i \(0.958387\pi\)
\(318\) 16.9200 + 4.66968i 0.948827 + 0.261863i
\(319\) −4.99649 1.81857i −0.279750 0.101821i
\(320\) 4.42790 + 25.1119i 0.247527 + 1.40380i
\(321\) −13.5891 + 6.21333i −0.758469 + 0.346794i
\(322\) −1.26321 1.05996i −0.0703961 0.0590693i
\(323\) 8.65697 0.481686
\(324\) −9.29885 + 3.07261i −0.516603 + 0.170701i
\(325\) 5.90154 0.327358
\(326\) −14.9880 12.5764i −0.830108 0.696543i
\(327\) 24.9098 11.3895i 1.37752 0.629841i
\(328\) −5.17810 29.3665i −0.285913 1.62149i
\(329\) 7.99710 + 2.91071i 0.440895 + 0.160473i
\(330\) −26.7316 7.37753i −1.47152 0.406119i
\(331\) 2.65088 15.0339i 0.145706 0.826338i −0.821092 0.570796i \(-0.806635\pi\)
0.966798 0.255542i \(-0.0822541\pi\)
\(332\) −2.76802 + 4.79436i −0.151915 + 0.263125i
\(333\) −14.7911 2.83694i −0.810550 0.155463i
\(334\) −6.04087 10.4631i −0.330542 0.572515i
\(335\) −10.3353 + 3.76173i −0.564676 + 0.205525i
\(336\) 0.628643 + 0.912248i 0.0342953 + 0.0497672i
\(337\) 24.0827 20.2078i 1.31187 1.10079i 0.323909 0.946088i \(-0.395003\pi\)
0.987961 0.154702i \(-0.0494417\pi\)
\(338\) −9.30781 + 7.81018i −0.506278 + 0.424818i
\(339\) 13.9548 1.11573i 0.757921 0.0605983i
\(340\) 12.3116 4.48107i 0.667692 0.243020i
\(341\) 13.7017 + 23.7320i 0.741989 + 1.28516i
\(342\) −2.95516 + 7.75608i −0.159797 + 0.419401i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) 3.22725 18.3026i 0.174002 0.986812i
\(345\) −3.03231 11.6652i −0.163254 0.628034i
\(346\) 11.5423 + 4.20104i 0.620515 + 0.225849i
\(347\) −4.98575 28.2756i −0.267649 1.51791i −0.761384 0.648301i \(-0.775480\pi\)
0.493735 0.869613i \(-0.335631\pi\)
\(348\) −0.227867 + 2.39775i −0.0122150 + 0.128533i
\(349\) −26.3086 22.0755i −1.40827 1.18168i −0.957287 0.289141i \(-0.906630\pi\)
−0.450979 0.892535i \(-0.648925\pi\)
\(350\) 10.7315 0.573624
\(351\) 1.09738 + 2.49826i 0.0585736 + 0.133347i
\(352\) 21.9980 1.17250
\(353\) 17.0574 + 14.3129i 0.907874 + 0.761796i 0.971713 0.236164i \(-0.0758902\pi\)
−0.0638396 + 0.997960i \(0.520335\pi\)
\(354\) −17.8311 12.6854i −0.947714 0.674221i
\(355\) 1.04013 + 5.89886i 0.0552043 + 0.313079i
\(356\) −10.4794 3.81418i −0.555405 0.202151i
\(357\) 3.68674 3.63197i 0.195123 0.192224i
\(358\) −2.73590 + 15.5160i −0.144597 + 0.820048i
\(359\) 0.477605 0.827236i 0.0252070 0.0436598i −0.853147 0.521671i \(-0.825309\pi\)
0.878354 + 0.478011i \(0.158642\pi\)
\(360\) −0.533493 + 35.6453i −0.0281175 + 1.87867i
\(361\) 5.30281 + 9.18473i 0.279095 + 0.483407i
\(362\) −1.95577 + 0.711844i −0.102793 + 0.0374137i
\(363\) −4.69429 + 9.87337i −0.246386 + 0.518218i
\(364\) −0.437732 + 0.367301i −0.0229434 + 0.0192518i
\(365\) 6.28297 5.27204i 0.328866 0.275951i
\(366\) −7.33621 + 15.4301i −0.383470 + 0.806542i
\(367\) 7.54882 2.74755i 0.394045 0.143421i −0.137395 0.990516i \(-0.543873\pi\)
0.531441 + 0.847096i \(0.321651\pi\)
\(368\) −0.552282 0.956581i −0.0287897 0.0498652i
\(369\) 0.453982 30.3328i 0.0236334 1.57906i
\(370\) −9.65889 + 16.7297i −0.502142 + 0.869735i
\(371\) −1.84284 + 10.4513i −0.0956757 + 0.542604i
\(372\) 8.84285 8.71149i 0.458480 0.451670i
\(373\) 9.03262 + 3.28761i 0.467692 + 0.170226i 0.565106 0.825018i \(-0.308835\pi\)
−0.0974148 + 0.995244i \(0.531057\pi\)
\(374\) 2.06146 + 11.6911i 0.106596 + 0.604534i
\(375\) 35.4785 + 25.2400i 1.83210 + 1.30339i
\(376\) 19.2248 + 16.1315i 0.991442 + 0.831918i
\(377\) 0.671078 0.0345623
\(378\) 1.99550 + 4.54290i 0.102637 + 0.233662i
\(379\) −23.3222 −1.19798 −0.598990 0.800757i \(-0.704431\pi\)
−0.598990 + 0.800757i \(0.704431\pi\)
\(380\) −9.73210 8.16620i −0.499246 0.418917i
\(381\) 0.424811 4.47010i 0.0217637 0.229010i
\(382\) 2.61529 + 14.8320i 0.133810 + 0.758874i
\(383\) 3.61550 + 1.31594i 0.184744 + 0.0672412i 0.432735 0.901521i \(-0.357548\pi\)
−0.247992 + 0.968762i \(0.579771\pi\)
\(384\) −1.97462 7.59630i −0.100767 0.387647i
\(385\) 2.91147 16.5118i 0.148382 0.841517i
\(386\) −4.18965 + 7.25669i −0.213248 + 0.369356i
\(387\) 6.73174 17.6680i 0.342194 0.898116i
\(388\) 6.56094 + 11.3639i 0.333081 + 0.576914i
\(389\) 20.4292 7.43562i 1.03580 0.377001i 0.232515 0.972593i \(-0.425305\pi\)
0.803287 + 0.595592i \(0.203082\pi\)
\(390\) 3.48879 0.278940i 0.176662 0.0141247i
\(391\) −3.95263 + 3.31665i −0.199893 + 0.167730i
\(392\) −2.25899 + 1.89552i −0.114096 + 0.0957381i
\(393\) 1.02005 + 1.48024i 0.0514548 + 0.0746681i
\(394\) 8.82909 3.21353i 0.444803 0.161895i
\(395\) −8.06210 13.9640i −0.405649 0.702604i
\(396\) 13.3394 + 2.55850i 0.670331 + 0.128569i
\(397\) −8.65531 + 14.9914i −0.434398 + 0.752399i −0.997246 0.0741612i \(-0.976372\pi\)
0.562849 + 0.826560i \(0.309705\pi\)
\(398\) −3.23107 + 18.3243i −0.161959 + 0.918515i
\(399\) −4.83743 1.33506i −0.242175 0.0668367i
\(400\) 6.75485 + 2.45856i 0.337742 + 0.122928i
\(401\) −0.230337 1.30631i −0.0115025 0.0652339i 0.978516 0.206170i \(-0.0660999\pi\)
−0.990019 + 0.140936i \(0.954989\pi\)
\(402\) −4.10549 + 1.87715i −0.204763 + 0.0936238i
\(403\) −2.64943 2.22313i −0.131977 0.110742i
\(404\) −12.0187 −0.597955
\(405\) −7.36375 + 35.5116i −0.365908 + 1.76459i
\(406\) 1.22031 0.0605628
\(407\) 16.0012 + 13.4266i 0.793148 + 0.665530i
\(408\) 13.8793 6.34603i 0.687129 0.314176i
\(409\) 2.25387 + 12.7824i 0.111447 + 0.632047i 0.988448 + 0.151559i \(0.0484293\pi\)
−0.877001 + 0.480488i \(0.840460\pi\)
\(410\) −36.5643 13.3083i −1.80578 0.657251i
\(411\) 5.84234 + 1.61240i 0.288181 + 0.0795339i
\(412\) −2.61099 + 14.8077i −0.128634 + 0.729521i
\(413\) 6.61540 11.4582i 0.325522 0.563821i
\(414\) −1.62222 4.67348i −0.0797279 0.229689i
\(415\) 10.2506 + 17.7546i 0.503184 + 0.871541i
\(416\) −2.60893 + 0.949572i −0.127913 + 0.0465566i
\(417\) −12.1106 17.5741i −0.593056 0.860607i
\(418\) 8.81825 7.39939i 0.431315 0.361916i
\(419\) 6.14231 5.15401i 0.300071 0.251790i −0.480303 0.877103i \(-0.659473\pi\)
0.780374 + 0.625313i \(0.215029\pi\)
\(420\) −7.57069 + 0.605302i −0.369412 + 0.0295357i
\(421\) 29.3637 10.6875i 1.43110 0.520878i 0.493854 0.869545i \(-0.335588\pi\)
0.937247 + 0.348667i \(0.113366\pi\)
\(422\) −5.84223 10.1190i −0.284395 0.492587i
\(423\) 16.1165 + 19.8013i 0.783611 + 0.962772i
\(424\) −15.6476 + 27.1025i −0.759916 + 1.31621i
\(425\) 5.83097 33.0691i 0.282844 1.60409i
\(426\) 0.618518 + 2.37942i 0.0299673 + 0.115283i
\(427\) −9.70701 3.53306i −0.469755 0.170977i
\(428\) −1.63009 9.24471i −0.0787935 0.446860i
\(429\) 0.358034 3.76744i 0.0172861 0.181894i
\(430\) −18.5775 15.5884i −0.895887 0.751739i
\(431\) 0.875234 0.0421585 0.0210793 0.999778i \(-0.493290\pi\)
0.0210793 + 0.999778i \(0.493290\pi\)
\(432\) 0.215280 + 3.31665i 0.0103577 + 0.159572i
\(433\) −3.75223 −0.180321 −0.0901604 0.995927i \(-0.528738\pi\)
−0.0901604 + 0.995927i \(0.528738\pi\)
\(434\) −4.81779 4.04261i −0.231261 0.194051i
\(435\) 7.26789 + 5.17051i 0.348469 + 0.247907i
\(436\) 2.98808 + 16.9462i 0.143103 + 0.811578i
\(437\) 4.70155 + 1.71122i 0.224906 + 0.0818589i
\(438\) 2.39814 2.36251i 0.114587 0.112885i
\(439\) −6.59712 + 37.4142i −0.314864 + 1.78568i 0.258120 + 0.966113i \(0.416897\pi\)
−0.572983 + 0.819567i \(0.694214\pi\)
\(440\) 24.7214 42.8186i 1.17854 2.04130i
\(441\) −2.62023 + 1.46095i −0.124773 + 0.0695691i
\(442\) −0.749151 1.29757i −0.0356335 0.0617190i
\(443\) −7.02357 + 2.55637i −0.333700 + 0.121457i −0.503436 0.864033i \(-0.667931\pi\)
0.169736 + 0.985490i \(0.445709\pi\)
\(444\) 4.06279 8.54516i 0.192812 0.405535i
\(445\) −31.6362 + 26.5459i −1.49970 + 1.25840i
\(446\) 12.9195 10.8407i 0.611754 0.513323i
\(447\) −8.77669 + 18.4598i −0.415123 + 0.873117i
\(448\) −5.94626 + 2.16426i −0.280934 + 0.102252i
\(449\) 6.38762 + 11.0637i 0.301450 + 0.522127i 0.976465 0.215677i \(-0.0691959\pi\)
−0.675014 + 0.737805i \(0.735863\pi\)
\(450\) 27.6373 + 16.5127i 1.30283 + 0.778417i
\(451\) −21.0369 + 36.4370i −0.990590 + 1.71575i
\(452\) −1.52723 + 8.66137i −0.0718350 + 0.407397i
\(453\) −24.3907 + 24.0284i −1.14598 + 1.12895i
\(454\) −11.6626 4.24484i −0.547353 0.199220i
\(455\) 0.367457 + 2.08395i 0.0172266 + 0.0976971i
\(456\) −12.0583 8.57849i −0.564682 0.401725i
\(457\) −8.38088 7.03239i −0.392041 0.328962i 0.425367 0.905021i \(-0.360145\pi\)
−0.817408 + 0.576060i \(0.804590\pi\)
\(458\) 7.85813 0.367186
\(459\) 15.0832 3.68073i 0.704022 0.171802i
\(460\) 7.57215 0.353053
\(461\) −16.2100 13.6018i −0.754973 0.633497i 0.181840 0.983328i \(-0.441795\pi\)
−0.936813 + 0.349831i \(0.886239\pi\)
\(462\) 0.651059 6.85082i 0.0302900 0.318729i
\(463\) −4.14357 23.4994i −0.192568 1.09211i −0.915840 0.401544i \(-0.868474\pi\)
0.723272 0.690564i \(-0.242638\pi\)
\(464\) 0.768110 + 0.279569i 0.0356586 + 0.0129787i
\(465\) −11.5650 44.4902i −0.536314 2.06318i
\(466\) −0.767857 + 4.35473i −0.0355703 + 0.201729i
\(467\) −4.79553 + 8.30609i −0.221910 + 0.384360i −0.955388 0.295353i \(-0.904563\pi\)
0.733478 + 0.679714i \(0.237896\pi\)
\(468\) −1.69248 + 0.272380i −0.0782348 + 0.0125908i
\(469\) −1.36470 2.36373i −0.0630159 0.109147i
\(470\) 30.7726 11.2003i 1.41943 0.516632i
\(471\) −23.6502 + 1.89092i −1.08974 + 0.0871288i
\(472\) 29.8882 25.0792i 1.37572 1.15436i
\(473\) −20.0876 + 16.8555i −0.923629 + 0.775017i
\(474\) −3.75530 5.44945i −0.172486 0.250302i
\(475\) −30.5970 + 11.1364i −1.40389 + 0.510974i
\(476\) 1.62566 + 2.81573i 0.0745120 + 0.129059i
\(477\) −20.8275 + 24.0800i −0.953624 + 1.10255i
\(478\) −2.09802 + 3.63388i −0.0959614 + 0.166210i
\(479\) −0.386092 + 2.18964i −0.0176410 + 0.100047i −0.992357 0.123400i \(-0.960620\pi\)
0.974716 + 0.223448i \(0.0717311\pi\)
\(480\) −35.5714 9.81718i −1.62360 0.448091i
\(481\) −2.47729 0.901661i −0.112955 0.0411122i
\(482\) −0.709727 4.02506i −0.0323272 0.183336i
\(483\) 2.72018 1.24375i 0.123772 0.0565924i
\(484\) −5.26141 4.41484i −0.239155 0.200675i
\(485\) 48.5934 2.20651
\(486\) −1.85113 + 14.7700i −0.0839691 + 0.669981i
\(487\) 12.6488 0.573172 0.286586 0.958054i \(-0.407480\pi\)
0.286586 + 0.958054i \(0.407480\pi\)
\(488\) −23.3353 19.5807i −1.05634 0.886375i
\(489\) 32.2749 14.7570i 1.45952 0.667335i
\(490\) 0.668193 + 3.78951i 0.0301859 + 0.171193i
\(491\) −18.2787 6.65291i −0.824908 0.300242i −0.105140 0.994457i \(-0.533529\pi\)
−0.719767 + 0.694216i \(0.755751\pi\)
\(492\) 18.3717 + 5.07032i 0.828260 + 0.228588i
\(493\) 0.663054 3.76037i 0.0298624 0.169358i
\(494\) −0.726427 + 1.25821i −0.0326835 + 0.0566095i
\(495\) 32.9049 38.0435i 1.47896 1.70993i
\(496\) −2.10636 3.64832i −0.0945784 0.163815i
\(497\) −1.39679 + 0.508392i −0.0626548 + 0.0228045i
\(498\) 4.77471 + 6.92877i 0.213960 + 0.310485i
\(499\) 8.43660 7.07915i 0.377674 0.316906i −0.434114 0.900858i \(-0.642939\pi\)
0.811789 + 0.583951i \(0.198494\pi\)
\(500\) −20.9544 + 17.5829i −0.937111 + 0.786330i
\(501\) 21.8446 1.74655i 0.975946 0.0780302i
\(502\) 2.18761 0.796227i 0.0976380 0.0355373i
\(503\) 9.36478 + 16.2203i 0.417555 + 0.723226i 0.995693 0.0927129i \(-0.0295539\pi\)
−0.578138 + 0.815939i \(0.696221\pi\)
\(504\) −8.73431 + 1.40566i −0.389057 + 0.0626132i
\(505\) −22.2541 + 38.5453i −0.990295 + 1.71524i
\(506\) −1.19142 + 6.75688i −0.0529651 + 0.300380i
\(507\) −5.54467 21.3302i −0.246247 0.947305i
\(508\) 2.65084 + 0.964826i 0.117612 + 0.0428072i
\(509\) −3.29245 18.6724i −0.145935 0.827639i −0.966612 0.256246i \(-0.917514\pi\)
0.820677 0.571393i \(-0.193597\pi\)
\(510\) 1.88404 19.8249i 0.0834266 0.877862i
\(511\) 1.55918 + 1.30830i 0.0689739 + 0.0578760i
\(512\) −7.15417 −0.316172
\(513\) −10.4038 10.8817i −0.459337 0.480437i
\(514\) 5.87185 0.258996
\(515\) 42.6550 + 35.7918i 1.87961 + 1.57718i
\(516\) 9.67881 + 6.88568i 0.426086 + 0.303125i
\(517\) −6.14879 34.8715i −0.270423 1.53365i
\(518\) −4.50477 1.63960i −0.197928 0.0720401i
\(519\) −15.8714 + 15.6356i −0.696675 + 0.686326i
\(520\) −1.08359 + 6.14536i −0.0475187 + 0.269492i
\(521\) 8.88223 15.3845i 0.389138 0.674006i −0.603196 0.797593i \(-0.706106\pi\)
0.992334 + 0.123587i \(0.0394397\pi\)
\(522\) 3.14270 + 1.87770i 0.137552 + 0.0821848i
\(523\) −8.14752 14.1119i −0.356266 0.617071i 0.631068 0.775728i \(-0.282617\pi\)
−0.987334 + 0.158657i \(0.949284\pi\)
\(524\) −1.06126 + 0.386268i −0.0463615 + 0.0168742i
\(525\) −8.35814 + 17.5795i −0.364779 + 0.767230i
\(526\) 13.9164 11.6772i 0.606784 0.509152i
\(527\) −15.0750 + 12.6494i −0.656678 + 0.551018i
\(528\) 1.97931 4.16302i 0.0861383 0.181172i
\(529\) 18.8107 6.84653i 0.817856 0.297675i
\(530\) 20.4183 + 35.3656i 0.886915 + 1.53618i
\(531\) 34.6678 19.3295i 1.50445 0.838831i
\(532\) 1.57635 2.73032i 0.0683435 0.118374i
\(533\) 0.922096 5.22947i 0.0399404 0.226513i
\(534\) −12.0752 + 11.8958i −0.522544 + 0.514782i
\(535\) −32.6670 11.8898i −1.41232 0.514041i
\(536\) −1.39764 7.92644i −0.0603691 0.342370i
\(537\) −23.2862 16.5662i −1.00487 0.714886i
\(538\) 14.5531 + 12.2115i 0.627430 + 0.526476i
\(539\) 4.16076 0.179216
\(540\) −20.4285 10.0903i −0.879101 0.434215i
\(541\) 16.6054 0.713923 0.356961 0.934119i \(-0.383813\pi\)
0.356961 + 0.934119i \(0.383813\pi\)
\(542\) −4.02075 3.37381i −0.172706 0.144918i
\(543\) 0.357156 3.75820i 0.0153270 0.161280i
\(544\) 2.74316 + 15.5573i 0.117612 + 0.667012i
\(545\) 59.8810 + 21.7949i 2.56502 + 0.933591i
\(546\) 0.218510 + 0.840601i 0.00935137 + 0.0359744i
\(547\) −5.55686 + 31.5145i −0.237594 + 1.34746i 0.599487 + 0.800384i \(0.295371\pi\)
−0.837081 + 0.547078i \(0.815740\pi\)
\(548\) −1.90381 + 3.29750i −0.0813269 + 0.140862i
\(549\) −19.5625 24.0351i −0.834905 1.02579i
\(550\) −22.3256 38.6691i −0.951967 1.64886i
\(551\) −3.47927 + 1.26635i −0.148222 + 0.0539483i
\(552\) 8.79220 0.702966i 0.374221 0.0299202i
\(553\) 3.06523 2.57203i 0.130347 0.109374i
\(554\) 6.02040 5.05172i 0.255782 0.214627i
\(555\) −19.8824 28.8521i −0.843961 1.22470i
\(556\) 12.5998 4.58596i 0.534352 0.194488i
\(557\) −11.4867 19.8955i −0.486706 0.843000i 0.513177 0.858283i \(-0.328468\pi\)
−0.999883 + 0.0152830i \(0.995135\pi\)
\(558\) −6.18703 17.8243i −0.261918 0.754562i
\(559\) 1.65477 2.86615i 0.0699893 0.121225i
\(560\) −0.447580 + 2.53835i −0.0189137 + 0.107265i
\(561\) −20.7570 5.72862i −0.876360 0.241863i
\(562\) −18.3448 6.67697i −0.773830 0.281651i
\(563\) −0.736048 4.17434i −0.0310207 0.175927i 0.965361 0.260918i \(-0.0840251\pi\)
−0.996382 + 0.0849904i \(0.972914\pi\)
\(564\) −14.5872 + 6.66970i −0.614233 + 0.280845i
\(565\) 24.9500 + 20.9355i 1.04965 + 0.880765i
\(566\) 12.7865 0.537455
\(567\) −8.99597 0.269340i −0.377795 0.0113112i
\(568\) −4.38336 −0.183922
\(569\) 28.1874 + 23.6520i 1.18168 + 0.991544i 0.999966 + 0.00819179i \(0.00260756\pi\)
0.181710 + 0.983352i \(0.441837\pi\)
\(570\) −17.5616 + 8.02966i −0.735573 + 0.336325i
\(571\) −3.50151 19.8580i −0.146533 0.831033i −0.966123 0.258082i \(-0.916910\pi\)
0.819590 0.572951i \(-0.194201\pi\)
\(572\) 2.23415 + 0.813164i 0.0934145 + 0.0340001i
\(573\) −26.3335 7.26766i −1.10010 0.303611i
\(574\) 1.67676 9.50941i 0.0699868 0.396915i
\(575\) 9.70353 16.8070i 0.404665 0.700901i
\(576\) −18.6438 3.57588i −0.776825 0.148995i
\(577\) 10.6679 + 18.4773i 0.444109 + 0.769220i 0.997990 0.0633766i \(-0.0201869\pi\)
−0.553881 + 0.832596i \(0.686854\pi\)
\(578\) 7.24339 2.63638i 0.301285 0.109659i
\(579\) −8.62422 12.5149i −0.358410 0.520103i
\(580\) −4.29259 + 3.60191i −0.178240 + 0.149561i
\(581\) −3.89731 + 3.27024i −0.161688 + 0.135672i
\(582\) 19.8814 1.58958i 0.824110 0.0658904i
\(583\) 41.4931 15.1023i 1.71847 0.625472i
\(584\) 3.00104 + 5.19795i 0.124184 + 0.215093i
\(585\) −2.26027 + 5.93228i −0.0934508 + 0.245270i
\(586\) −2.13212 + 3.69294i −0.0880771 + 0.152554i
\(587\) −2.14277 + 12.1522i −0.0884414 + 0.501576i 0.908119 + 0.418711i \(0.137518\pi\)
−0.996561 + 0.0828648i \(0.973593\pi\)
\(588\) −0.474168 1.82411i −0.0195544 0.0752250i
\(589\) 17.9313 + 6.52647i 0.738848 + 0.268919i
\(590\) −8.84072 50.1382i −0.363967 2.06416i
\(591\) −1.61233 + 16.9659i −0.0663225 + 0.697884i
\(592\) −2.45986 2.06406i −0.101099 0.0848325i
\(593\) −27.5842 −1.13275 −0.566373 0.824149i \(-0.691654\pi\)
−0.566373 + 0.824149i \(0.691654\pi\)
\(594\) 12.2181 16.6414i 0.501316 0.682804i
\(595\) 12.0404 0.493608
\(596\) −9.83700 8.25422i −0.402939 0.338106i
\(597\) −27.5009 19.5646i −1.12554 0.800726i
\(598\) −0.150369 0.852786i −0.00614905 0.0348730i
\(599\) −12.9966 4.73037i −0.531026 0.193278i 0.0625703 0.998041i \(-0.480070\pi\)
−0.593597 + 0.804763i \(0.702292\pi\)
\(600\) −40.8913 + 40.2838i −1.66938 + 1.64458i
\(601\) 3.75872 21.3168i 0.153321 0.869529i −0.806983 0.590575i \(-0.798901\pi\)
0.960304 0.278954i \(-0.0899879\pi\)
\(602\) 3.00908 5.21188i 0.122641 0.212420i
\(603\) 0.122536 8.18727i 0.00499007 0.333411i
\(604\) −10.7550 18.6283i −0.437617 0.757974i
\(605\) −23.9009 + 8.69923i −0.971712 + 0.353674i
\(606\) −7.84410 + 16.4983i −0.318645 + 0.670197i
\(607\) −5.59833 + 4.69756i −0.227229 + 0.190668i −0.749293 0.662238i \(-0.769607\pi\)
0.522064 + 0.852906i \(0.325162\pi\)
\(608\) 11.7343 9.84628i 0.475890 0.399319i
\(609\) −0.950425 + 1.99900i −0.0385132 + 0.0810037i
\(610\) −37.3523 + 13.5951i −1.51235 + 0.550450i
\(611\) 2.23451 + 3.87029i 0.0903987 + 0.156575i
\(612\) −0.145968 + 9.75287i −0.00590042 + 0.394236i
\(613\) 11.2255 19.4432i 0.453395 0.785303i −0.545200 0.838306i \(-0.683546\pi\)
0.998594 + 0.0530037i \(0.0168795\pi\)
\(614\) −0.668820 + 3.79307i −0.0269914 + 0.153076i
\(615\) 50.2783 49.5315i 2.02742 1.99730i
\(616\) 11.5297 + 4.19647i 0.464545 + 0.169081i
\(617\) 4.60952 + 26.1419i 0.185572 + 1.05243i 0.925218 + 0.379437i \(0.123882\pi\)
−0.739645 + 0.672997i \(0.765007\pi\)
\(618\) 18.6226 + 13.2484i 0.749110 + 0.532931i
\(619\) −16.5534 13.8899i −0.665337 0.558284i 0.246344 0.969182i \(-0.420771\pi\)
−0.911681 + 0.410899i \(0.865215\pi\)
\(620\) 28.8796 1.15983
\(621\) 8.91915 + 0.982508i 0.357913 + 0.0394267i
\(622\) 15.7241 0.630480
\(623\) −7.85082 6.58762i −0.314536 0.263927i
\(624\) −0.0550405 + 0.579168i −0.00220339 + 0.0231853i
\(625\) 7.83280 + 44.4220i 0.313312 + 1.77688i
\(626\) −3.79504 1.38128i −0.151680 0.0552071i
\(627\) 5.25304 + 20.2083i 0.209786 + 0.807040i
\(628\) 2.58831 14.6791i 0.103285 0.585758i
\(629\) −7.50009 + 12.9905i −0.299048 + 0.517967i
\(630\) −4.11014 + 10.7874i −0.163752 + 0.429781i
\(631\) −3.79456 6.57237i −0.151059 0.261642i 0.780558 0.625083i \(-0.214935\pi\)
−0.931617 + 0.363441i \(0.881602\pi\)
\(632\) 11.0880 4.03571i 0.441058 0.160532i
\(633\) 21.1263 1.68912i 0.839696 0.0671365i
\(634\) −7.82858 + 6.56896i −0.310913 + 0.260887i
\(635\) 8.00263 6.71500i 0.317575 0.266477i
\(636\) −11.3496 16.4698i −0.450041 0.653071i
\(637\) −0.493460 + 0.179605i −0.0195516 + 0.00711620i
\(638\) −2.53870 4.39716i −0.100508 0.174085i
\(639\) −4.37949 0.839985i −0.173250 0.0332293i
\(640\) 9.13018 15.8139i 0.360902 0.625101i
\(641\) −0.283856 + 1.60983i −0.0112117 + 0.0635844i −0.989900 0.141765i \(-0.954722\pi\)
0.978689 + 0.205350i \(0.0658332\pi\)
\(642\) −13.7542 3.79596i −0.542836 0.149815i
\(643\) 25.9497 + 9.44493i 1.02336 + 0.372472i 0.798548 0.601931i \(-0.205602\pi\)
0.224810 + 0.974403i \(0.427824\pi\)
\(644\) 0.326302 + 1.85055i 0.0128581 + 0.0729218i
\(645\) 40.0045 18.2912i 1.57517 0.720216i
\(646\) 6.33259 + 5.31368i 0.249153 + 0.209064i
\(647\) −44.8015 −1.76133 −0.880663 0.473743i \(-0.842903\pi\)
−0.880663 + 0.473743i \(0.842903\pi\)
\(648\) −24.6567 9.81954i −0.968607 0.385748i
\(649\) −55.0501 −2.16091
\(650\) 4.31699 + 3.62238i 0.169326 + 0.142082i
\(651\) 10.3746 4.74355i 0.406611 0.185914i
\(652\) 3.87156 + 21.9567i 0.151622 + 0.859891i
\(653\) −3.19930 1.16445i −0.125198 0.0455685i 0.278661 0.960389i \(-0.410109\pi\)
−0.403860 + 0.914821i \(0.632332\pi\)
\(654\) 25.2125 + 6.95829i 0.985887 + 0.272091i
\(655\) −0.726255 + 4.11880i −0.0283771 + 0.160935i
\(656\) 3.23400 5.60146i 0.126267 0.218700i
\(657\) 2.00230 + 5.76845i 0.0781172 + 0.225049i
\(658\) 4.06330 + 7.03784i 0.158404 + 0.274364i
\(659\) −0.0175194 + 0.00637655i −0.000682460 + 0.000248395i −0.342361 0.939568i \(-0.611227\pi\)
0.341679 + 0.939817i \(0.389004\pi\)
\(660\) 17.9310 + 26.0204i 0.697963 + 1.01284i
\(661\) −28.5778 + 23.9796i −1.11155 + 0.932698i −0.998147 0.0608514i \(-0.980618\pi\)
−0.113399 + 0.993549i \(0.536174\pi\)
\(662\) 11.1670 9.37022i 0.434017 0.364184i
\(663\) 2.70903 0.216596i 0.105210 0.00841190i
\(664\) −14.0980 + 5.13125i −0.547108 + 0.199131i
\(665\) −5.83760 10.1110i −0.226372 0.392088i
\(666\) −9.07844 11.1541i −0.351782 0.432212i
\(667\) 1.10341 1.91117i 0.0427243 0.0740007i
\(668\) −2.39071 + 13.5584i −0.0924992 + 0.524589i
\(669\) 7.69613 + 29.6068i 0.297550 + 1.14466i
\(670\) −9.86924 3.59211i −0.381282 0.138775i
\(671\) 7.46349 + 42.3276i 0.288125 + 1.63404i
\(672\) 0.866356 9.11630i 0.0334204 0.351669i
\(673\) 24.1602 + 20.2728i 0.931307 + 0.781460i 0.976052 0.217539i \(-0.0698029\pi\)
−0.0447443 + 0.998998i \(0.514247\pi\)
\(674\) 30.0202 1.15634
\(675\) −48.5748 + 32.4123i −1.86964 + 1.24755i
\(676\) 13.8459 0.532534
\(677\) 2.41097 + 2.02304i 0.0926610 + 0.0777518i 0.687941 0.725766i \(-0.258515\pi\)
−0.595280 + 0.803518i \(0.702959\pi\)
\(678\) 10.8928 + 7.74934i 0.418336 + 0.297612i
\(679\) 2.09401 + 11.8757i 0.0803606 + 0.455748i
\(680\) 33.3647 + 12.1438i 1.27948 + 0.465692i
\(681\) 16.0368 15.7986i 0.614533 0.605405i
\(682\) −4.54398 + 25.7702i −0.173998 + 0.986792i
\(683\) −17.6653 + 30.5971i −0.675943 + 1.17077i 0.300250 + 0.953861i \(0.402930\pi\)
−0.976192 + 0.216907i \(0.930403\pi\)
\(684\) 8.26081 4.60595i 0.315860 0.176113i
\(685\) 7.05027 + 12.2114i 0.269377 + 0.466575i
\(686\) −0.897321 + 0.326598i −0.0342599 + 0.0124696i
\(687\) −6.12023 + 12.8725i −0.233501 + 0.491117i
\(688\) 3.08806 2.59119i 0.117731 0.0987883i
\(689\) −4.26912 + 3.58221i −0.162640 + 0.136472i
\(690\) 4.94200 10.3944i 0.188139 0.395707i
\(691\) 13.1245 4.77694i 0.499281 0.181723i −0.0800898 0.996788i \(-0.525521\pi\)
0.579370 + 0.815064i \(0.303298\pi\)
\(692\) −6.99844 12.1217i −0.266041 0.460796i
\(693\) 10.7154 + 6.40221i 0.407043 + 0.243200i
\(694\) 13.7086 23.7439i 0.520370 0.901308i
\(695\) 8.62245 48.9003i 0.327068 1.85489i
\(696\) −4.64985 + 4.58077i −0.176252 + 0.173634i
\(697\) −28.3921 10.3339i −1.07543 0.391423i
\(698\) −5.69476 32.2966i −0.215550 1.22244i
\(699\) −6.53551 4.64948i −0.247196 0.175860i
\(700\) −9.36789 7.86059i −0.354073 0.297102i
\(701\) −43.9837 −1.66124 −0.830621 0.556839i \(-0.812014\pi\)
−0.830621 + 0.556839i \(0.812014\pi\)
\(702\) −0.730706 + 2.50106i −0.0275787 + 0.0943963i
\(703\) 14.5452 0.548583
\(704\) 20.1690 + 16.9238i 0.760148 + 0.637840i
\(705\) −5.61957 + 59.1323i −0.211645 + 2.22705i
\(706\) 3.69225 + 20.9398i 0.138960 + 0.788079i
\(707\) −10.3790 3.77765i −0.390343 0.142073i
\(708\) 6.27362 + 24.1344i 0.235777 + 0.907026i
\(709\) 2.98700 16.9401i 0.112179 0.636199i −0.875929 0.482439i \(-0.839751\pi\)
0.988108 0.153759i \(-0.0491380\pi\)
\(710\) −2.85988 + 4.95346i −0.107330 + 0.185900i
\(711\) 11.8516 1.90735i 0.444470 0.0715310i
\(712\) −15.1109 26.1729i −0.566306 0.980870i
\(713\) −10.6876 + 3.88996i −0.400252 + 0.145680i
\(714\) 4.92618 0.393865i 0.184358 0.0147400i
\(715\) 6.74469 5.65947i 0.252237 0.211652i
\(716\) 13.7534 11.5405i 0.513988 0.431287i
\(717\) −4.31869 6.26702i −0.161284 0.234046i
\(718\) 0.857129 0.311970i 0.0319878 0.0116426i
\(719\) 1.85884 + 3.21960i 0.0693229 + 0.120071i 0.898603 0.438762i \(-0.144583\pi\)
−0.829281 + 0.558833i \(0.811249\pi\)
\(720\) −5.05846 + 5.84841i −0.188518 + 0.217958i
\(721\) −6.90902 + 11.9668i −0.257305 + 0.445666i
\(722\) −1.75860 + 9.97354i −0.0654484 + 0.371177i
\(723\) 7.14627 + 1.97227i 0.265773 + 0.0733494i
\(724\) 2.22867 + 0.811169i 0.0828278 + 0.0301469i
\(725\) 2.49389 + 14.1435i 0.0926206 + 0.525278i
\(726\) −9.49420 + 4.34102i −0.352363 + 0.161111i
\(727\) −26.6008 22.3208i −0.986571 0.827831i −0.00150311 0.999999i \(-0.500478\pi\)
−0.985068 + 0.172168i \(0.944923\pi\)
\(728\) −1.54855 −0.0573932
\(729\) −22.7532 14.5359i −0.842712 0.538365i
\(730\) 7.83200 0.289875
\(731\) −14.4254 12.1043i −0.533542 0.447695i
\(732\) 17.7062 8.09579i 0.654439 0.299229i
\(733\) 2.65215 + 15.0411i 0.0979595 + 0.555556i 0.993800 + 0.111181i \(0.0354632\pi\)
−0.895841 + 0.444375i \(0.853426\pi\)
\(734\) 7.20844 + 2.62366i 0.266068 + 0.0968409i
\(735\) −6.72807 1.85685i −0.248169 0.0684909i
\(736\) −1.58541 + 8.99130i −0.0584389 + 0.331424i
\(737\) −5.67817 + 9.83488i −0.209158 + 0.362273i
\(738\) 18.9505 21.9099i 0.697577 0.806514i
\(739\) −13.3250 23.0795i −0.490167 0.848995i 0.509769 0.860312i \(-0.329731\pi\)
−0.999936 + 0.0113168i \(0.996398\pi\)
\(740\) 20.6857 7.52897i 0.760420 0.276770i
\(741\) −1.49532 2.16992i −0.0549319 0.0797139i
\(742\) −7.76308 + 6.51400i −0.284992 + 0.239136i
\(743\) 11.4662 9.62125i 0.420653 0.352970i −0.407759 0.913090i \(-0.633690\pi\)
0.828411 + 0.560120i \(0.189245\pi\)
\(744\) 33.5328 2.68106i 1.22937 0.0982924i
\(745\) −44.6864 + 16.2645i −1.63718 + 0.595886i
\(746\) 4.58944 + 7.94915i 0.168031 + 0.291039i
\(747\) −15.0689 + 2.42511i −0.551340 + 0.0887303i
\(748\) 6.76398 11.7155i 0.247315 0.428363i
\(749\) 1.49804 8.49581i 0.0547372 0.310430i
\(750\) 10.4602 + 40.2400i 0.381952 + 1.46936i
\(751\) −5.51346 2.00674i −0.201189 0.0732268i 0.239460 0.970906i \(-0.423030\pi\)
−0.440649 + 0.897679i \(0.645252\pi\)
\(752\) 0.945252 + 5.36079i 0.0344698 + 0.195488i
\(753\) −0.399493 + 4.20370i −0.0145583 + 0.153191i
\(754\) 0.490895 + 0.411910i 0.0178774 + 0.0150009i
\(755\) −79.6569 −2.89901
\(756\) 1.58564 5.42730i 0.0576690 0.197389i
\(757\) 35.2022 1.27944 0.639722 0.768606i \(-0.279049\pi\)
0.639722 + 0.768606i \(0.279049\pi\)
\(758\) −17.0602 14.3152i −0.619656 0.519953i
\(759\) −10.1406 7.21422i −0.368081 0.261859i
\(760\) −5.97853 33.9059i −0.216864 1.22990i
\(761\) 21.4866 + 7.82050i 0.778890 + 0.283493i 0.700710 0.713446i \(-0.252867\pi\)
0.0781805 + 0.996939i \(0.475089\pi\)
\(762\) 3.05451 3.00914i 0.110653 0.109010i
\(763\) −2.74602 + 15.5735i −0.0994126 + 0.563797i
\(764\) 8.58117 14.8630i 0.310456 0.537725i
\(765\) 31.0081 + 18.5267i 1.12110 + 0.669835i
\(766\) 1.83702 + 3.18182i 0.0663744 + 0.114964i
\(767\) 6.52886 2.37631i 0.235744 0.0858036i