Properties

Label 189.2.v.a.43.3
Level $189$
Weight $2$
Character 189.43
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 43.3
Character \(\chi\) \(=\) 189.43
Dual form 189.2.v.a.22.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09798 - 0.921318i) q^{2} +(-1.39977 + 1.02012i) q^{3} +(0.00944557 + 0.0535685i) q^{4} +(1.35272 + 0.492351i) q^{5} +(2.47678 + 0.169559i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-1.39433 + 2.41506i) q^{8} +(0.918713 - 2.85587i) q^{9} +O(q^{10})\) \(q+(-1.09798 - 0.921318i) q^{2} +(-1.39977 + 1.02012i) q^{3} +(0.00944557 + 0.0535685i) q^{4} +(1.35272 + 0.492351i) q^{5} +(2.47678 + 0.169559i) q^{6} +(0.173648 - 0.984808i) q^{7} +(-1.39433 + 2.41506i) q^{8} +(0.918713 - 2.85587i) q^{9} +(-1.03166 - 1.78688i) q^{10} +(1.39413 - 0.507422i) q^{11} +(-0.0678679 - 0.0653480i) q^{12} +(3.79855 - 3.18736i) q^{13} +(-1.09798 + 0.921318i) q^{14} +(-2.39576 + 0.690761i) q^{15} +(3.85822 - 1.40428i) q^{16} +(-3.76596 - 6.52284i) q^{17} +(-3.63989 + 2.28927i) q^{18} +(4.13067 - 7.15453i) q^{19} +(-0.0135973 + 0.0771139i) q^{20} +(0.761554 + 1.55565i) q^{21} +(-1.99823 - 0.727296i) q^{22} +(1.31455 + 7.45520i) q^{23} +(-0.511900 - 4.80291i) q^{24} +(-2.24277 - 1.88191i) q^{25} -7.10732 q^{26} +(1.62734 + 4.93475i) q^{27} +0.0543949 q^{28} +(0.675850 + 0.567105i) q^{29} +(3.26692 + 1.44881i) q^{30} +(1.22342 + 6.93837i) q^{31} +(-0.289068 - 0.105212i) q^{32} +(-1.43383 + 2.13245i) q^{33} +(-1.87464 + 10.6316i) q^{34} +(0.719769 - 1.24668i) q^{35} +(0.161662 + 0.0222388i) q^{36} +(0.822178 + 1.42405i) q^{37} +(-11.1270 + 4.04990i) q^{38} +(-2.06561 + 8.33654i) q^{39} +(-3.07520 + 2.58040i) q^{40} +(7.19412 - 6.03659i) q^{41} +(0.597071 - 2.40971i) q^{42} +(-1.81964 + 0.662296i) q^{43} +(0.0403502 + 0.0698886i) q^{44} +(2.64885 - 3.41087i) q^{45} +(5.42525 - 9.39681i) q^{46} +(-0.0880328 + 0.499259i) q^{47} +(-3.96809 + 5.90151i) q^{48} +(-0.939693 - 0.342020i) q^{49} +(0.728690 + 4.13261i) q^{50} +(11.9256 + 5.28874i) q^{51} +(0.206622 + 0.173376i) q^{52} -0.788130 q^{53} +(2.75968 - 6.91757i) q^{54} +2.13570 q^{55} +(2.13624 + 1.79252i) q^{56} +(1.51649 + 14.2285i) q^{57} +(-0.219588 - 1.24534i) q^{58} +(-6.05674 - 2.20447i) q^{59} +(-0.0596324 - 0.121813i) q^{60} +(-0.792535 + 4.49469i) q^{61} +(5.04915 - 8.74538i) q^{62} +(-2.65295 - 1.40067i) q^{63} +(-3.88537 - 6.72966i) q^{64} +(6.70769 - 2.44140i) q^{65} +(3.53899 - 1.02039i) q^{66} +(-8.02892 + 6.73706i) q^{67} +(0.313847 - 0.263349i) q^{68} +(-9.44526 - 9.09456i) q^{69} +(-1.93888 + 0.705695i) q^{70} +(-1.83977 - 3.18657i) q^{71} +(5.61608 + 6.20077i) q^{72} +(-3.51964 + 6.09620i) q^{73} +(0.409268 - 2.32108i) q^{74} +(5.05913 + 0.346345i) q^{75} +(0.422274 + 0.153695i) q^{76} +(-0.257625 - 1.46106i) q^{77} +(9.94861 - 7.25031i) q^{78} +(4.16387 + 3.49390i) q^{79} +5.91050 q^{80} +(-7.31193 - 5.24744i) q^{81} -13.4606 q^{82} +(-2.26150 - 1.89762i) q^{83} +(-0.0761403 + 0.0554893i) q^{84} +(-1.88278 - 10.6778i) q^{85} +(2.60812 + 0.949280i) q^{86} +(-1.52455 - 0.104370i) q^{87} +(-0.718430 + 4.07442i) q^{88} +(1.57945 - 2.73568i) q^{89} +(-6.05089 + 1.30464i) q^{90} +(-2.47933 - 4.29432i) q^{91} +(-0.386947 + 0.140837i) q^{92} +(-8.79048 - 8.46409i) q^{93} +(0.556635 - 0.467072i) q^{94} +(9.11020 - 7.64436i) q^{95} +(0.511957 - 0.147611i) q^{96} +(14.0512 - 5.11421i) q^{97} +(0.716658 + 1.24129i) q^{98} +(-0.168323 - 4.44762i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09798 0.921318i −0.776392 0.651470i 0.165945 0.986135i \(-0.446932\pi\)
−0.942337 + 0.334665i \(0.891377\pi\)
\(3\) −1.39977 + 1.02012i −0.808158 + 0.588966i
\(4\) 0.00944557 + 0.0535685i 0.00472279 + 0.0267842i
\(5\) 1.35272 + 0.492351i 0.604956 + 0.220186i 0.626295 0.779586i \(-0.284571\pi\)
−0.0213385 + 0.999772i \(0.506793\pi\)
\(6\) 2.47678 + 0.169559i 1.01114 + 0.0692220i
\(7\) 0.173648 0.984808i 0.0656328 0.372222i
\(8\) −1.39433 + 2.41506i −0.492971 + 0.853851i
\(9\) 0.918713 2.85587i 0.306238 0.951955i
\(10\) −1.03166 1.78688i −0.326239 0.565062i
\(11\) 1.39413 0.507422i 0.420346 0.152993i −0.123183 0.992384i \(-0.539310\pi\)
0.543529 + 0.839391i \(0.317088\pi\)
\(12\) −0.0678679 0.0653480i −0.0195918 0.0188643i
\(13\) 3.79855 3.18736i 1.05353 0.884015i 0.0600674 0.998194i \(-0.480868\pi\)
0.993460 + 0.114180i \(0.0364240\pi\)
\(14\) −1.09798 + 0.921318i −0.293449 + 0.246233i
\(15\) −2.39576 + 0.690761i −0.618582 + 0.178354i
\(16\) 3.85822 1.40428i 0.964555 0.351069i
\(17\) −3.76596 6.52284i −0.913380 1.58202i −0.809256 0.587457i \(-0.800129\pi\)
−0.104125 0.994564i \(-0.533204\pi\)
\(18\) −3.63989 + 2.28927i −0.857931 + 0.539586i
\(19\) 4.13067 7.15453i 0.947641 1.64136i 0.197265 0.980350i \(-0.436794\pi\)
0.750376 0.661012i \(-0.229873\pi\)
\(20\) −0.0135973 + 0.0771139i −0.00304044 + 0.0172432i
\(21\) 0.761554 + 1.55565i 0.166185 + 0.339470i
\(22\) −1.99823 0.727296i −0.426024 0.155060i
\(23\) 1.31455 + 7.45520i 0.274103 + 1.55452i 0.741796 + 0.670625i \(0.233974\pi\)
−0.467693 + 0.883891i \(0.654915\pi\)
\(24\) −0.511900 4.80291i −0.104491 0.980390i
\(25\) −2.24277 1.88191i −0.448554 0.376382i
\(26\) −7.10732 −1.39386
\(27\) 1.62734 + 4.93475i 0.313181 + 0.949693i
\(28\) 0.0543949 0.0102797
\(29\) 0.675850 + 0.567105i 0.125502 + 0.105309i 0.703378 0.710816i \(-0.251674\pi\)
−0.577876 + 0.816124i \(0.696118\pi\)
\(30\) 3.26692 + 1.44881i 0.596454 + 0.264515i
\(31\) 1.22342 + 6.93837i 0.219733 + 1.24617i 0.872502 + 0.488611i \(0.162496\pi\)
−0.652769 + 0.757557i \(0.726393\pi\)
\(32\) −0.289068 0.105212i −0.0511004 0.0185990i
\(33\) −1.43383 + 2.13245i −0.249598 + 0.371212i
\(34\) −1.87464 + 10.6316i −0.321498 + 1.82331i
\(35\) 0.719769 1.24668i 0.121663 0.210727i
\(36\) 0.161662 + 0.0222388i 0.0269437 + 0.00370646i
\(37\) 0.822178 + 1.42405i 0.135165 + 0.234113i 0.925661 0.378355i \(-0.123510\pi\)
−0.790495 + 0.612468i \(0.790177\pi\)
\(38\) −11.1270 + 4.04990i −1.80504 + 0.656980i
\(39\) −2.06561 + 8.33654i −0.330762 + 1.33492i
\(40\) −3.07520 + 2.58040i −0.486232 + 0.407997i
\(41\) 7.19412 6.03659i 1.12353 0.942756i 0.124756 0.992187i \(-0.460185\pi\)
0.998778 + 0.0494312i \(0.0157409\pi\)
\(42\) 0.597071 2.40971i 0.0921300 0.371826i
\(43\) −1.81964 + 0.662296i −0.277493 + 0.100999i −0.477018 0.878894i \(-0.658282\pi\)
0.199525 + 0.979893i \(0.436060\pi\)
\(44\) 0.0403502 + 0.0698886i 0.00608302 + 0.0105361i
\(45\) 2.64885 3.41087i 0.394868 0.508462i
\(46\) 5.42525 9.39681i 0.799909 1.38548i
\(47\) −0.0880328 + 0.499259i −0.0128409 + 0.0728244i −0.990555 0.137117i \(-0.956216\pi\)
0.977714 + 0.209942i \(0.0673274\pi\)
\(48\) −3.96809 + 5.90151i −0.572744 + 0.851809i
\(49\) −0.939693 0.342020i −0.134242 0.0488600i
\(50\) 0.728690 + 4.13261i 0.103052 + 0.584439i
\(51\) 11.9256 + 5.28874i 1.66991 + 0.740572i
\(52\) 0.206622 + 0.173376i 0.0286533 + 0.0240429i
\(53\) −0.788130 −0.108258 −0.0541290 0.998534i \(-0.517238\pi\)
−0.0541290 + 0.998534i \(0.517238\pi\)
\(54\) 2.75968 6.91757i 0.375546 0.941362i
\(55\) 2.13570 0.287978
\(56\) 2.13624 + 1.79252i 0.285467 + 0.239536i
\(57\) 1.51649 + 14.2285i 0.200864 + 1.88461i
\(58\) −0.219588 1.24534i −0.0288333 0.163522i
\(59\) −6.05674 2.20447i −0.788520 0.286998i −0.0837995 0.996483i \(-0.526706\pi\)
−0.704721 + 0.709485i \(0.748928\pi\)
\(60\) −0.0596324 0.121813i −0.00769851 0.0157259i
\(61\) −0.792535 + 4.49469i −0.101474 + 0.575486i 0.891097 + 0.453814i \(0.149937\pi\)
−0.992570 + 0.121672i \(0.961174\pi\)
\(62\) 5.04915 8.74538i 0.641242 1.11066i
\(63\) −2.65295 1.40067i −0.334240 0.176468i
\(64\) −3.88537 6.72966i −0.485672 0.841208i
\(65\) 6.70769 2.44140i 0.831986 0.302818i
\(66\) 3.53899 1.02039i 0.435620 0.125601i
\(67\) −8.02892 + 6.73706i −0.980888 + 0.823063i −0.984223 0.176932i \(-0.943383\pi\)
0.00333501 + 0.999994i \(0.498938\pi\)
\(68\) 0.313847 0.263349i 0.0380595 0.0319358i
\(69\) −9.44526 9.09456i −1.13708 1.09486i
\(70\) −1.93888 + 0.705695i −0.231741 + 0.0843467i
\(71\) −1.83977 3.18657i −0.218340 0.378176i 0.735961 0.677024i \(-0.236731\pi\)
−0.954301 + 0.298848i \(0.903398\pi\)
\(72\) 5.61608 + 6.20077i 0.661862 + 0.730768i
\(73\) −3.51964 + 6.09620i −0.411943 + 0.713507i −0.995102 0.0988515i \(-0.968483\pi\)
0.583159 + 0.812358i \(0.301816\pi\)
\(74\) 0.409268 2.32108i 0.0475765 0.269820i
\(75\) 5.05913 + 0.346345i 0.584178 + 0.0399924i
\(76\) 0.422274 + 0.153695i 0.0484381 + 0.0176300i
\(77\) −0.257625 1.46106i −0.0293591 0.166504i
\(78\) 9.94861 7.25031i 1.12646 0.820936i
\(79\) 4.16387 + 3.49390i 0.468472 + 0.393095i 0.846237 0.532807i \(-0.178863\pi\)
−0.377765 + 0.925902i \(0.623307\pi\)
\(80\) 5.91050 0.660814
\(81\) −7.31193 5.24744i −0.812437 0.583049i
\(82\) −13.4606 −1.48648
\(83\) −2.26150 1.89762i −0.248231 0.208291i 0.510179 0.860068i \(-0.329579\pi\)
−0.758410 + 0.651777i \(0.774024\pi\)
\(84\) −0.0761403 + 0.0554893i −0.00830759 + 0.00605438i
\(85\) −1.88278 10.6778i −0.204216 1.15817i
\(86\) 2.60812 + 0.949280i 0.281241 + 0.102363i
\(87\) −1.52455 0.104370i −0.163449 0.0111896i
\(88\) −0.718430 + 4.07442i −0.0765849 + 0.434334i
\(89\) 1.57945 2.73568i 0.167421 0.289982i −0.770091 0.637934i \(-0.779789\pi\)
0.937512 + 0.347952i \(0.113123\pi\)
\(90\) −6.05089 + 1.30464i −0.637820 + 0.137521i
\(91\) −2.47933 4.29432i −0.259904 0.450167i
\(92\) −0.386947 + 0.140837i −0.0403420 + 0.0146833i
\(93\) −8.79048 8.46409i −0.911530 0.877685i
\(94\) 0.556635 0.467072i 0.0574125 0.0481748i
\(95\) 9.11020 7.64436i 0.934686 0.784295i
\(96\) 0.511957 0.147611i 0.0522514 0.0150655i
\(97\) 14.0512 5.11421i 1.42668 0.519269i 0.490703 0.871327i \(-0.336740\pi\)
0.935978 + 0.352058i \(0.114518\pi\)
\(98\) 0.716658 + 1.24129i 0.0723934 + 0.125389i
\(99\) −0.168323 4.44762i −0.0169171 0.447003i
\(100\) 0.0796267 0.137918i 0.00796267 0.0137918i
\(101\) −0.672194 + 3.81220i −0.0668858 + 0.379328i 0.932929 + 0.360061i \(0.117244\pi\)
−0.999814 + 0.0192667i \(0.993867\pi\)
\(102\) −8.22146 16.7942i −0.814045 1.66287i
\(103\) 0.481264 + 0.175166i 0.0474204 + 0.0172596i 0.365621 0.930764i \(-0.380856\pi\)
−0.318201 + 0.948023i \(0.603079\pi\)
\(104\) 2.40121 + 13.6179i 0.235458 + 1.33535i
\(105\) 0.264248 + 2.47931i 0.0257879 + 0.241956i
\(106\) 0.865354 + 0.726119i 0.0840506 + 0.0705269i
\(107\) −12.7538 −1.23296 −0.616479 0.787371i \(-0.711442\pi\)
−0.616479 + 0.787371i \(0.711442\pi\)
\(108\) −0.248976 + 0.133786i −0.0239577 + 0.0128735i
\(109\) 7.04499 0.674787 0.337394 0.941364i \(-0.390455\pi\)
0.337394 + 0.941364i \(0.390455\pi\)
\(110\) −2.34497 1.96766i −0.223584 0.187609i
\(111\) −2.60357 1.15463i −0.247120 0.109593i
\(112\) −0.712970 4.04345i −0.0673693 0.382071i
\(113\) 10.3335 + 3.76109i 0.972095 + 0.353814i 0.778762 0.627320i \(-0.215848\pi\)
0.193333 + 0.981133i \(0.438070\pi\)
\(114\) 11.4439 17.0198i 1.07182 1.59405i
\(115\) −1.89235 + 10.7320i −0.176462 + 1.00077i
\(116\) −0.0239952 + 0.0415609i −0.00222790 + 0.00385883i
\(117\) −5.61290 13.7764i −0.518912 1.27363i
\(118\) 4.61918 + 8.00066i 0.425230 + 0.736520i
\(119\) −7.07770 + 2.57607i −0.648811 + 0.236148i
\(120\) 1.67226 6.74905i 0.152656 0.616101i
\(121\) −6.74037 + 5.65584i −0.612761 + 0.514167i
\(122\) 5.01123 4.20492i 0.453695 0.380695i
\(123\) −3.91208 + 15.7887i −0.352740 + 1.42362i
\(124\) −0.360122 + 0.131074i −0.0323399 + 0.0117708i
\(125\) −5.70614 9.88332i −0.510372 0.883991i
\(126\) 1.62243 + 3.98212i 0.144537 + 0.354755i
\(127\) −0.889792 + 1.54117i −0.0789563 + 0.136756i −0.902800 0.430061i \(-0.858492\pi\)
0.823844 + 0.566817i \(0.191825\pi\)
\(128\) −2.04092 + 11.5746i −0.180393 + 1.02306i
\(129\) 1.87146 2.78332i 0.164773 0.245057i
\(130\) −9.61423 3.49930i −0.843224 0.306908i
\(131\) 0.382337 + 2.16834i 0.0334050 + 0.189449i 0.996944 0.0781185i \(-0.0248913\pi\)
−0.963539 + 0.267568i \(0.913780\pi\)
\(132\) −0.127776 0.0566659i −0.0111214 0.00493214i
\(133\) −6.32855 5.31029i −0.548755 0.460460i
\(134\) 15.0226 1.29775
\(135\) −0.228293 + 7.47658i −0.0196484 + 0.643481i
\(136\) 21.0040 1.80108
\(137\) 9.82382 + 8.24316i 0.839305 + 0.704261i 0.957407 0.288741i \(-0.0932365\pi\)
−0.118102 + 0.993001i \(0.537681\pi\)
\(138\) 1.99176 + 18.6878i 0.169550 + 1.59081i
\(139\) 0.441046 + 2.50130i 0.0374091 + 0.212157i 0.997782 0.0665592i \(-0.0212021\pi\)
−0.960373 + 0.278717i \(0.910091\pi\)
\(140\) 0.0735812 + 0.0267814i 0.00621875 + 0.00226344i
\(141\) −0.386078 0.788651i −0.0325136 0.0664164i
\(142\) −0.915809 + 5.19381i −0.0768530 + 0.435855i
\(143\) 3.67833 6.37106i 0.307598 0.532775i
\(144\) −0.465831 12.3087i −0.0388192 1.02572i
\(145\) 0.635023 + 1.09989i 0.0527358 + 0.0913411i
\(146\) 9.48105 3.45082i 0.784657 0.285592i
\(147\) 1.66426 0.479849i 0.137265 0.0395773i
\(148\) −0.0685185 + 0.0574939i −0.00563219 + 0.00472597i
\(149\) −0.169290 + 0.142051i −0.0138688 + 0.0116373i −0.649696 0.760194i \(-0.725104\pi\)
0.635827 + 0.771832i \(0.280659\pi\)
\(150\) −5.23575 5.04135i −0.427497 0.411625i
\(151\) 11.1962 4.07507i 0.911130 0.331624i 0.156426 0.987690i \(-0.450003\pi\)
0.754704 + 0.656065i \(0.227780\pi\)
\(152\) 11.5191 + 19.9516i 0.934319 + 1.61829i
\(153\) −22.0882 + 4.76247i −1.78572 + 0.385023i
\(154\) −1.06324 + 1.84158i −0.0856780 + 0.148399i
\(155\) −1.76116 + 9.98805i −0.141460 + 0.802260i
\(156\) −0.466087 0.0319080i −0.0373168 0.00255468i
\(157\) 1.94480 + 0.707848i 0.155212 + 0.0564924i 0.418458 0.908236i \(-0.362571\pi\)
−0.263246 + 0.964729i \(0.584793\pi\)
\(158\) −1.35287 7.67249i −0.107628 0.610391i
\(159\) 1.10320 0.803987i 0.0874896 0.0637603i
\(160\) −0.339227 0.284646i −0.0268183 0.0225032i
\(161\) 7.57021 0.596616
\(162\) 3.19382 + 12.4982i 0.250931 + 0.981953i
\(163\) −7.03713 −0.551190 −0.275595 0.961274i \(-0.588875\pi\)
−0.275595 + 0.961274i \(0.588875\pi\)
\(164\) 0.391323 + 0.328359i 0.0305572 + 0.0256406i
\(165\) −2.98949 + 2.17867i −0.232732 + 0.169609i
\(166\) 0.734775 + 4.16711i 0.0570296 + 0.323431i
\(167\) 4.43396 + 1.61383i 0.343110 + 0.124882i 0.507827 0.861459i \(-0.330449\pi\)
−0.164717 + 0.986341i \(0.552671\pi\)
\(168\) −4.81883 0.329894i −0.371781 0.0254519i
\(169\) 2.01227 11.4122i 0.154790 0.877860i
\(170\) −7.77036 + 13.4587i −0.595960 + 1.03223i
\(171\) −16.6375 18.3696i −1.27230 1.40476i
\(172\) −0.0526658 0.0912198i −0.00401573 0.00695545i
\(173\) −15.0802 + 5.48876i −1.14653 + 0.417303i −0.844268 0.535922i \(-0.819964\pi\)
−0.302262 + 0.953225i \(0.597742\pi\)
\(174\) 1.57777 + 1.51919i 0.119611 + 0.115170i
\(175\) −2.24277 + 1.88191i −0.169537 + 0.142259i
\(176\) 4.66630 3.91549i 0.351735 0.295141i
\(177\) 10.7269 3.09284i 0.806281 0.232472i
\(178\) −4.25464 + 1.54856i −0.318898 + 0.116070i
\(179\) 0.108115 + 0.187260i 0.00808088 + 0.0139965i 0.870038 0.492985i \(-0.164094\pi\)
−0.861957 + 0.506982i \(0.830761\pi\)
\(180\) 0.207735 + 0.109678i 0.0154837 + 0.00817488i
\(181\) −11.3215 + 19.6094i −0.841521 + 1.45756i 0.0470872 + 0.998891i \(0.485006\pi\)
−0.888608 + 0.458667i \(0.848327\pi\)
\(182\) −1.23417 + 6.99934i −0.0914829 + 0.518826i
\(183\) −3.47575 7.10001i −0.256935 0.524848i
\(184\) −19.8377 7.22031i −1.46245 0.532289i
\(185\) 0.411045 + 2.33115i 0.0302206 + 0.171390i
\(186\) 1.85369 + 17.3923i 0.135919 + 1.27526i
\(187\) −8.56007 7.18276i −0.625975 0.525255i
\(188\) −0.0275761 −0.00201119
\(189\) 5.14237 0.745703i 0.374052 0.0542419i
\(190\) −17.0457 −1.23663
\(191\) −5.12799 4.30289i −0.371048 0.311346i 0.438128 0.898913i \(-0.355642\pi\)
−0.809176 + 0.587566i \(0.800086\pi\)
\(192\) 12.3037 + 5.45644i 0.887942 + 0.393784i
\(193\) 3.91915 + 22.2266i 0.282107 + 1.59991i 0.715441 + 0.698674i \(0.246226\pi\)
−0.433334 + 0.901233i \(0.642663\pi\)
\(194\) −20.1398 7.33028i −1.44595 0.526283i
\(195\) −6.89870 + 10.2600i −0.494026 + 0.734736i
\(196\) 0.00944557 0.0535685i 0.000674684 0.00382632i
\(197\) −2.81292 + 4.87213i −0.200413 + 0.347125i −0.948661 0.316293i \(-0.897562\pi\)
0.748249 + 0.663418i \(0.230895\pi\)
\(198\) −3.91286 + 5.03850i −0.278075 + 0.358070i
\(199\) 5.53756 + 9.59134i 0.392547 + 0.679912i 0.992785 0.119910i \(-0.0382605\pi\)
−0.600237 + 0.799822i \(0.704927\pi\)
\(200\) 7.67208 2.79241i 0.542498 0.197453i
\(201\) 4.36603 17.6208i 0.307956 1.24287i
\(202\) 4.25031 3.56643i 0.299051 0.250933i
\(203\) 0.675850 0.567105i 0.0474353 0.0398030i
\(204\) −0.170666 + 0.688789i −0.0119490 + 0.0482249i
\(205\) 12.7038 4.62380i 0.887271 0.322940i
\(206\) −0.367037 0.635727i −0.0255727 0.0442932i
\(207\) 22.4987 + 3.09500i 1.56377 + 0.215117i
\(208\) 10.1797 17.6317i 0.705835 1.22254i
\(209\) 2.12833 12.0703i 0.147219 0.834923i
\(210\) 1.99409 2.96570i 0.137606 0.204653i
\(211\) 13.3117 + 4.84505i 0.916412 + 0.333547i 0.756810 0.653635i \(-0.226757\pi\)
0.159602 + 0.987181i \(0.448979\pi\)
\(212\) −0.00744434 0.0422190i −0.000511279 0.00289961i
\(213\) 5.82593 + 2.58368i 0.399186 + 0.177031i
\(214\) 14.0035 + 11.7503i 0.957259 + 0.803236i
\(215\) −2.78756 −0.190110
\(216\) −14.1868 2.95058i −0.965286 0.200761i
\(217\) 7.04541 0.478273
\(218\) −7.73528 6.49067i −0.523899 0.439604i
\(219\) −1.29216 12.1237i −0.0873162 0.819246i
\(220\) 0.0201729 + 0.114406i 0.00136006 + 0.00771328i
\(221\) −35.0958 12.7738i −2.36080 0.859261i
\(222\) 1.79489 + 3.66648i 0.120465 + 0.246078i
\(223\) 1.85948 10.5456i 0.124520 0.706188i −0.857072 0.515197i \(-0.827719\pi\)
0.981592 0.190991i \(-0.0611700\pi\)
\(224\) −0.153810 + 0.266406i −0.0102768 + 0.0178000i
\(225\) −7.43494 + 4.67612i −0.495662 + 0.311741i
\(226\) −7.88087 13.6501i −0.524228 0.907989i
\(227\) 2.42922 0.884164i 0.161233 0.0586840i −0.260143 0.965570i \(-0.583770\pi\)
0.421376 + 0.906886i \(0.361547\pi\)
\(228\) −0.747874 + 0.215632i −0.0495292 + 0.0142806i
\(229\) −2.45799 + 2.06250i −0.162429 + 0.136294i −0.720379 0.693580i \(-0.756032\pi\)
0.557951 + 0.829874i \(0.311588\pi\)
\(230\) 11.9654 10.0402i 0.788975 0.662028i
\(231\) 1.85107 + 1.78234i 0.121792 + 0.117270i
\(232\) −2.31195 + 0.841481i −0.151787 + 0.0552460i
\(233\) −1.02459 1.77464i −0.0671230 0.116260i 0.830511 0.557003i \(-0.188049\pi\)
−0.897634 + 0.440742i \(0.854715\pi\)
\(234\) −6.52958 + 20.2975i −0.426852 + 1.32689i
\(235\) −0.364895 + 0.632016i −0.0238031 + 0.0412282i
\(236\) 0.0608809 0.345273i 0.00396301 0.0224754i
\(237\) −9.39266 0.643015i −0.610119 0.0417683i
\(238\) 10.1446 + 3.69232i 0.657575 + 0.239338i
\(239\) 4.12642 + 23.4021i 0.266916 + 1.51376i 0.763523 + 0.645780i \(0.223468\pi\)
−0.496607 + 0.867975i \(0.665421\pi\)
\(240\) −8.27334 + 6.02942i −0.534042 + 0.389197i
\(241\) −15.2614 12.8058i −0.983072 0.824896i 0.00147786 0.999999i \(-0.499530\pi\)
−0.984550 + 0.175103i \(0.943974\pi\)
\(242\) 12.6116 0.810707
\(243\) 15.5880 0.113836i 0.999973 0.00730259i
\(244\) −0.248260 −0.0158932
\(245\) −1.10275 0.925318i −0.0704521 0.0591164i
\(246\) 18.8418 13.7315i 1.20131 0.875486i
\(247\) −7.11352 40.3428i −0.452622 2.56695i
\(248\) −18.4624 6.71977i −1.17236 0.426706i
\(249\) 5.10137 + 0.349236i 0.323286 + 0.0221320i
\(250\) −2.84043 + 16.1089i −0.179645 + 1.01882i
\(251\) 2.84078 4.92038i 0.179309 0.310572i −0.762335 0.647182i \(-0.775947\pi\)
0.941644 + 0.336611i \(0.109281\pi\)
\(252\) 0.0499733 0.155344i 0.00314802 0.00978578i
\(253\) 5.61559 + 9.72648i 0.353049 + 0.611499i
\(254\) 2.39688 0.872393i 0.150394 0.0547388i
\(255\) 13.5281 + 13.0258i 0.847160 + 0.815705i
\(256\) 0.999320 0.838529i 0.0624575 0.0524081i
\(257\) 11.5452 9.68760i 0.720172 0.604296i −0.207261 0.978286i \(-0.566455\pi\)
0.927433 + 0.373990i \(0.122010\pi\)
\(258\) −4.61915 + 1.33183i −0.287576 + 0.0829158i
\(259\) 1.54519 0.562403i 0.0960134 0.0349460i
\(260\) 0.194140 + 0.336260i 0.0120400 + 0.0208540i
\(261\) 2.24049 1.40913i 0.138683 0.0872229i
\(262\) 1.57793 2.73306i 0.0974850 0.168849i
\(263\) 1.03462 5.86765i 0.0637977 0.361815i −0.936150 0.351601i \(-0.885638\pi\)
0.999948 0.0102142i \(-0.00325133\pi\)
\(264\) −3.15076 6.43613i −0.193916 0.396117i
\(265\) −1.06612 0.388037i −0.0654914 0.0238369i
\(266\) 2.05619 + 11.6612i 0.126073 + 0.714995i
\(267\) 0.579860 + 5.44055i 0.0354868 + 0.332956i
\(268\) −0.436732 0.366462i −0.0266776 0.0223852i
\(269\) 22.2275 1.35523 0.677616 0.735416i \(-0.263013\pi\)
0.677616 + 0.735416i \(0.263013\pi\)
\(270\) 7.13897 7.99883i 0.434464 0.486793i
\(271\) 17.2186 1.04596 0.522979 0.852346i \(-0.324821\pi\)
0.522979 + 0.852346i \(0.324821\pi\)
\(272\) −23.6898 19.8781i −1.43640 1.20529i
\(273\) 7.85120 + 3.48185i 0.475176 + 0.210731i
\(274\) −3.19182 18.1017i −0.192825 1.09356i
\(275\) −4.08163 1.48559i −0.246132 0.0895847i
\(276\) 0.397966 0.591872i 0.0239548 0.0356265i
\(277\) −0.775196 + 4.39636i −0.0465770 + 0.264151i −0.999200 0.0400038i \(-0.987263\pi\)
0.952623 + 0.304155i \(0.0983741\pi\)
\(278\) 1.82023 3.15273i 0.109170 0.189088i
\(279\) 20.9390 + 2.88044i 1.25359 + 0.172448i
\(280\) 2.00720 + 3.47657i 0.119953 + 0.207765i
\(281\) −7.54137 + 2.74484i −0.449881 + 0.163743i −0.557017 0.830501i \(-0.688054\pi\)
0.107136 + 0.994244i \(0.465832\pi\)
\(282\) −0.302691 + 1.22163i −0.0180250 + 0.0727468i
\(283\) 12.0607 10.1202i 0.716936 0.601581i −0.209600 0.977787i \(-0.567216\pi\)
0.926536 + 0.376206i \(0.122772\pi\)
\(284\) 0.153322 0.128652i 0.00909799 0.00763412i
\(285\) −4.95402 + 19.9938i −0.293451 + 1.18433i
\(286\) −9.90852 + 3.60641i −0.585903 + 0.213251i
\(287\) −4.69563 8.13307i −0.277174 0.480080i
\(288\) −0.566041 + 0.728879i −0.0333543 + 0.0429496i
\(289\) −19.8650 + 34.4071i −1.16853 + 2.02395i
\(290\) 0.316105 1.79272i 0.0185623 0.105272i
\(291\) −14.4513 + 21.4926i −0.847151 + 1.25992i
\(292\) −0.359809 0.130960i −0.0210563 0.00766385i
\(293\) −1.32264 7.50104i −0.0772692 0.438215i −0.998759 0.0498119i \(-0.984138\pi\)
0.921489 0.388403i \(-0.126973\pi\)
\(294\) −2.26942 1.00644i −0.132355 0.0586968i
\(295\) −7.10772 5.96409i −0.413828 0.347243i
\(296\) −4.58556 −0.266530
\(297\) 4.77272 + 6.05394i 0.276941 + 0.351285i
\(298\) 0.316752 0.0183490
\(299\) 28.7558 + 24.1290i 1.66299 + 1.39541i
\(300\) 0.0292332 + 0.274282i 0.00168778 + 0.0158357i
\(301\) 0.336257 + 1.90701i 0.0193815 + 0.109918i
\(302\) −16.0476 5.84086i −0.923437 0.336104i
\(303\) −2.94798 6.02192i −0.169357 0.345950i
\(304\) 5.89009 33.4043i 0.337820 1.91587i
\(305\) −3.28505 + 5.68987i −0.188101 + 0.325801i
\(306\) 28.6402 + 15.1211i 1.63725 + 0.864417i
\(307\) 6.71435 + 11.6296i 0.383208 + 0.663736i 0.991519 0.129963i \(-0.0414858\pi\)
−0.608311 + 0.793699i \(0.708153\pi\)
\(308\) 0.0758335 0.0276012i 0.00432102 0.00157272i
\(309\) −0.852350 + 0.245755i −0.0484885 + 0.0139805i
\(310\) 11.1359 9.34413i 0.632477 0.530711i
\(311\) 4.17963 3.50712i 0.237005 0.198871i −0.516548 0.856259i \(-0.672783\pi\)
0.753553 + 0.657388i \(0.228339\pi\)
\(312\) −17.2531 16.6125i −0.976763 0.940496i
\(313\) 13.6019 4.95068i 0.768824 0.279829i 0.0723196 0.997382i \(-0.476960\pi\)
0.696504 + 0.717552i \(0.254738\pi\)
\(314\) −1.48320 2.56898i −0.0837020 0.144976i
\(315\) −2.89908 3.20090i −0.163345 0.180350i
\(316\) −0.147833 + 0.256054i −0.00831625 + 0.0144042i
\(317\) 5.84460 33.1464i 0.328266 1.86169i −0.157389 0.987537i \(-0.550308\pi\)
0.485655 0.874151i \(-0.338581\pi\)
\(318\) −1.95202 0.133634i −0.109464 0.00749384i
\(319\) 1.22998 + 0.447678i 0.0688659 + 0.0250651i
\(320\) −1.94248 11.0163i −0.108588 0.615832i
\(321\) 17.8524 13.0104i 0.996425 0.726171i
\(322\) −8.31196 6.97457i −0.463208 0.388677i
\(323\) −62.2238 −3.46222
\(324\) 0.212032 0.441254i 0.0117796 0.0245141i
\(325\) −14.5176 −0.805291
\(326\) 7.72665 + 6.48343i 0.427940 + 0.359084i
\(327\) −9.86136 + 7.18673i −0.545334 + 0.397427i
\(328\) 4.54769 + 25.7912i 0.251104 + 1.42408i
\(329\) 0.476387 + 0.173391i 0.0262641 + 0.00955934i
\(330\) 5.28966 + 0.362127i 0.291186 + 0.0199344i
\(331\) 1.63804 9.28977i 0.0900347 0.510612i −0.906122 0.423018i \(-0.860971\pi\)
0.996156 0.0875946i \(-0.0279180\pi\)
\(332\) 0.0802916 0.139069i 0.00440657 0.00763241i
\(333\) 4.82225 1.03973i 0.264258 0.0569770i
\(334\) −3.38156 5.85704i −0.185031 0.320483i
\(335\) −14.1779 + 5.16034i −0.774622 + 0.281939i
\(336\) 5.12280 + 4.93259i 0.279472 + 0.269095i
\(337\) −0.439360 + 0.368667i −0.0239335 + 0.0200826i −0.654676 0.755910i \(-0.727195\pi\)
0.630742 + 0.775992i \(0.282750\pi\)
\(338\) −12.7237 + 10.6764i −0.692077 + 0.580722i
\(339\) −18.3013 + 5.27675i −0.993990 + 0.286594i
\(340\) 0.554209 0.201715i 0.0300562 0.0109396i
\(341\) 5.22629 + 9.05220i 0.283020 + 0.490204i
\(342\) 1.34344 + 35.4979i 0.0726451 + 1.91951i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) 0.937708 5.31800i 0.0505578 0.286728i
\(345\) −8.29911 16.9528i −0.446809 0.912709i
\(346\) 21.6148 + 7.86713i 1.16202 + 0.422939i
\(347\) −3.17206 17.9897i −0.170285 0.965736i −0.943446 0.331526i \(-0.892437\pi\)
0.773161 0.634210i \(-0.218674\pi\)
\(348\) −0.00880932 0.0826536i −0.000472229 0.00443070i
\(349\) 4.18603 + 3.51250i 0.224073 + 0.188020i 0.747912 0.663797i \(-0.231056\pi\)
−0.523839 + 0.851817i \(0.675501\pi\)
\(350\) 4.19636 0.224305
\(351\) 21.9103 + 13.5580i 1.16949 + 0.723671i
\(352\) −0.456385 −0.0243254
\(353\) −1.09500 0.918811i −0.0582808 0.0489034i 0.613182 0.789942i \(-0.289889\pi\)
−0.671463 + 0.741038i \(0.734334\pi\)
\(354\) −14.6274 6.48696i −0.777439 0.344778i
\(355\) −0.919785 5.21636i −0.0488171 0.276855i
\(356\) 0.161465 + 0.0587685i 0.00855763 + 0.00311472i
\(357\) 7.27925 10.8260i 0.385259 0.572973i
\(358\) 0.0538180 0.305217i 0.00284437 0.0161312i
\(359\) −15.0953 + 26.1458i −0.796700 + 1.37992i 0.125055 + 0.992150i \(0.460089\pi\)
−0.921754 + 0.387774i \(0.873244\pi\)
\(360\) 4.54405 + 11.1530i 0.239493 + 0.587816i
\(361\) −24.6249 42.6515i −1.29605 2.24482i
\(362\) 30.4974 11.1001i 1.60291 0.583410i
\(363\) 3.66533 14.7929i 0.192380 0.776423i
\(364\) 0.206622 0.173376i 0.0108299 0.00908737i
\(365\) −7.76258 + 6.51358i −0.406312 + 0.340936i
\(366\) −2.72505 + 10.9980i −0.142440 + 0.574873i
\(367\) −31.2543 + 11.3756i −1.63146 + 0.593803i −0.985516 0.169582i \(-0.945758\pi\)
−0.645944 + 0.763385i \(0.723536\pi\)
\(368\) 15.5410 + 26.9178i 0.810130 + 1.40319i
\(369\) −10.6303 26.0913i −0.553394 1.35826i
\(370\) 1.69641 2.93827i 0.0881923 0.152753i
\(371\) −0.136857 + 0.776157i −0.00710528 + 0.0402961i
\(372\) 0.370377 0.550841i 0.0192032 0.0285598i
\(373\) 17.1355 + 6.23682i 0.887243 + 0.322930i 0.745129 0.666920i \(-0.232388\pi\)
0.142114 + 0.989850i \(0.454610\pi\)
\(374\) 2.78122 + 15.7731i 0.143814 + 0.815607i
\(375\) 18.0694 + 8.01343i 0.933102 + 0.413812i
\(376\) −1.08299 0.908737i −0.0558510 0.0468646i
\(377\) 4.37482 0.225314
\(378\) −6.33326 3.91898i −0.325748 0.201571i
\(379\) −1.95298 −0.100318 −0.0501589 0.998741i \(-0.515973\pi\)
−0.0501589 + 0.998741i \(0.515973\pi\)
\(380\) 0.495548 + 0.415814i 0.0254211 + 0.0213308i
\(381\) −0.326668 3.06497i −0.0167357 0.157023i
\(382\) 1.66612 + 9.44902i 0.0852459 + 0.483454i
\(383\) −14.4026 5.24210i −0.735936 0.267859i −0.0532608 0.998581i \(-0.516961\pi\)
−0.682675 + 0.730722i \(0.739184\pi\)
\(384\) −8.95068 18.2838i −0.456762 0.933040i
\(385\) 0.370861 2.10326i 0.0189008 0.107192i
\(386\) 16.1746 28.0153i 0.823266 1.42594i
\(387\) 0.219699 + 5.80512i 0.0111679 + 0.295091i
\(388\) 0.406682 + 0.704394i 0.0206462 + 0.0357602i
\(389\) 8.13855 2.96219i 0.412641 0.150189i −0.127354 0.991857i \(-0.540648\pi\)
0.539995 + 0.841668i \(0.318426\pi\)
\(390\) 17.0274 4.90946i 0.862217 0.248600i
\(391\) 43.6785 36.6506i 2.20892 1.85350i
\(392\) 2.13624 1.79252i 0.107897 0.0905360i
\(393\) −2.74715 2.64515i −0.138576 0.133430i
\(394\) 7.57732 2.75792i 0.381740 0.138942i
\(395\) 3.91234 + 6.77637i 0.196851 + 0.340956i
\(396\) 0.236663 0.0510272i 0.0118927 0.00256421i
\(397\) −1.71981 + 2.97880i −0.0863149 + 0.149502i −0.905951 0.423383i \(-0.860842\pi\)
0.819636 + 0.572885i \(0.194176\pi\)
\(398\) 2.75652 15.6330i 0.138172 0.783611i
\(399\) 14.2756 + 0.977301i 0.714676 + 0.0489262i
\(400\) −11.2958 4.11134i −0.564791 0.205567i
\(401\) 5.19856 + 29.4825i 0.259604 + 1.47229i 0.783973 + 0.620795i \(0.213190\pi\)
−0.524369 + 0.851491i \(0.675699\pi\)
\(402\) −21.0282 + 15.3248i −1.04879 + 0.764333i
\(403\) 26.7623 + 22.4562i 1.33313 + 1.11863i
\(404\) −0.210563 −0.0104759
\(405\) −7.30744 10.6984i −0.363110 0.531607i
\(406\) −1.26456 −0.0627589
\(407\) 1.86882 + 1.56813i 0.0926340 + 0.0777291i
\(408\) −29.4008 + 21.4266i −1.45556 + 1.06078i
\(409\) 6.14874 + 34.8712i 0.304035 + 1.72427i 0.628010 + 0.778205i \(0.283870\pi\)
−0.323975 + 0.946066i \(0.605019\pi\)
\(410\) −18.2085 6.62736i −0.899255 0.327302i
\(411\) −22.1601 1.51706i −1.09308 0.0748313i
\(412\) −0.00483756 + 0.0274351i −0.000238329 + 0.00135163i
\(413\) −3.22272 + 5.58192i −0.158580 + 0.274668i
\(414\) −21.8518 24.1267i −1.07396 1.18577i
\(415\) −2.12488 3.68041i −0.104306 0.180664i
\(416\) −1.43339 + 0.521710i −0.0702775 + 0.0255789i
\(417\) −3.16899 3.05132i −0.155186 0.149424i
\(418\) −13.4575 + 11.2922i −0.658227 + 0.552318i
\(419\) −22.0933 + 18.5385i −1.07933 + 0.905665i −0.995865 0.0908455i \(-0.971043\pi\)
−0.0834648 + 0.996511i \(0.526599\pi\)
\(420\) −0.130317 + 0.0375739i −0.00635882 + 0.00183342i
\(421\) −26.2262 + 9.54557i −1.27819 + 0.465223i −0.889833 0.456287i \(-0.849179\pi\)
−0.388356 + 0.921510i \(0.626957\pi\)
\(422\) −10.1522 17.5840i −0.494199 0.855978i
\(423\) 1.34494 + 0.710085i 0.0653932 + 0.0345255i
\(424\) 1.09892 1.90338i 0.0533681 0.0924363i
\(425\) −3.82919 + 21.7164i −0.185743 + 1.05340i
\(426\) −4.01638 8.20437i −0.194594 0.397503i
\(427\) 4.28878 + 1.56099i 0.207549 + 0.0755415i
\(428\) −0.120467 0.683203i −0.00582300 0.0330239i
\(429\) 1.35042 + 12.6704i 0.0651990 + 0.611731i
\(430\) 3.06069 + 2.56823i 0.147600 + 0.123851i
\(431\) −8.85790 −0.426670 −0.213335 0.976979i \(-0.568433\pi\)
−0.213335 + 0.976979i \(0.568433\pi\)
\(432\) 13.2084 + 16.7541i 0.635489 + 0.806083i
\(433\) −11.2471 −0.540503 −0.270251 0.962790i \(-0.587107\pi\)
−0.270251 + 0.962790i \(0.587107\pi\)
\(434\) −7.73574 6.49106i −0.371328 0.311581i
\(435\) −2.01091 0.891797i −0.0964156 0.0427584i
\(436\) 0.0665439 + 0.377389i 0.00318688 + 0.0180737i
\(437\) 58.7684 + 21.3900i 2.81128 + 1.02322i
\(438\) −9.75104 + 14.5022i −0.465923 + 0.692940i
\(439\) 4.66081 26.4328i 0.222448 1.26157i −0.645055 0.764136i \(-0.723166\pi\)
0.867504 0.497431i \(-0.165723\pi\)
\(440\) −2.97788 + 5.15784i −0.141965 + 0.245891i
\(441\) −1.84007 + 2.36942i −0.0876224 + 0.112829i
\(442\) 26.7659 + 46.3599i 1.27312 + 2.20511i
\(443\) 25.4041 9.24635i 1.20699 0.439308i 0.341330 0.939944i \(-0.389123\pi\)
0.865658 + 0.500636i \(0.166901\pi\)
\(444\) 0.0372596 0.150375i 0.00176826 0.00713650i
\(445\) 3.48347 2.92298i 0.165132 0.138562i
\(446\) −11.7576 + 9.86576i −0.556736 + 0.467157i
\(447\) 0.0920580 0.371535i 0.00435420 0.0175730i
\(448\) −7.30211 + 2.65775i −0.344992 + 0.125567i
\(449\) 16.4286 + 28.4552i 0.775314 + 1.34288i 0.934618 + 0.355654i \(0.115742\pi\)
−0.159304 + 0.987230i \(0.550925\pi\)
\(450\) 12.4716 + 1.71564i 0.587918 + 0.0808760i
\(451\) 6.96645 12.0662i 0.328037 0.568177i
\(452\) −0.103870 + 0.589076i −0.00488564 + 0.0277078i
\(453\) −11.5150 + 17.1256i −0.541021 + 0.804630i
\(454\) −3.48184 1.26729i −0.163411 0.0594767i
\(455\) −1.23953 7.02973i −0.0581101 0.329559i
\(456\) −36.4771 16.1768i −1.70819 0.757550i
\(457\) −19.5956 16.4426i −0.916641 0.769153i 0.0567296 0.998390i \(-0.481933\pi\)
−0.973371 + 0.229236i \(0.926377\pi\)
\(458\) 4.59905 0.214900
\(459\) 26.0601 29.1990i 1.21638 1.36289i
\(460\) −0.592774 −0.0276382
\(461\) 13.5588 + 11.3772i 0.631498 + 0.529890i 0.901394 0.433000i \(-0.142545\pi\)
−0.269896 + 0.962890i \(0.586989\pi\)
\(462\) −0.390344 3.66241i −0.0181605 0.170391i
\(463\) 2.37852 + 13.4893i 0.110539 + 0.626900i 0.988862 + 0.148832i \(0.0475515\pi\)
−0.878323 + 0.478068i \(0.841337\pi\)
\(464\) 3.40395 + 1.23894i 0.158024 + 0.0575162i
\(465\) −7.72378 15.7776i −0.358182 0.731668i
\(466\) −0.510025 + 2.89249i −0.0236264 + 0.133992i
\(467\) −0.381921 + 0.661506i −0.0176732 + 0.0306109i −0.874727 0.484616i \(-0.838959\pi\)
0.857054 + 0.515227i \(0.172293\pi\)
\(468\) 0.684965 0.430800i 0.0316625 0.0199138i
\(469\) 5.24050 + 9.07682i 0.241984 + 0.419128i
\(470\) 0.982936 0.357760i 0.0453395 0.0165022i
\(471\) −3.44436 + 0.993101i −0.158708 + 0.0457597i
\(472\) 13.7690 11.5536i 0.633772 0.531797i
\(473\) −2.20076 + 1.84665i −0.101191 + 0.0849092i
\(474\) 9.72056 + 9.35964i 0.446480 + 0.429903i
\(475\) −22.7283 + 8.27243i −1.04285 + 0.379565i
\(476\) −0.204849 0.354809i −0.00938924 0.0162626i
\(477\) −0.724065 + 2.25079i −0.0331527 + 0.103057i
\(478\) 17.0300 29.4969i 0.778935 1.34916i
\(479\) −3.82213 + 21.6764i −0.174638 + 0.990419i 0.763924 + 0.645307i \(0.223270\pi\)
−0.938561 + 0.345112i \(0.887841\pi\)
\(480\) 0.765213 + 0.0523859i 0.0349270 + 0.00239108i
\(481\) 7.66206 + 2.78876i 0.349360 + 0.127157i
\(482\) 4.95852 + 28.1212i 0.225854 + 1.28088i
\(483\) −10.5965 + 7.72252i −0.482160 + 0.351387i
\(484\) −0.366641 0.307649i −0.0166655 0.0139840i
\(485\) 21.5254 0.977416
\(486\) −17.2203 14.2365i −0.781128 0.645783i
\(487\) 20.7588 0.940673 0.470336 0.882487i \(-0.344133\pi\)
0.470336 + 0.882487i \(0.344133\pi\)
\(488\) −9.74987 8.18111i −0.441356 0.370341i
\(489\) 9.85036 7.17871i 0.445449 0.324633i
\(490\) 0.358291 + 2.03197i 0.0161859 + 0.0917949i
\(491\) −12.0707 4.39339i −0.544745 0.198271i 0.0549653 0.998488i \(-0.482495\pi\)
−0.599710 + 0.800217i \(0.704717\pi\)
\(492\) −0.882729 0.0604310i −0.0397965 0.00272444i
\(493\) 1.15391 6.54416i 0.0519695 0.294734i
\(494\) −29.3580 + 50.8495i −1.32088 + 2.28783i
\(495\) 1.96210 6.09928i 0.0881897 0.274142i
\(496\) 14.4636 + 25.0517i 0.649436 + 1.12486i
\(497\) −3.45763 + 1.25847i −0.155096 + 0.0564503i
\(498\) −5.27947 5.08344i −0.236579 0.227795i
\(499\) −26.7426 + 22.4397i −1.19716 + 1.00454i −0.197458 + 0.980311i \(0.563269\pi\)
−0.999706 + 0.0242293i \(0.992287\pi\)
\(500\) 0.475537 0.399023i 0.0212666 0.0178448i
\(501\) −7.85282 + 2.26418i −0.350838 + 0.101156i
\(502\) −7.65237 + 2.78523i −0.341542 + 0.124311i
\(503\) −3.60280 6.24024i −0.160641 0.278238i 0.774458 0.632626i \(-0.218023\pi\)
−0.935099 + 0.354387i \(0.884689\pi\)
\(504\) 7.08179 4.45401i 0.315448 0.198397i
\(505\) −2.78623 + 4.82590i −0.123986 + 0.214750i
\(506\) 2.79536 15.8533i 0.124269 0.704764i
\(507\) 8.82506 + 18.0272i 0.391935 + 0.800615i
\(508\) −0.0909625 0.0331076i −0.00403581 0.00146891i
\(509\) −1.41678 8.03497i −0.0627978 0.356144i −0.999973 0.00728607i \(-0.997681\pi\)
0.937176 0.348858i \(-0.113430\pi\)
\(510\) −2.85272 26.7657i −0.126321 1.18521i
\(511\) 5.39241 + 4.52477i 0.238546 + 0.200164i
\(512\) 21.6366 0.956210
\(513\) 42.0278 + 8.74100i 1.85557 + 0.385925i
\(514\) −21.6018 −0.952816
\(515\) 0.564775 + 0.473902i 0.0248869 + 0.0208826i
\(516\) 0.166775 + 0.0739614i 0.00734186 + 0.00325597i
\(517\) 0.130606 + 0.740701i 0.00574403 + 0.0325760i
\(518\) −2.21475 0.806101i −0.0973103 0.0354181i
\(519\) 15.5097 23.0667i 0.680800 1.01251i
\(520\) −3.45664 + 19.6036i −0.151584 + 0.859673i
\(521\) 11.3373 19.6368i 0.496696 0.860302i −0.503297 0.864114i \(-0.667880\pi\)
0.999993 + 0.00381122i \(0.00121315\pi\)
\(522\) −3.75827 0.517001i −0.164495 0.0226285i
\(523\) −10.5417 18.2588i −0.460957 0.798401i 0.538052 0.842912i \(-0.319160\pi\)
−0.999009 + 0.0445110i \(0.985827\pi\)
\(524\) −0.112543 + 0.0409625i −0.00491648 + 0.00178945i
\(525\) 1.21959 4.92213i 0.0532274 0.214819i
\(526\) −6.54197 + 5.48936i −0.285243 + 0.239348i
\(527\) 40.6505 34.1098i 1.77076 1.48585i
\(528\) −2.53748 + 10.2410i −0.110430 + 0.445681i
\(529\) −32.2390 + 11.7340i −1.40170 + 0.510176i
\(530\) 0.813080 + 1.40830i 0.0353179 + 0.0611725i
\(531\) −11.8601 + 15.2720i −0.514684 + 0.662746i
\(532\) 0.224687 0.389170i 0.00974143 0.0168727i
\(533\) 8.08645 45.8605i 0.350263 1.98644i
\(534\) 4.37580 6.50787i 0.189359 0.281623i
\(535\) −17.2524 6.27936i −0.745886 0.271480i
\(536\) −5.07539 28.7840i −0.219224 1.24328i
\(537\) −0.342364 0.151831i −0.0147741 0.00655201i
\(538\) −24.4054 20.4786i −1.05219 0.882893i
\(539\) −1.48360 −0.0639033
\(540\) −0.402665 + 0.0583912i −0.0173280 + 0.00251276i
\(541\) −21.3757 −0.919015 −0.459507 0.888174i \(-0.651974\pi\)
−0.459507 + 0.888174i \(0.651974\pi\)
\(542\) −18.9058 15.8638i −0.812073 0.681410i
\(543\) −4.15645 38.9980i −0.178370 1.67356i
\(544\) 0.402337 + 2.28177i 0.0172501 + 0.0978299i
\(545\) 9.52992 + 3.46861i 0.408217 + 0.148579i
\(546\) −5.41260 11.0565i −0.231638 0.473173i
\(547\) 3.23085 18.3231i 0.138141 0.783438i −0.834479 0.551039i \(-0.814231\pi\)
0.972621 0.232399i \(-0.0746575\pi\)
\(548\) −0.348782 + 0.604109i −0.0148992 + 0.0258062i
\(549\) 12.1081 + 6.39270i 0.516762 + 0.272834i
\(550\) 3.11287 + 5.39164i 0.132733 + 0.229900i
\(551\) 6.84908 2.49286i 0.291781 0.106200i
\(552\) 35.1337 10.1300i 1.49539 0.431161i
\(553\) 4.16387 3.49390i 0.177066 0.148576i
\(554\) 4.90159 4.11292i 0.208249 0.174741i
\(555\) −2.95342 2.84376i −0.125366 0.120711i
\(556\) −0.129825 + 0.0472524i −0.00550580 + 0.00200395i
\(557\) −13.3675 23.1531i −0.566397 0.981029i −0.996918 0.0784483i \(-0.975003\pi\)
0.430521 0.902581i \(-0.358330\pi\)
\(558\) −20.3369 22.4542i −0.860930 0.950561i
\(559\) −4.80103 + 8.31562i −0.203062 + 0.351713i
\(560\) 1.02635 5.82071i 0.0433711 0.245970i
\(561\) 19.3094 + 1.32191i 0.815244 + 0.0558110i
\(562\) 10.8092 + 3.93422i 0.455957 + 0.165955i
\(563\) −1.31478 7.45649i −0.0554114 0.314253i 0.944486 0.328550i \(-0.106560\pi\)
−0.999898 + 0.0142970i \(0.995449\pi\)
\(564\) 0.0386001 0.0281309i 0.00162536 0.00118452i
\(565\) 12.1266 + 10.1754i 0.510170 + 0.428084i
\(566\) −22.5664 −0.948535
\(567\) −6.43742 + 6.28964i −0.270346 + 0.264140i
\(568\) 10.2610 0.430542
\(569\) 25.2580 + 21.1940i 1.05887 + 0.888499i 0.993998 0.109395i \(-0.0348913\pi\)
0.0648731 + 0.997894i \(0.479336\pi\)
\(570\) 23.8601 17.3887i 0.999390 0.728332i
\(571\) −1.64448 9.32632i −0.0688194 0.390294i −0.999689 0.0249425i \(-0.992060\pi\)
0.930869 0.365352i \(-0.119051\pi\)
\(572\) 0.376032 + 0.136865i 0.0157227 + 0.00572259i
\(573\) 11.5675 + 0.791901i 0.483238 + 0.0330821i
\(574\) −2.33742 + 13.2561i −0.0975619 + 0.553301i
\(575\) 11.0818 19.1942i 0.462141 0.800452i
\(576\) −22.7886 + 4.91347i −0.949523 + 0.204728i
\(577\) −2.42560 4.20126i −0.100979 0.174901i 0.811109 0.584895i \(-0.198864\pi\)
−0.912088 + 0.409994i \(0.865531\pi\)
\(578\) 53.5113 19.4765i 2.22578 0.810116i
\(579\) −28.1597 27.1142i −1.17028 1.12683i
\(580\) −0.0529214 + 0.0444063i −0.00219744 + 0.00184387i
\(581\) −2.26150 + 1.89762i −0.0938227 + 0.0787266i
\(582\) 35.6688 10.2843i 1.47852 0.426297i
\(583\) −1.09876 + 0.399915i −0.0455058 + 0.0165628i
\(584\) −9.81512 17.0003i −0.406152 0.703477i
\(585\) −0.809867 21.3992i −0.0334839 0.884748i
\(586\) −5.45861 + 9.45459i −0.225493 + 0.390565i
\(587\) −2.60905 + 14.7967i −0.107687 + 0.610723i 0.882426 + 0.470451i \(0.155909\pi\)
−0.990113 + 0.140272i \(0.955202\pi\)
\(588\) 0.0414246 + 0.0846192i 0.00170832 + 0.00348964i
\(589\) 54.6943 + 19.9071i 2.25364 + 0.820258i
\(590\) 2.30934 + 13.0969i 0.0950742 + 0.539192i
\(591\) −1.03270 9.68938i −0.0424798 0.398568i
\(592\) 5.17191 + 4.33975i 0.212564 + 0.178363i
\(593\) 8.63936 0.354776 0.177388 0.984141i \(-0.443235\pi\)
0.177388 + 0.984141i \(0.443235\pi\)
\(594\) 0.337233 11.0443i 0.0138368 0.453154i
\(595\) −10.8425 −0.444499
\(596\) −0.00920852 0.00772687i −0.000377196 0.000316505i
\(597\) −17.5356 7.77670i −0.717685 0.318279i
\(598\) −9.34294 52.9864i −0.382061 2.16678i
\(599\) 18.2871 + 6.65597i 0.747192 + 0.271956i 0.687424 0.726257i \(-0.258742\pi\)
0.0597683 + 0.998212i \(0.480964\pi\)
\(600\) −7.89056 + 11.7352i −0.322131 + 0.479086i
\(601\) 1.37897 7.82051i 0.0562492 0.319005i −0.943681 0.330858i \(-0.892662\pi\)
0.999930 + 0.0118529i \(0.00377297\pi\)
\(602\) 1.38775 2.40366i 0.0565606 0.0979659i
\(603\) 11.8639 + 29.1189i 0.483134 + 1.18581i
\(604\) 0.324049 + 0.561270i 0.0131854 + 0.0228378i
\(605\) −11.9025 + 4.33216i −0.483906 + 0.176127i
\(606\) −2.31127 + 9.32800i −0.0938888 + 0.378924i
\(607\) −27.9802 + 23.4782i −1.13568 + 0.952951i −0.999289 0.0377041i \(-0.987996\pi\)
−0.136393 + 0.990655i \(0.543551\pi\)
\(608\) −1.94679 + 1.63355i −0.0789526 + 0.0662491i
\(609\) −0.367519 + 1.48326i −0.0148926 + 0.0601049i
\(610\) 8.84910 3.22081i 0.358290 0.130407i
\(611\) 1.25692 + 2.17705i 0.0508496 + 0.0880740i
\(612\) −0.463754 1.13825i −0.0187461 0.0460109i
\(613\) 5.69934 9.87154i 0.230194 0.398708i −0.727671 0.685926i \(-0.759397\pi\)
0.957865 + 0.287218i \(0.0927306\pi\)
\(614\) 3.34231 18.9552i 0.134884 0.764968i
\(615\) −13.0655 + 19.4316i −0.526854 + 0.783559i
\(616\) 3.88776 + 1.41503i 0.156643 + 0.0570132i
\(617\) 1.72819 + 9.80104i 0.0695742 + 0.394575i 0.999631 + 0.0271595i \(0.00864619\pi\)
−0.930057 + 0.367416i \(0.880243\pi\)
\(618\) 1.16228 + 0.515450i 0.0467539 + 0.0207344i
\(619\) −15.9558 13.3885i −0.641317 0.538129i 0.263105 0.964767i \(-0.415253\pi\)
−0.904422 + 0.426638i \(0.859698\pi\)
\(620\) −0.551680 −0.0221560
\(621\) −34.6503 + 18.6191i −1.39047 + 0.747159i
\(622\) −7.82034 −0.313567
\(623\) −2.41985 2.03050i −0.0969493 0.0813501i
\(624\) 3.73726 + 35.0649i 0.149610 + 1.40372i
\(625\) −0.310789 1.76257i −0.0124316 0.0705028i
\(626\) −19.4958 7.09589i −0.779209 0.283609i
\(627\) 9.33402 + 19.0668i 0.372765 + 0.761456i
\(628\) −0.0195486 + 0.110866i −0.000780076 + 0.00442403i
\(629\) 6.19259 10.7259i 0.246915 0.427669i
\(630\) 0.234095 + 6.18551i 0.00932657 + 0.246437i
\(631\) −23.1937 40.1726i −0.923326 1.59925i −0.794231 0.607616i \(-0.792126\pi\)
−0.129095 0.991632i \(-0.541207\pi\)
\(632\) −14.2438 + 5.18432i −0.566588 + 0.206221i
\(633\) −23.5758 + 6.79753i −0.937053 + 0.270177i
\(634\) −36.9556 + 31.0095i −1.46770 + 1.23154i
\(635\) −1.96244 + 1.64668i −0.0778770 + 0.0653465i
\(636\) 0.0534887 + 0.0515027i 0.00212097 + 0.00204222i
\(637\) −4.65961 + 1.69596i −0.184620 + 0.0671963i
\(638\) −0.938049 1.62475i −0.0371377 0.0643244i
\(639\) −10.7906 + 2.32658i −0.426871 + 0.0920382i
\(640\) −8.45957 + 14.6524i −0.334394 + 0.579187i
\(641\) −1.43109 + 8.11609i −0.0565245 + 0.320566i −0.999939 0.0110496i \(-0.996483\pi\)
0.943414 + 0.331616i \(0.107594\pi\)
\(642\) −31.5884 2.16252i −1.24669 0.0853478i
\(643\) −41.0643 14.9462i −1.61942 0.589420i −0.636148 0.771567i \(-0.719473\pi\)
−0.983271 + 0.182147i \(0.941695\pi\)
\(644\) 0.0715049 + 0.405525i 0.00281769 + 0.0159799i
\(645\) 3.90194 2.84364i 0.153639 0.111968i
\(646\) 68.3207 + 57.3279i 2.68804 + 2.25554i
\(647\) 2.81016 0.110479 0.0552393 0.998473i \(-0.482408\pi\)
0.0552393 + 0.998473i \(0.482408\pi\)
\(648\) 22.8681 10.3421i 0.898345 0.406274i
\(649\) −9.56248 −0.375360
\(650\) 15.9401 + 13.3753i 0.625221 + 0.524623i
\(651\) −9.86195 + 7.18716i −0.386520 + 0.281687i
\(652\) −0.0664697 0.376968i −0.00260315 0.0147632i
\(653\) −20.5632 7.48440i −0.804701 0.292887i −0.0932680 0.995641i \(-0.529731\pi\)
−0.711433 + 0.702754i \(0.751954\pi\)
\(654\) 17.4489 + 1.19454i 0.682305 + 0.0467101i
\(655\) −0.550389 + 3.12141i −0.0215055 + 0.121964i
\(656\) 19.2795 33.3930i 0.752737 1.30378i
\(657\) 14.1764 + 15.6523i 0.553074 + 0.610654i
\(658\) −0.363317 0.629284i −0.0141636 0.0245321i
\(659\) −21.5335 + 7.83757i −0.838828 + 0.305308i −0.725477 0.688247i \(-0.758381\pi\)
−0.113351 + 0.993555i \(0.536159\pi\)
\(660\) −0.144946 0.139564i −0.00564200 0.00543252i
\(661\) −7.18971 + 6.03288i −0.279647 + 0.234652i −0.771813 0.635850i \(-0.780650\pi\)
0.492166 + 0.870501i \(0.336205\pi\)
\(662\) −10.3574 + 8.69087i −0.402551 + 0.337780i
\(663\) 62.1569 17.9215i 2.41398 0.696013i
\(664\) 7.73614 2.81573i 0.300220 0.109271i
\(665\) −5.94626 10.2992i −0.230586 0.399387i
\(666\) −6.25268 3.30122i −0.242287 0.127920i
\(667\) −3.33944 + 5.78408i −0.129304 + 0.223961i
\(668\) −0.0445691 + 0.252764i −0.00172443 + 0.00977973i
\(669\) 8.15496 + 16.6583i 0.315289 + 0.644049i
\(670\) 20.3214 + 7.39639i 0.785085 + 0.285748i
\(671\) 1.17581 + 6.66833i 0.0453915 + 0.257428i
\(672\) −0.0564679 0.529812i −0.00217830 0.0204379i
\(673\) 29.0767 + 24.3982i 1.12082 + 0.940483i 0.998646 0.0520254i \(-0.0165677\pi\)
0.122178 + 0.992508i \(0.461012\pi\)
\(674\) 0.822070 0.0316649
\(675\) 5.63700 14.1300i 0.216968 0.543864i
\(676\) 0.630340 0.0242439
\(677\) −26.9680 22.6288i −1.03646 0.869697i −0.0448583 0.998993i \(-0.514284\pi\)
−0.991606 + 0.129297i \(0.958728\pi\)
\(678\) 24.9561 + 11.0675i 0.958433 + 0.425046i
\(679\) −2.59655 14.7258i −0.0996466 0.565124i
\(680\) 28.4127 + 10.3414i 1.08958 + 0.396573i
\(681\) −2.49840 + 3.71572i −0.0957388 + 0.142387i
\(682\) 2.60157 14.7542i 0.0996193 0.564969i
\(683\) −18.7253 + 32.4332i −0.716505 + 1.24102i 0.245871 + 0.969303i \(0.420926\pi\)
−0.962376 + 0.271721i \(0.912407\pi\)
\(684\) 0.826881 1.06476i 0.0316166 0.0407120i
\(685\) 9.23038 + 15.9875i 0.352675 + 0.610851i
\(686\) 1.34688 0.490223i 0.0514240 0.0187168i
\(687\) 1.33663 5.39447i 0.0509955 0.205812i
\(688\) −6.09054 + 5.11057i −0.232200 + 0.194839i
\(689\) −2.99375 + 2.51206i −0.114053 + 0.0957017i
\(690\) −6.50664 + 26.2600i −0.247704 + 0.999703i
\(691\) −5.46710 + 1.98986i −0.207978 + 0.0756979i −0.443909 0.896072i \(-0.646409\pi\)
0.235930 + 0.971770i \(0.424186\pi\)
\(692\) −0.436466 0.755982i −0.0165920 0.0287381i
\(693\) −4.40928 0.606555i −0.167495 0.0230411i
\(694\) −13.0913 + 22.6748i −0.496940 + 0.860725i
\(695\) −0.634903 + 3.60071i −0.0240832 + 0.136583i
\(696\) 2.37779 3.53635i 0.0901298 0.134045i
\(697\) −66.4685 24.1925i −2.51767 0.916358i
\(698\) −1.36007 7.71334i −0.0514794 0.291954i
\(699\) 3.24453 + 1.43888i 0.122719 + 0.0544236i
\(700\) −0.121995 0.102366i −0.00461099 0.00386908i
\(701\) 22.1208 0.835491 0.417745 0.908564i \(-0.362820\pi\)
0.417745 + 0.908564i \(0.362820\pi\)
\(702\) −11.5660 35.0728i −0.436530 1.32374i
\(703\) 13.5846 0.512353
\(704\) −8.83149 7.41050i −0.332849 0.279294i
\(705\) −0.133963 1.25691i −0.00504535 0.0473381i
\(706\) 0.355771 + 2.01768i 0.0133896 + 0.0759363i
\(707\) 3.63756 + 1.32396i 0.136805 + 0.0497928i
\(708\) 0.267000 + 0.545409i 0.0100345 + 0.0204977i
\(709\) −0.388495 + 2.20326i −0.0145902 + 0.0827453i −0.991233 0.132122i \(-0.957821\pi\)
0.976643 + 0.214868i \(0.0689320\pi\)
\(710\) −3.79601 + 6.57489i −0.142462 + 0.246751i
\(711\) 13.8035 8.68156i 0.517672 0.325584i
\(712\) 4.40455 + 7.62890i 0.165067 + 0.285905i
\(713\) −50.1187 + 18.2417i −1.87696 + 0.683157i
\(714\) −17.9667 + 5.18027i −0.672386 + 0.193867i
\(715\) 8.11257 6.80725i 0.303393 0.254577i
\(716\) −0.00901005 + 0.00756033i −0.000336721 + 0.000282543i
\(717\) −29.6490 28.5481i −1.10726 1.06615i
\(718\) 40.6630 14.8001i 1.51753 0.552336i
\(719\) 23.7982 + 41.2196i 0.887521 + 1.53723i 0.842796 + 0.538233i \(0.180908\pi\)
0.0447252 + 0.998999i \(0.485759\pi\)
\(720\) 5.43005 16.8796i 0.202366 0.629065i
\(721\) 0.256075 0.443536i 0.00953675 0.0165181i
\(722\) −12.2579 + 69.5180i −0.456192 + 2.58719i
\(723\) 34.4259 + 2.35677i 1.28031 + 0.0876493i
\(724\) −1.15739 0.421254i −0.0430139 0.0156558i
\(725\) −0.448536 2.54377i −0.0166582 0.0944734i
\(726\) −17.6534 + 12.8654i −0.655179 + 0.477479i
\(727\) −9.42952 7.91231i −0.349722 0.293451i 0.450957 0.892546i \(-0.351083\pi\)
−0.800678 + 0.599095i \(0.795527\pi\)
\(728\) 13.8280 0.512501
\(729\) −21.7035 + 16.0610i −0.803835 + 0.594852i
\(730\) 14.5243 0.537567
\(731\) 11.1728 + 9.37506i 0.413240 + 0.346749i
\(732\) 0.347506 0.253254i 0.0128442 0.00936055i
\(733\) 0.162990 + 0.924363i 0.00602018 + 0.0341421i 0.987670 0.156551i \(-0.0500376\pi\)
−0.981650 + 0.190693i \(0.938926\pi\)
\(734\) 44.7973 + 16.3049i 1.65350 + 0.601824i
\(735\) 2.48753 + 0.170295i 0.0917540 + 0.00628141i
\(736\) 0.404382 2.29336i 0.0149057 0.0845345i
\(737\) −7.77482 + 13.4664i −0.286389 + 0.496041i
\(738\) −12.3665 + 38.4418i −0.455216 + 1.41506i
\(739\) −8.48654 14.6991i −0.312182 0.540716i 0.666652 0.745369i \(-0.267727\pi\)
−0.978835 + 0.204653i \(0.934393\pi\)
\(740\) −0.120994 + 0.0440382i −0.00444782 + 0.00161887i
\(741\) 51.1117 + 49.2139i 1.87764 + 1.80792i
\(742\) 0.865354 0.726119i 0.0317682 0.0266566i
\(743\) 12.2005 10.2374i 0.447592 0.375574i −0.390949 0.920412i \(-0.627853\pi\)
0.838541 + 0.544838i \(0.183409\pi\)
\(744\) 32.6981 9.42774i 1.19877 0.345638i
\(745\) −0.298942 + 0.108806i −0.0109524 + 0.00398634i
\(746\) −13.0684 22.6352i −0.478469 0.828733i
\(747\) −7.49701 + 4.71516i −0.274301 + 0.172519i
\(748\) 0.303915 0.526396i 0.0111122 0.0192469i
\(749\) −2.21468 + 12.5601i −0.0809226 + 0.458935i
\(750\) −12.4570 25.4463i −0.454867 0.929168i
\(751\) 37.1086 + 13.5064i 1.35411 + 0.492857i 0.914229 0.405198i \(-0.132797\pi\)
0.439884 + 0.898055i \(0.355020\pi\)
\(752\) 0.361448 + 2.04987i 0.0131806 + 0.0747511i
\(753\) 1.04293 + 9.78534i 0.0380066 + 0.356597i
\(754\) −4.80348 4.03060i −0.174932 0.146786i
\(755\) 17.1517 0.624213
\(756\) 0.0885188 + 0.268425i 0.00321940 + 0.00976253i
\(757\) 26.4653 0.961898 0.480949 0.876749i \(-0.340292\pi\)
0.480949 + 0.876749i \(0.340292\pi\)
\(758\) 2.14434 + 1.79932i 0.0778860 + 0.0653541i
\(759\) −17.7827 7.88627i −0.645471 0.286254i
\(760\) 5.75892 + 32.6604i 0.208898 + 1.18472i
\(761\) −21.8532 7.95393i −0.792180 0.288330i −0.0859378 0.996301i \(-0.527389\pi\)
−0.706242 + 0.707971i \(0.749611\pi\)
\(762\) −2.46514 + 3.66625i −0.0893025 + 0.132814i
\(763\) 1.22335 6.93796i 0.0442882 0.251171i
\(764\) 0.182063 0.315342i 0.00658680 0.0114087i
\(765\) −32.2240 4.43284i −1.16506 0.160270i
\(766\) 10.9841 + 19.0251i 0.396873 + 0.687404i
\(767\) −30.0333 + 10.9312i