Properties

Label 189.2.v.a.22.9
Level $189$
Weight $2$
Character 189.22
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.9
Character \(\chi\) \(=\) 189.22
Dual form 189.2.v.a.43.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00215 - 1.68000i) q^{2} +(1.58061 + 0.708280i) q^{3} +(0.838893 - 4.75760i) q^{4} +(-3.29720 + 1.20008i) q^{5} +(4.35453 - 1.23735i) q^{6} +(0.173648 + 0.984808i) q^{7} +(-3.69957 - 6.40784i) q^{8} +(1.99668 + 2.23903i) q^{9} +O(q^{10})\) \(q+(2.00215 - 1.68000i) q^{2} +(1.58061 + 0.708280i) q^{3} +(0.838893 - 4.75760i) q^{4} +(-3.29720 + 1.20008i) q^{5} +(4.35453 - 1.23735i) q^{6} +(0.173648 + 0.984808i) q^{7} +(-3.69957 - 6.40784i) q^{8} +(1.99668 + 2.23903i) q^{9} +(-4.58534 + 7.94204i) q^{10} +(-0.308948 - 0.112448i) q^{11} +(4.69568 - 6.92576i) q^{12} +(-1.82041 - 1.52750i) q^{13} +(2.00215 + 1.68000i) q^{14} +(-6.06160 - 0.438472i) q^{15} +(-9.09294 - 3.30956i) q^{16} +(-1.28196 + 2.22042i) q^{17} +(7.75922 + 1.12845i) q^{18} +(2.50633 + 4.34109i) q^{19} +(2.94352 + 16.6935i) q^{20} +(-0.423048 + 1.67959i) q^{21} +(-0.807473 + 0.293896i) q^{22} +(0.785944 - 4.45731i) q^{23} +(-1.30905 - 12.7486i) q^{24} +(5.60111 - 4.69989i) q^{25} -6.21093 q^{26} +(1.57012 + 4.95325i) q^{27} +4.83099 q^{28} +(-7.49985 + 6.29312i) q^{29} +(-12.8728 + 9.30560i) q^{30} +(1.70905 - 9.69250i) q^{31} +(-9.85965 + 3.58862i) q^{32} +(-0.408683 - 0.396559i) q^{33} +(1.16363 + 6.59930i) q^{34} +(-1.75440 - 3.03872i) q^{35} +(12.3274 - 7.62110i) q^{36} +(1.70374 - 2.95097i) q^{37} +(12.3111 + 4.48086i) q^{38} +(-1.79546 - 3.70375i) q^{39} +(19.8881 + 16.6881i) q^{40} +(-5.18169 - 4.34795i) q^{41} +(1.97471 + 4.07351i) q^{42} +(0.843380 + 0.306965i) q^{43} +(-0.794157 + 1.37552i) q^{44} +(-9.27048 - 4.98636i) q^{45} +(-5.91471 - 10.2446i) q^{46} +(-0.875085 - 4.96285i) q^{47} +(-12.0283 - 11.6715i) q^{48} +(-0.939693 + 0.342020i) q^{49} +(3.31843 - 18.8197i) q^{50} +(-3.59896 + 2.60164i) q^{51} +(-8.79438 + 7.37936i) q^{52} +6.97774 q^{53} +(11.4651 + 7.27934i) q^{54} +1.15361 q^{55} +(5.66806 - 4.75607i) q^{56} +(0.886834 + 8.63677i) q^{57} +(-4.44335 + 25.1995i) q^{58} +(6.88347 - 2.50538i) q^{59} +(-7.17111 + 28.4708i) q^{60} +(0.157688 + 0.894295i) q^{61} +(-12.8616 - 22.2770i) q^{62} +(-1.85830 + 2.35515i) q^{63} +(-4.03508 + 6.98896i) q^{64} +(7.83538 + 2.85185i) q^{65} +(-1.48446 - 0.107380i) q^{66} +(4.46899 + 3.74993i) q^{67} +(9.48844 + 7.96175i) q^{68} +(4.39930 - 6.48862i) q^{69} +(-8.61762 - 3.13656i) q^{70} +(-5.46530 + 9.46618i) q^{71} +(6.96050 - 21.0778i) q^{72} +(2.95135 + 5.11188i) q^{73} +(-1.54649 - 8.77057i) q^{74} +(12.1820 - 3.46156i) q^{75} +(22.7557 - 8.28240i) q^{76} +(0.0570914 - 0.323781i) q^{77} +(-9.81708 - 4.39907i) q^{78} +(-0.653105 + 0.548021i) q^{79} +33.9530 q^{80} +(-1.02654 + 8.94127i) q^{81} -17.6791 q^{82} +(-1.71116 + 1.43583i) q^{83} +(7.63593 + 3.42169i) q^{84} +(1.56219 - 8.85963i) q^{85} +(2.20427 - 0.802290i) q^{86} +(-16.3116 + 4.63500i) q^{87} +(0.422426 + 2.39570i) q^{88} +(0.107492 + 0.186182i) q^{89} +(-26.9379 + 5.59099i) q^{90} +(1.18819 - 2.05800i) q^{91} +(-20.5468 - 7.47842i) q^{92} +(9.56634 - 14.1096i) q^{93} +(-10.0896 - 8.46622i) q^{94} +(-13.4735 - 11.3056i) q^{95} +(-18.1261 - 1.31117i) q^{96} +(-2.73245 - 0.994531i) q^{97} +(-1.30681 + 2.26346i) q^{98} +(-0.365096 - 0.916268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00215 1.68000i 1.41573 1.18794i 0.462151 0.886801i \(-0.347078\pi\)
0.953580 0.301139i \(-0.0973667\pi\)
\(3\) 1.58061 + 0.708280i 0.912568 + 0.408925i
\(4\) 0.838893 4.75760i 0.419447 2.37880i
\(5\) −3.29720 + 1.20008i −1.47455 + 0.536693i −0.949333 0.314273i \(-0.898239\pi\)
−0.525220 + 0.850966i \(0.676017\pi\)
\(6\) 4.35453 1.23735i 1.77773 0.505147i
\(7\) 0.173648 + 0.984808i 0.0656328 + 0.372222i
\(8\) −3.69957 6.40784i −1.30799 2.26551i
\(9\) 1.99668 + 2.23903i 0.665560 + 0.746344i
\(10\) −4.58534 + 7.94204i −1.45001 + 2.51149i
\(11\) −0.308948 0.112448i −0.0931514 0.0339044i 0.295024 0.955490i \(-0.404672\pi\)
−0.388175 + 0.921585i \(0.626895\pi\)
\(12\) 4.69568 6.92576i 1.35553 1.99929i
\(13\) −1.82041 1.52750i −0.504890 0.423653i 0.354437 0.935080i \(-0.384673\pi\)
−0.859327 + 0.511427i \(0.829117\pi\)
\(14\) 2.00215 + 1.68000i 0.535096 + 0.448999i
\(15\) −6.06160 0.438472i −1.56510 0.113213i
\(16\) −9.09294 3.30956i −2.27324 0.827390i
\(17\) −1.28196 + 2.22042i −0.310921 + 0.538531i −0.978562 0.205952i \(-0.933971\pi\)
0.667641 + 0.744483i \(0.267304\pi\)
\(18\) 7.75922 + 1.12845i 1.82887 + 0.265978i
\(19\) 2.50633 + 4.34109i 0.574991 + 0.995914i 0.996043 + 0.0888772i \(0.0283279\pi\)
−0.421051 + 0.907037i \(0.638339\pi\)
\(20\) 2.94352 + 16.6935i 0.658190 + 3.73278i
\(21\) −0.423048 + 1.67959i −0.0923167 + 0.366517i
\(22\) −0.807473 + 0.293896i −0.172154 + 0.0626588i
\(23\) 0.785944 4.45731i 0.163881 0.929414i −0.786330 0.617806i \(-0.788022\pi\)
0.950211 0.311607i \(-0.100867\pi\)
\(24\) −1.30905 12.7486i −0.267208 2.60231i
\(25\) 5.60111 4.69989i 1.12022 0.939978i
\(26\) −6.21093 −1.21806
\(27\) 1.57012 + 4.95325i 0.302170 + 0.953254i
\(28\) 4.83099 0.912972
\(29\) −7.49985 + 6.29312i −1.39269 + 1.16860i −0.428448 + 0.903566i \(0.640940\pi\)
−0.964238 + 0.265036i \(0.914616\pi\)
\(30\) −12.8728 + 9.30560i −2.35025 + 1.69896i
\(31\) 1.70905 9.69250i 0.306954 1.74082i −0.307207 0.951643i \(-0.599394\pi\)
0.614161 0.789181i \(-0.289495\pi\)
\(32\) −9.85965 + 3.58862i −1.74296 + 0.634384i
\(33\) −0.408683 0.396559i −0.0711427 0.0690320i
\(34\) 1.16363 + 6.59930i 0.199562 + 1.13177i
\(35\) −1.75440 3.03872i −0.296548 0.513637i
\(36\) 12.3274 7.62110i 2.05457 1.27018i
\(37\) 1.70374 2.95097i 0.280094 0.485137i −0.691314 0.722555i \(-0.742968\pi\)
0.971408 + 0.237418i \(0.0763011\pi\)
\(38\) 12.3111 + 4.48086i 1.99712 + 0.726892i
\(39\) −1.79546 3.70375i −0.287504 0.593075i
\(40\) 19.8881 + 16.6881i 3.14459 + 2.63863i
\(41\) −5.18169 4.34795i −0.809244 0.679036i 0.141183 0.989983i \(-0.454909\pi\)
−0.950427 + 0.310947i \(0.899354\pi\)
\(42\) 1.97471 + 4.07351i 0.304704 + 0.628556i
\(43\) 0.843380 + 0.306965i 0.128614 + 0.0468118i 0.405525 0.914084i \(-0.367089\pi\)
−0.276911 + 0.960896i \(0.589311\pi\)
\(44\) −0.794157 + 1.37552i −0.119724 + 0.207368i
\(45\) −9.27048 4.98636i −1.38196 0.743323i
\(46\) −5.91471 10.2446i −0.872076 1.51048i
\(47\) −0.875085 4.96285i −0.127644 0.723907i −0.979702 0.200459i \(-0.935757\pi\)
0.852058 0.523448i \(-0.175354\pi\)
\(48\) −12.0283 11.6715i −1.73614 1.68463i
\(49\) −0.939693 + 0.342020i −0.134242 + 0.0488600i
\(50\) 3.31843 18.8197i 0.469297 2.66151i
\(51\) −3.59896 + 2.60164i −0.503955 + 0.364303i
\(52\) −8.79438 + 7.37936i −1.21956 + 1.02333i
\(53\) 6.97774 0.958466 0.479233 0.877688i \(-0.340915\pi\)
0.479233 + 0.877688i \(0.340915\pi\)
\(54\) 11.4651 + 7.27934i 1.56020 + 0.990593i
\(55\) 1.15361 0.155553
\(56\) 5.66806 4.75607i 0.757427 0.635557i
\(57\) 0.886834 + 8.63677i 0.117464 + 1.14397i
\(58\) −4.44335 + 25.1995i −0.583441 + 3.30886i
\(59\) 6.88347 2.50538i 0.896151 0.326172i 0.147442 0.989071i \(-0.452896\pi\)
0.748709 + 0.662899i \(0.230674\pi\)
\(60\) −7.17111 + 28.4708i −0.925786 + 3.67557i
\(61\) 0.157688 + 0.894295i 0.0201899 + 0.114503i 0.993237 0.116103i \(-0.0370403\pi\)
−0.973047 + 0.230606i \(0.925929\pi\)
\(62\) −12.8616 22.2770i −1.63343 2.82918i
\(63\) −1.85830 + 2.35515i −0.234123 + 0.296721i
\(64\) −4.03508 + 6.98896i −0.504385 + 0.873620i
\(65\) 7.83538 + 2.85185i 0.971859 + 0.353728i
\(66\) −1.48446 0.107380i −0.182725 0.0132176i
\(67\) 4.46899 + 3.74993i 0.545974 + 0.458126i 0.873575 0.486690i \(-0.161796\pi\)
−0.327601 + 0.944816i \(0.606240\pi\)
\(68\) 9.48844 + 7.96175i 1.15064 + 0.965504i
\(69\) 4.39930 6.48862i 0.529613 0.781138i
\(70\) −8.61762 3.13656i −1.03000 0.374890i
\(71\) −5.46530 + 9.46618i −0.648612 + 1.12343i 0.334843 + 0.942274i \(0.391317\pi\)
−0.983455 + 0.181155i \(0.942016\pi\)
\(72\) 6.96050 21.0778i 0.820303 2.48405i
\(73\) 2.95135 + 5.11188i 0.345429 + 0.598301i 0.985432 0.170072i \(-0.0544001\pi\)
−0.640003 + 0.768373i \(0.721067\pi\)
\(74\) −1.54649 8.77057i −0.179776 1.01956i
\(75\) 12.1820 3.46156i 1.40666 0.399707i
\(76\) 22.7557 8.28240i 2.61026 0.950056i
\(77\) 0.0570914 0.323781i 0.00650616 0.0368983i
\(78\) −9.81708 4.39907i −1.11157 0.498097i
\(79\) −0.653105 + 0.548021i −0.0734801 + 0.0616571i −0.678788 0.734334i \(-0.737494\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(80\) 33.9530 3.79606
\(81\) −1.02654 + 8.94127i −0.114060 + 0.993474i
\(82\) −17.6791 −1.95233
\(83\) −1.71116 + 1.43583i −0.187824 + 0.157603i −0.731851 0.681465i \(-0.761343\pi\)
0.544027 + 0.839068i \(0.316899\pi\)
\(84\) 7.63593 + 3.42169i 0.833149 + 0.373337i
\(85\) 1.56219 8.85963i 0.169443 0.960962i
\(86\) 2.20427 0.802290i 0.237693 0.0865131i
\(87\) −16.3116 + 4.63500i −1.74879 + 0.496924i
\(88\) 0.422426 + 2.39570i 0.0450308 + 0.255382i
\(89\) 0.107492 + 0.186182i 0.0113941 + 0.0197352i 0.871666 0.490100i \(-0.163040\pi\)
−0.860272 + 0.509835i \(0.829706\pi\)
\(90\) −26.9379 + 5.59099i −2.83951 + 0.589342i
\(91\) 1.18819 2.05800i 0.124556 0.215737i
\(92\) −20.5468 7.47842i −2.14215 0.779679i
\(93\) 9.56634 14.1096i 0.991984 1.46310i
\(94\) −10.0896 8.46622i −1.04067 0.873224i
\(95\) −13.4735 11.3056i −1.38236 1.15993i
\(96\) −18.1261 1.31117i −1.84998 0.133820i
\(97\) −2.73245 0.994531i −0.277438 0.100979i 0.199554 0.979887i \(-0.436051\pi\)
−0.476992 + 0.878908i \(0.658273\pi\)
\(98\) −1.30681 + 2.26346i −0.132008 + 0.228644i
\(99\) −0.365096 0.916268i −0.0366936 0.0920884i
\(100\) −17.6615 30.5906i −1.76615 3.05906i
\(101\) −0.958894 5.43816i −0.0954135 0.541117i −0.994620 0.103592i \(-0.966966\pi\)
0.899206 0.437525i \(-0.144145\pi\)
\(102\) −2.83489 + 11.2551i −0.280696 + 1.11442i
\(103\) −4.15162 + 1.51106i −0.409071 + 0.148890i −0.538355 0.842718i \(-0.680954\pi\)
0.129285 + 0.991608i \(0.458732\pi\)
\(104\) −3.05327 + 17.3160i −0.299398 + 1.69797i
\(105\) −0.620774 6.04565i −0.0605814 0.589995i
\(106\) 13.9705 11.7226i 1.35693 1.13860i
\(107\) −13.6243 −1.31711 −0.658556 0.752532i \(-0.728832\pi\)
−0.658556 + 0.752532i \(0.728832\pi\)
\(108\) 24.8828 3.31475i 2.39434 0.318962i
\(109\) 11.0039 1.05398 0.526989 0.849872i \(-0.323321\pi\)
0.526989 + 0.849872i \(0.323321\pi\)
\(110\) 2.30970 1.93807i 0.220221 0.184788i
\(111\) 4.78307 3.45762i 0.453989 0.328183i
\(112\) 1.68031 9.52950i 0.158774 0.900453i
\(113\) −1.17069 + 0.426096i −0.110129 + 0.0400837i −0.396497 0.918036i \(-0.629774\pi\)
0.286368 + 0.958120i \(0.407552\pi\)
\(114\) 16.2853 + 15.8022i 1.52526 + 1.48001i
\(115\) 2.75773 + 15.6398i 0.257159 + 1.45842i
\(116\) 23.6486 + 40.9605i 2.19571 + 3.80309i
\(117\) −0.214642 7.12589i −0.0198436 0.658789i
\(118\) 9.57267 16.5804i 0.881236 1.52635i
\(119\) −2.40930 0.876912i −0.220860 0.0803864i
\(120\) 19.6156 + 40.4639i 1.79065 + 3.69383i
\(121\) −8.34368 7.00118i −0.758517 0.636471i
\(122\) 1.81813 + 1.52559i 0.164606 + 0.138121i
\(123\) −5.11068 10.5425i −0.460815 0.950587i
\(124\) −44.6793 16.2619i −4.01232 1.46037i
\(125\) −4.05572 + 7.02470i −0.362754 + 0.628309i
\(126\) 0.236070 + 7.83730i 0.0210308 + 0.698202i
\(127\) 6.39662 + 11.0793i 0.567608 + 0.983126i 0.996802 + 0.0799139i \(0.0254645\pi\)
−0.429193 + 0.903213i \(0.641202\pi\)
\(128\) 0.0186594 + 0.105822i 0.00164927 + 0.00935347i
\(129\) 1.11564 + 1.08254i 0.0982267 + 0.0953125i
\(130\) 20.4787 7.45363i 1.79610 0.653727i
\(131\) −1.25242 + 7.10283i −0.109424 + 0.620577i 0.879936 + 0.475092i \(0.157585\pi\)
−0.989360 + 0.145485i \(0.953526\pi\)
\(132\) −2.22951 + 1.61168i −0.194054 + 0.140279i
\(133\) −3.83992 + 3.22207i −0.332963 + 0.279389i
\(134\) 15.2474 1.31718
\(135\) −11.1213 14.4476i −0.957170 1.24345i
\(136\) 18.9708 1.62673
\(137\) 7.02318 5.89315i 0.600031 0.503486i −0.291425 0.956594i \(-0.594129\pi\)
0.891456 + 0.453108i \(0.149685\pi\)
\(138\) −2.09285 20.3820i −0.178155 1.73503i
\(139\) −3.10976 + 17.6363i −0.263766 + 1.49589i 0.508760 + 0.860909i \(0.330104\pi\)
−0.772526 + 0.634983i \(0.781007\pi\)
\(140\) −15.9288 + 5.79759i −1.34623 + 0.489986i
\(141\) 2.13192 8.46416i 0.179540 0.712811i
\(142\) 4.96085 + 28.1344i 0.416305 + 2.36099i
\(143\) 0.390647 + 0.676621i 0.0326676 + 0.0565819i
\(144\) −10.7455 26.9675i −0.895457 2.24729i
\(145\) 17.1762 29.7501i 1.42641 2.47061i
\(146\) 14.4970 + 5.27647i 1.19978 + 0.436684i
\(147\) −1.72754 0.124963i −0.142485 0.0103068i
\(148\) −12.6103 10.5813i −1.03656 0.869776i
\(149\) 15.3512 + 12.8812i 1.25762 + 1.05527i 0.995931 + 0.0901176i \(0.0287243\pi\)
0.261690 + 0.965152i \(0.415720\pi\)
\(150\) 18.5748 27.3964i 1.51663 2.23690i
\(151\) 0.536388 + 0.195229i 0.0436506 + 0.0158875i 0.363753 0.931495i \(-0.381495\pi\)
−0.320103 + 0.947383i \(0.603717\pi\)
\(152\) 18.5447 32.1203i 1.50417 2.60530i
\(153\) −7.53126 + 1.56312i −0.608866 + 0.126371i
\(154\) −0.429647 0.744171i −0.0346220 0.0599670i
\(155\) 5.99672 + 34.0091i 0.481668 + 2.73168i
\(156\) −19.1272 + 5.43504i −1.53140 + 0.435151i
\(157\) −7.56674 + 2.75407i −0.603891 + 0.219798i −0.625828 0.779961i \(-0.715239\pi\)
0.0219369 + 0.999759i \(0.493017\pi\)
\(158\) −0.386938 + 2.19444i −0.0307831 + 0.174580i
\(159\) 11.0291 + 4.94219i 0.874665 + 0.391941i
\(160\) 28.2026 23.6648i 2.22961 1.87087i
\(161\) 4.52607 0.356704
\(162\) 12.9661 + 19.6263i 1.01871 + 1.54199i
\(163\) −1.88855 −0.147923 −0.0739614 0.997261i \(-0.523564\pi\)
−0.0739614 + 0.997261i \(0.523564\pi\)
\(164\) −25.0327 + 21.0049i −1.95473 + 1.64021i
\(165\) 1.82341 + 0.817080i 0.141953 + 0.0636096i
\(166\) −1.01379 + 5.74949i −0.0786854 + 0.446247i
\(167\) −4.73464 + 1.72327i −0.366378 + 0.133351i −0.518647 0.854988i \(-0.673564\pi\)
0.152269 + 0.988339i \(0.451342\pi\)
\(168\) 12.3276 3.50294i 0.951099 0.270257i
\(169\) −1.27681 7.24114i −0.0982161 0.557011i
\(170\) −11.7564 20.3628i −0.901678 1.56175i
\(171\) −4.71550 + 14.2795i −0.360603 + 1.09198i
\(172\) 2.16792 3.75495i 0.165303 0.286313i
\(173\) 16.2893 + 5.92883i 1.23845 + 0.450760i 0.876485 0.481430i \(-0.159882\pi\)
0.361969 + 0.932190i \(0.382105\pi\)
\(174\) −24.8715 + 36.6835i −1.88550 + 2.78097i
\(175\) 5.60111 + 4.69989i 0.423404 + 0.355278i
\(176\) 2.43710 + 2.04497i 0.183703 + 0.154145i
\(177\) 12.6546 + 0.915385i 0.951178 + 0.0688045i
\(178\) 0.528001 + 0.192177i 0.0395753 + 0.0144042i
\(179\) 5.86658 10.1612i 0.438489 0.759485i −0.559084 0.829111i \(-0.688847\pi\)
0.997573 + 0.0696257i \(0.0221805\pi\)
\(180\) −31.5000 + 39.9222i −2.34787 + 2.97563i
\(181\) −6.59159 11.4170i −0.489949 0.848617i 0.509984 0.860184i \(-0.329651\pi\)
−0.999933 + 0.0115671i \(0.996318\pi\)
\(182\) −1.07852 6.11657i −0.0799450 0.453390i
\(183\) −0.384166 + 1.52522i −0.0283984 + 0.112748i
\(184\) −31.4694 + 11.4539i −2.31995 + 0.844394i
\(185\) −2.07618 + 11.7746i −0.152644 + 0.865685i
\(186\) −4.55093 44.3210i −0.333690 3.24977i
\(187\) 0.645741 0.541841i 0.0472213 0.0396234i
\(188\) −24.3454 −1.77557
\(189\) −4.60535 + 2.40639i −0.334990 + 0.175039i
\(190\) −45.9695 −3.33498
\(191\) −0.292258 + 0.245234i −0.0211470 + 0.0177445i −0.653300 0.757099i \(-0.726616\pi\)
0.632153 + 0.774844i \(0.282171\pi\)
\(192\) −11.3280 + 8.18889i −0.817531 + 0.590982i
\(193\) −1.86312 + 10.5663i −0.134110 + 0.760577i 0.841365 + 0.540467i \(0.181753\pi\)
−0.975475 + 0.220110i \(0.929359\pi\)
\(194\) −7.14158 + 2.59932i −0.512736 + 0.186621i
\(195\) 10.3648 + 10.0573i 0.742239 + 0.720219i
\(196\) 0.838893 + 4.75760i 0.0599209 + 0.339829i
\(197\) 0.207469 + 0.359346i 0.0147815 + 0.0256024i 0.873322 0.487144i \(-0.161961\pi\)
−0.858540 + 0.512747i \(0.828628\pi\)
\(198\) −2.27031 1.22114i −0.161344 0.0867827i
\(199\) −9.85935 + 17.0769i −0.698910 + 1.21055i 0.269934 + 0.962879i \(0.412998\pi\)
−0.968845 + 0.247670i \(0.920335\pi\)
\(200\) −50.8378 18.5035i −3.59478 1.30839i
\(201\) 4.40775 + 9.09248i 0.310899 + 0.641334i
\(202\) −11.0559 9.27704i −0.777894 0.652730i
\(203\) −7.49985 6.29312i −0.526386 0.441690i
\(204\) 9.35842 + 19.3049i 0.655220 + 1.35161i
\(205\) 22.3030 + 8.11762i 1.55771 + 0.566959i
\(206\) −5.77355 + 10.0001i −0.402263 + 0.696739i
\(207\) 11.5493 7.14007i 0.802735 0.496269i
\(208\) 11.4975 + 19.9143i 0.797208 + 1.38080i
\(209\) −0.286179 1.62300i −0.0197954 0.112266i
\(210\) −11.3996 11.0614i −0.786645 0.763307i
\(211\) −15.6464 + 5.69483i −1.07714 + 0.392048i −0.818844 0.574016i \(-0.805385\pi\)
−0.258300 + 0.966065i \(0.583162\pi\)
\(212\) 5.85358 33.1973i 0.402025 2.28000i
\(213\) −15.3432 + 11.0914i −1.05130 + 0.759971i
\(214\) −27.2779 + 22.8888i −1.86468 + 1.56465i
\(215\) −3.14918 −0.214772
\(216\) 25.9309 28.3860i 1.76437 1.93142i
\(217\) 9.84202 0.668120
\(218\) 22.0313 18.4865i 1.49215 1.25206i
\(219\) 1.04430 + 10.1703i 0.0705671 + 0.687245i
\(220\) 0.967757 5.48842i 0.0652462 0.370029i
\(221\) 5.72539 2.08387i 0.385131 0.140176i
\(222\) 3.76761 14.9582i 0.252866 1.00393i
\(223\) −1.64750 9.34342i −0.110325 0.625682i −0.988959 0.148187i \(-0.952656\pi\)
0.878635 0.477494i \(-0.158455\pi\)
\(224\) −5.24621 9.08671i −0.350527 0.607131i
\(225\) 21.7068 + 3.15689i 1.44712 + 0.210460i
\(226\) −1.62805 + 2.81986i −0.108296 + 0.187575i
\(227\) 13.1661 + 4.79209i 0.873868 + 0.318062i 0.739732 0.672901i \(-0.234952\pi\)
0.134135 + 0.990963i \(0.457174\pi\)
\(228\) 41.8342 + 3.02612i 2.77054 + 0.200410i
\(229\) −15.7576 13.2222i −1.04129 0.873749i −0.0491422 0.998792i \(-0.515649\pi\)
−0.992151 + 0.125043i \(0.960093\pi\)
\(230\) 31.7963 + 26.6803i 2.09659 + 1.75925i
\(231\) 0.319567 0.471336i 0.0210260 0.0310117i
\(232\) 68.0714 + 24.7760i 4.46911 + 1.62662i
\(233\) 7.85140 13.5990i 0.514362 0.890902i −0.485499 0.874237i \(-0.661362\pi\)
0.999861 0.0166645i \(-0.00530471\pi\)
\(234\) −12.4012 13.9065i −0.810694 0.909095i
\(235\) 8.84117 + 15.3133i 0.576734 + 0.998933i
\(236\) −6.14509 34.8505i −0.400011 2.26858i
\(237\) −1.42046 + 0.403628i −0.0922687 + 0.0262184i
\(238\) −6.29698 + 2.29191i −0.408172 + 0.148563i
\(239\) 4.90948 27.8431i 0.317568 1.80102i −0.239875 0.970804i \(-0.577107\pi\)
0.557444 0.830215i \(-0.311782\pi\)
\(240\) 53.6666 + 24.0482i 3.46416 + 1.55231i
\(241\) 18.4147 15.4518i 1.18620 0.995336i 0.186278 0.982497i \(-0.440357\pi\)
0.999918 0.0128394i \(-0.00408702\pi\)
\(242\) −28.4673 −1.82995
\(243\) −7.95547 + 13.4056i −0.510344 + 0.859970i
\(244\) 4.38698 0.280848
\(245\) 2.68790 2.25542i 0.171724 0.144093i
\(246\) −27.9438 12.5217i −1.78163 0.798356i
\(247\) 2.06849 11.7310i 0.131615 0.746424i
\(248\) −68.4307 + 24.9067i −4.34535 + 1.58158i
\(249\) −3.72165 + 1.05752i −0.235850 + 0.0670175i
\(250\) 3.68137 + 20.8781i 0.232830 + 1.32045i
\(251\) 7.79191 + 13.4960i 0.491821 + 0.851859i 0.999956 0.00941867i \(-0.00299810\pi\)
−0.508135 + 0.861278i \(0.669665\pi\)
\(252\) 9.64595 + 10.8168i 0.607638 + 0.681391i
\(253\) −0.744032 + 1.28870i −0.0467769 + 0.0810199i
\(254\) 31.4202 + 11.4360i 1.97148 + 0.717559i
\(255\) 8.74432 12.8972i 0.547590 0.807653i
\(256\) −12.1491 10.1943i −0.759316 0.637142i
\(257\) 5.73016 + 4.80817i 0.357437 + 0.299925i 0.803768 0.594942i \(-0.202825\pi\)
−0.446331 + 0.894868i \(0.647270\pi\)
\(258\) 4.05235 + 0.293131i 0.252288 + 0.0182495i
\(259\) 3.20199 + 1.16543i 0.198962 + 0.0724163i
\(260\) 20.1410 34.8852i 1.24909 2.16349i
\(261\) −29.0653 4.22706i −1.79910 0.261648i
\(262\) 9.42523 + 16.3250i 0.582292 + 1.00856i
\(263\) 4.48609 + 25.4419i 0.276624 + 1.56881i 0.733755 + 0.679414i \(0.237766\pi\)
−0.457131 + 0.889399i \(0.651123\pi\)
\(264\) −1.02913 + 4.08587i −0.0633387 + 0.251468i
\(265\) −23.0070 + 8.37387i −1.41331 + 0.514403i
\(266\) −2.27499 + 12.9021i −0.139489 + 0.791080i
\(267\) 0.0380348 + 0.370416i 0.00232769 + 0.0226691i
\(268\) 21.5896 18.1159i 1.31880 1.10660i
\(269\) 0.492770 0.0300447 0.0150223 0.999887i \(-0.495218\pi\)
0.0150223 + 0.999887i \(0.495218\pi\)
\(270\) −46.5385 10.2424i −2.83224 0.623333i
\(271\) −23.6945 −1.43934 −0.719669 0.694317i \(-0.755707\pi\)
−0.719669 + 0.694317i \(0.755707\pi\)
\(272\) 19.0054 15.9474i 1.15237 0.966955i
\(273\) 3.33570 2.41133i 0.201886 0.145941i
\(274\) 4.16095 23.5979i 0.251372 1.42560i
\(275\) −2.25895 + 0.822190i −0.136220 + 0.0495799i
\(276\) −27.1797 26.3733i −1.63603 1.58749i
\(277\) 2.12745 + 12.0654i 0.127826 + 0.724938i 0.979589 + 0.201011i \(0.0644225\pi\)
−0.851763 + 0.523927i \(0.824466\pi\)
\(278\) 23.4028 + 40.5349i 1.40361 + 2.43112i
\(279\) 25.1142 15.5262i 1.50355 0.929529i
\(280\) −12.9811 + 22.4839i −0.775767 + 1.34367i
\(281\) −12.5499 4.56778i −0.748662 0.272491i −0.0606193 0.998161i \(-0.519308\pi\)
−0.688043 + 0.725670i \(0.741530\pi\)
\(282\) −9.95138 20.5281i −0.592596 1.22243i
\(283\) −2.30721 1.93598i −0.137150 0.115082i 0.571632 0.820510i \(-0.306310\pi\)
−0.708782 + 0.705428i \(0.750755\pi\)
\(284\) 40.4515 + 33.9428i 2.40035 + 2.01414i
\(285\) −13.2889 27.4129i −0.787167 1.62380i
\(286\) 1.91886 + 0.698407i 0.113464 + 0.0412976i
\(287\) 3.38211 5.85798i 0.199639 0.345786i
\(288\) −27.7216 14.9108i −1.63351 0.878625i
\(289\) 5.21316 + 9.02945i 0.306656 + 0.531144i
\(290\) −15.5909 88.4202i −0.915527 5.19221i
\(291\) −3.61455 3.50731i −0.211888 0.205602i
\(292\) 26.7962 9.75300i 1.56813 0.570751i
\(293\) −0.738094 + 4.18594i −0.0431199 + 0.244545i −0.998748 0.0500319i \(-0.984068\pi\)
0.955628 + 0.294577i \(0.0951788\pi\)
\(294\) −3.66872 + 2.65207i −0.213964 + 0.154672i
\(295\) −19.6895 + 16.5215i −1.14637 + 0.961917i
\(296\) −25.2125 −1.46544
\(297\) 0.0718977 1.70686i 0.00417193 0.0990419i
\(298\) 52.3758 3.03405
\(299\) −8.23930 + 6.91359i −0.476491 + 0.399823i
\(300\) −6.24929 60.8611i −0.360803 3.51382i
\(301\) −0.155850 + 0.883871i −0.00898307 + 0.0509455i
\(302\) 1.40191 0.510255i 0.0806710 0.0293618i
\(303\) 2.33609 9.27479i 0.134205 0.532823i
\(304\) −8.42281 47.7681i −0.483081 2.73969i
\(305\) −1.59316 2.75943i −0.0912240 0.158005i
\(306\) −12.4526 + 15.7821i −0.711870 + 0.902203i
\(307\) 12.1955 21.1232i 0.696034 1.20557i −0.273797 0.961787i \(-0.588280\pi\)
0.969831 0.243779i \(-0.0783870\pi\)
\(308\) −1.49253 0.543236i −0.0850446 0.0309537i
\(309\) −7.63236 0.552095i −0.434190 0.0314076i
\(310\) 69.1416 + 58.0167i 3.92698 + 3.29513i
\(311\) −10.8993 9.14557i −0.618041 0.518598i 0.279146 0.960249i \(-0.409949\pi\)
−0.897187 + 0.441651i \(0.854393\pi\)
\(312\) −17.0906 + 25.2073i −0.967564 + 1.42708i
\(313\) −7.28132 2.65018i −0.411564 0.149797i 0.127936 0.991782i \(-0.459165\pi\)
−0.539501 + 0.841985i \(0.681387\pi\)
\(314\) −10.5229 + 18.2262i −0.593841 + 1.02856i
\(315\) 3.30080 9.99551i 0.185979 0.563183i
\(316\) 2.05938 + 3.56694i 0.115849 + 0.200656i
\(317\) 2.19724 + 12.4612i 0.123409 + 0.699889i 0.982240 + 0.187629i \(0.0600804\pi\)
−0.858830 + 0.512260i \(0.828808\pi\)
\(318\) 30.3848 8.63392i 1.70389 0.484166i
\(319\) 3.02471 1.10091i 0.169351 0.0616389i
\(320\) 4.91713 27.8864i 0.274876 1.55890i
\(321\) −21.5348 9.64982i −1.20195 0.538600i
\(322\) 9.06186 7.60380i 0.504998 0.423743i
\(323\) −12.8521 −0.715107
\(324\) 41.6778 + 12.3846i 2.31543 + 0.688034i
\(325\) −17.3754 −0.963814
\(326\) −3.78116 + 3.17277i −0.209419 + 0.175723i
\(327\) 17.3928 + 7.79380i 0.961826 + 0.430998i
\(328\) −8.69097 + 49.2889i −0.479879 + 2.72153i
\(329\) 4.73550 1.72358i 0.261077 0.0950241i
\(330\) 5.02344 1.42742i 0.276531 0.0785771i
\(331\) 0.178113 + 1.01013i 0.00979000 + 0.0555218i 0.989311 0.145818i \(-0.0465815\pi\)
−0.979521 + 0.201340i \(0.935470\pi\)
\(332\) 5.39564 + 9.34551i 0.296124 + 0.512902i
\(333\) 10.0092 2.07741i 0.548498 0.113841i
\(334\) −6.58436 + 11.4044i −0.360280 + 0.624023i
\(335\) −19.2354 7.00110i −1.05094 0.382511i
\(336\) 9.40547 13.8723i 0.513110 0.756798i
\(337\) 9.90301 + 8.30961i 0.539451 + 0.452653i 0.871350 0.490662i \(-0.163245\pi\)
−0.331899 + 0.943315i \(0.607689\pi\)
\(338\) −14.7215 12.3528i −0.800743 0.671903i
\(339\) −2.15220 0.155682i −0.116892 0.00845548i
\(340\) −40.8401 14.8646i −2.21486 0.806144i
\(341\) −1.61791 + 2.80230i −0.0876147 + 0.151753i
\(342\) 14.5485 + 36.5117i 0.786691 + 1.97433i
\(343\) −0.500000 0.866025i −0.0269975 0.0467610i
\(344\) −1.15316 6.53988i −0.0621741 0.352607i
\(345\) −6.71848 + 26.6738i −0.361711 + 1.43607i
\(346\) 42.5740 15.4957i 2.28879 0.833053i
\(347\) 4.78492 27.1366i 0.256868 1.45677i −0.534364 0.845254i \(-0.679449\pi\)
0.791232 0.611516i \(-0.209440\pi\)
\(348\) 8.36776 + 81.4926i 0.448559 + 4.36846i
\(349\) 17.0080 14.2714i 0.910417 0.763931i −0.0617812 0.998090i \(-0.519678\pi\)
0.972198 + 0.234159i \(0.0752337\pi\)
\(350\) 19.1101 1.02148
\(351\) 4.70785 11.4153i 0.251287 0.609304i
\(352\) 3.44966 0.183867
\(353\) 10.6062 8.89963i 0.564509 0.473680i −0.315309 0.948989i \(-0.602108\pi\)
0.879819 + 0.475309i \(0.157664\pi\)
\(354\) 26.8742 19.4270i 1.42835 1.03253i
\(355\) 6.66000 37.7707i 0.353476 2.00466i
\(356\) 0.975953 0.355218i 0.0517254 0.0188265i
\(357\) −3.18707 3.09252i −0.168678 0.163673i
\(358\) −5.32509 30.2001i −0.281440 1.59613i
\(359\) 1.18334 + 2.04960i 0.0624543 + 0.108174i 0.895562 0.444937i \(-0.146774\pi\)
−0.833108 + 0.553111i \(0.813441\pi\)
\(360\) 2.34498 + 77.8511i 0.123592 + 4.10311i
\(361\) −3.06337 + 5.30590i −0.161230 + 0.279258i
\(362\) −32.3779 11.7846i −1.70174 0.619383i
\(363\) −8.22935 16.9758i −0.431929 0.891000i
\(364\) −8.79438 7.37936i −0.460951 0.386783i
\(365\) −15.8659 13.3130i −0.830457 0.696837i
\(366\) 1.79322 + 3.69912i 0.0937329 + 0.193356i
\(367\) −8.02424 2.92059i −0.418862 0.152453i 0.123986 0.992284i \(-0.460432\pi\)
−0.542849 + 0.839831i \(0.682654\pi\)
\(368\) −21.8983 + 37.9289i −1.14153 + 1.97718i
\(369\) −0.610966 20.2834i −0.0318056 1.05591i
\(370\) 15.6245 + 27.0624i 0.812279 + 1.40691i
\(371\) 1.21167 + 6.87173i 0.0629069 + 0.356763i
\(372\) −59.1027 57.3493i −3.06433 2.97342i
\(373\) −34.0106 + 12.3788i −1.76100 + 0.640951i −0.999970 0.00776552i \(-0.997528\pi\)
−0.761030 + 0.648717i \(0.775306\pi\)
\(374\) 0.382575 2.16969i 0.0197825 0.112192i
\(375\) −11.3860 + 8.23077i −0.587969 + 0.425035i
\(376\) −28.5637 + 23.9678i −1.47306 + 1.23605i
\(377\) 23.2655 1.19824
\(378\) −5.17786 + 12.5549i −0.266320 + 0.645757i
\(379\) −8.57465 −0.440450 −0.220225 0.975449i \(-0.570679\pi\)
−0.220225 + 0.975449i \(0.570679\pi\)
\(380\) −65.0906 + 54.6175i −3.33908 + 2.80182i
\(381\) 2.26337 + 22.0426i 0.115956 + 1.12928i
\(382\) −0.173151 + 0.981987i −0.00885917 + 0.0502428i
\(383\) −3.27371 + 1.19153i −0.167279 + 0.0608844i −0.424302 0.905521i \(-0.639480\pi\)
0.257023 + 0.966405i \(0.417258\pi\)
\(384\) −0.0454586 + 0.180480i −0.00231980 + 0.00921011i
\(385\) 0.200323 + 1.13609i 0.0102094 + 0.0579003i
\(386\) 14.0211 + 24.2853i 0.713656 + 1.23609i
\(387\) 0.996655 + 2.50127i 0.0506628 + 0.127147i
\(388\) −7.02382 + 12.1656i −0.356580 + 0.617615i
\(389\) −17.9466 6.53202i −0.909927 0.331186i −0.155703 0.987804i \(-0.549764\pi\)
−0.754224 + 0.656617i \(0.771987\pi\)
\(390\) 37.6481 + 2.72332i 1.90639 + 0.137901i
\(391\) 8.88955 + 7.45922i 0.449564 + 0.377229i
\(392\) 5.66806 + 4.75607i 0.286280 + 0.240218i
\(393\) −7.01038 + 10.3398i −0.353627 + 0.521572i
\(394\) 1.01908 + 0.370916i 0.0513407 + 0.0186865i
\(395\) 1.49575 2.59071i 0.0752593 0.130353i
\(396\) −4.66551 + 0.968331i −0.234451 + 0.0486605i
\(397\) 7.24191 + 12.5434i 0.363461 + 0.629533i 0.988528 0.151038i \(-0.0482616\pi\)
−0.625067 + 0.780571i \(0.714928\pi\)
\(398\) 8.94932 + 50.7541i 0.448589 + 2.54408i
\(399\) −8.35156 + 2.37312i −0.418101 + 0.118805i
\(400\) −66.4852 + 24.1986i −3.32426 + 1.20993i
\(401\) 6.11108 34.6577i 0.305173 1.73072i −0.317517 0.948253i \(-0.602849\pi\)
0.622690 0.782469i \(-0.286040\pi\)
\(402\) 24.1003 + 10.7995i 1.20201 + 0.538628i
\(403\) −17.9165 + 15.0337i −0.892484 + 0.748883i
\(404\) −26.6770 −1.32723
\(405\) −7.34557 30.7131i −0.365004 1.52615i
\(406\) −25.5882 −1.26992
\(407\) −0.858200 + 0.720115i −0.0425394 + 0.0356948i
\(408\) 29.9855 + 13.4366i 1.48450 + 0.665212i
\(409\) 0.541327 3.07002i 0.0267669 0.151803i −0.968495 0.249033i \(-0.919887\pi\)
0.995262 + 0.0972304i \(0.0309984\pi\)
\(410\) 58.2914 21.2163i 2.87881 1.04780i
\(411\) 15.2749 4.34042i 0.753457 0.214097i
\(412\) 3.70628 + 21.0193i 0.182595 + 1.03555i
\(413\) 3.66262 + 6.34384i 0.180226 + 0.312160i
\(414\) 11.1282 33.6984i 0.546919 1.65618i
\(415\) 3.91891 6.78776i 0.192372 0.333198i
\(416\) 23.4302 + 8.52790i 1.14876 + 0.418115i
\(417\) −17.4068 + 25.6736i −0.852413 + 1.25724i
\(418\) −3.29962 2.76871i −0.161390 0.135422i
\(419\) −1.33321 1.11870i −0.0651317 0.0546520i 0.609641 0.792678i \(-0.291314\pi\)
−0.674772 + 0.738026i \(0.735758\pi\)
\(420\) −29.2835 2.11826i −1.42889 0.103360i
\(421\) −32.8485 11.9559i −1.60094 0.582694i −0.621319 0.783558i \(-0.713403\pi\)
−0.979619 + 0.200864i \(0.935625\pi\)
\(422\) −21.7591 + 37.6879i −1.05922 + 1.83462i
\(423\) 9.36473 11.8686i 0.455329 0.577070i
\(424\) −25.8146 44.7122i −1.25367 2.17142i
\(425\) 3.25533 + 18.4619i 0.157907 + 0.895533i
\(426\) −12.0858 + 47.9833i −0.585560 + 2.32480i
\(427\) −0.853326 + 0.310585i −0.0412954 + 0.0150303i
\(428\) −11.4293 + 64.8190i −0.552458 + 3.13314i
\(429\) 0.138226 + 1.34616i 0.00667360 + 0.0649934i
\(430\) −6.30512 + 5.29062i −0.304060 + 0.255136i
\(431\) −5.07549 −0.244478 −0.122239 0.992501i \(-0.539007\pi\)
−0.122239 + 0.992501i \(0.539007\pi\)
\(432\) 2.11609 50.2361i 0.101810 2.41698i
\(433\) −17.1982 −0.826492 −0.413246 0.910619i \(-0.635605\pi\)
−0.413246 + 0.910619i \(0.635605\pi\)
\(434\) 19.7052 16.5346i 0.945878 0.793686i
\(435\) 48.2204 34.8579i 2.31199 1.67131i
\(436\) 9.23106 52.3519i 0.442087 2.50720i
\(437\) 21.3194 7.75963i 1.01985 0.371194i
\(438\) 19.1769 + 18.6080i 0.916309 + 0.889124i
\(439\) −2.95767 16.7738i −0.141162 0.800570i −0.970369 0.241628i \(-0.922319\pi\)
0.829207 0.558942i \(-0.188793\pi\)
\(440\) −4.26786 7.39216i −0.203462 0.352407i
\(441\) −2.64206 1.42110i −0.125812 0.0676713i
\(442\) 7.96216 13.7909i 0.378721 0.655965i
\(443\) −14.1938 5.16612i −0.674367 0.245450i −0.0179401 0.999839i \(-0.505711\pi\)
−0.656427 + 0.754389i \(0.727933\pi\)
\(444\) −12.4375 25.6565i −0.590257 1.21760i
\(445\) −0.577857 0.484880i −0.0273930 0.0229855i
\(446\) −18.9955 15.9391i −0.899462 0.754738i
\(447\) 15.1409 + 31.2332i 0.716138 + 1.47728i
\(448\) −7.58347 2.76016i −0.358285 0.130405i
\(449\) −7.06546 + 12.2377i −0.333440 + 0.577535i −0.983184 0.182618i \(-0.941543\pi\)
0.649744 + 0.760153i \(0.274876\pi\)
\(450\) 48.7639 30.1469i 2.29875 1.42114i
\(451\) 1.11196 + 1.92596i 0.0523599 + 0.0906901i
\(452\) 1.04511 + 5.92712i 0.0491579 + 0.278788i
\(453\) 0.709545 + 0.688495i 0.0333374 + 0.0323483i
\(454\) 34.4113 12.5247i 1.61500 0.587812i
\(455\) −1.44792 + 8.21156i −0.0678795 + 0.384964i
\(456\) 52.0621 37.6350i 2.43803 1.76242i
\(457\) 17.4919 14.6774i 0.818237 0.686582i −0.134322 0.990938i \(-0.542886\pi\)
0.952558 + 0.304356i \(0.0984411\pi\)
\(458\) −53.7624 −2.51215
\(459\) −13.0111 2.86355i −0.607308 0.133659i
\(460\) 76.7216 3.57716
\(461\) 20.5560 17.2485i 0.957386 0.803342i −0.0231398 0.999732i \(-0.507366\pi\)
0.980526 + 0.196390i \(0.0629218\pi\)
\(462\) −0.152025 1.48056i −0.00707286 0.0688817i
\(463\) −4.18053 + 23.7090i −0.194286 + 1.10185i 0.719147 + 0.694858i \(0.244533\pi\)
−0.913432 + 0.406990i \(0.866578\pi\)
\(464\) 89.0231 32.4018i 4.13280 1.50421i
\(465\) −14.6095 + 58.0026i −0.677497 + 2.68981i
\(466\) −7.12671 40.4176i −0.330139 1.87231i
\(467\) 0.873689 + 1.51327i 0.0404295 + 0.0700259i 0.885532 0.464578i \(-0.153794\pi\)
−0.845103 + 0.534604i \(0.820461\pi\)
\(468\) −34.0822 4.95668i −1.57545 0.229123i
\(469\) −2.91692 + 5.05226i −0.134691 + 0.233292i
\(470\) 43.4277 + 15.8064i 2.00317 + 0.729095i
\(471\) −13.9107 1.00625i −0.640973 0.0463655i
\(472\) −41.5199 34.8393i −1.91111 1.60361i
\(473\) −0.226043 0.189673i −0.0103935 0.00872117i
\(474\) −2.16587 + 3.19449i −0.0994818 + 0.146728i
\(475\) 34.4409 + 12.5355i 1.58026 + 0.575166i
\(476\) −6.19314 + 10.7268i −0.283862 + 0.491664i
\(477\) 13.9323 + 15.6234i 0.637917 + 0.715346i
\(478\) −36.9469 63.9938i −1.68991 2.92701i
\(479\) 0.743652 + 4.21746i 0.0339783 + 0.192701i 0.997072 0.0764648i \(-0.0243633\pi\)
−0.963094 + 0.269165i \(0.913252\pi\)
\(480\) 61.3387 17.4296i 2.79972 0.795548i
\(481\) −7.60913 + 2.76950i −0.346946 + 0.126278i
\(482\) 10.9100 61.8734i 0.496935 2.81826i
\(483\) 7.15397 + 3.20572i 0.325517 + 0.145865i
\(484\) −40.3083 + 33.8227i −1.83219 + 1.53739i
\(485\) 10.2030 0.463293
\(486\) 6.59342 + 40.2052i 0.299083 + 1.82374i
\(487\) −41.2245 −1.86806 −0.934030 0.357194i \(-0.883733\pi\)
−0.934030 + 0.357194i \(0.883733\pi\)
\(488\) 5.14712 4.31894i 0.232999 0.195509i
\(489\) −2.98507 1.33762i −0.134990 0.0604894i
\(490\) 1.59247 9.03136i 0.0719405 0.407995i
\(491\) 17.1068 6.22637i 0.772020 0.280992i 0.0741788 0.997245i \(-0.476366\pi\)
0.697841 + 0.716253i \(0.254144\pi\)
\(492\) −54.4444 + 15.4705i −2.45454 + 0.697466i
\(493\) −4.35886 24.7203i −0.196313 1.11335i
\(494\) −15.5666 26.9622i −0.700376 1.21309i
\(495\) 2.30339 + 2.58297i 0.103530 + 0.116096i
\(496\) −47.6182 + 82.4771i −2.13812 + 3.70333i
\(497\) −10.2714 3.73849i −0.460736 0.167694i
\(498\) −5.67466 + 8.36968i −0.254288 + 0.375054i
\(499\) −7.49376 6.28801i −0.335467 0.281490i 0.459456 0.888200i \(-0.348044\pi\)
−0.794923 + 0.606710i \(0.792489\pi\)
\(500\) 30.0184 + 25.1884i 1.34246 + 1.12646i
\(501\) −8.70420 0.629627i −0.388875 0.0281297i
\(502\) 38.2738 + 13.9305i 1.70824 + 0.621750i
\(503\) 17.9132 31.0265i 0.798708 1.38340i −0.121750 0.992561i \(-0.538851\pi\)
0.920458 0.390842i \(-0.127816\pi\)
\(504\) 21.9663 + 3.19463i 0.978457 + 0.142300i
\(505\) 9.68790 + 16.7799i 0.431106 + 0.746698i
\(506\) 0.675357 + 3.83014i 0.0300233 + 0.170271i
\(507\) 3.11061 12.3498i 0.138147 0.548473i
\(508\) 58.0768 21.1382i 2.57674 0.937858i
\(509\) −6.48936 + 36.8030i −0.287636 + 1.63126i 0.408080 + 0.912946i \(0.366199\pi\)
−0.695716 + 0.718317i \(0.744913\pi\)
\(510\) −4.15987 40.5125i −0.184202 1.79392i
\(511\) −4.52173 + 3.79418i −0.200029 + 0.167845i
\(512\) −41.6655 −1.84137
\(513\) −17.5673 + 19.2305i −0.775614 + 0.849048i
\(514\) 19.5503 0.862329
\(515\) 11.8753 9.96457i 0.523289 0.439091i
\(516\) 6.08621 4.39964i 0.267930 0.193683i
\(517\) −0.287707 + 1.63167i −0.0126533 + 0.0717606i
\(518\) 8.36878 3.04599i 0.367703 0.133833i
\(519\) 21.5479 + 20.9086i 0.945846 + 0.917784i
\(520\) −10.7133 60.7584i −0.469811 2.66443i
\(521\) −15.9281 27.5883i −0.697824 1.20867i −0.969220 0.246198i \(-0.920819\pi\)
0.271396 0.962468i \(-0.412515\pi\)
\(522\) −65.2944 + 40.3665i −2.85786 + 1.76679i
\(523\) −0.367822 + 0.637086i −0.0160837 + 0.0278578i −0.873955 0.486006i \(-0.838453\pi\)
0.857872 + 0.513864i \(0.171786\pi\)
\(524\) 32.7418 + 11.9170i 1.43033 + 0.520598i
\(525\) 5.52436 + 11.3959i 0.241103 + 0.497356i
\(526\) 51.7242 + 43.4017i 2.25528 + 1.89241i
\(527\) 19.3305 + 16.2202i 0.842049 + 0.706563i
\(528\) 2.40370 + 4.95845i 0.104608 + 0.215789i
\(529\) 2.36302 + 0.860068i 0.102740 + 0.0373943i
\(530\) −31.9953 + 55.4175i −1.38979 + 2.40718i
\(531\) 19.3537 + 10.4099i 0.839879 + 0.451750i
\(532\) 12.1081 + 20.9718i 0.524951 + 0.909241i
\(533\) 2.79127 + 15.8301i 0.120903 + 0.685677i
\(534\) 0.698451 + 0.677729i 0.0302249 + 0.0293282i
\(535\) 44.9221 16.3503i 1.94215 0.706885i
\(536\) 7.49560 42.5096i 0.323760 1.83614i
\(537\) 16.4698 11.9058i 0.710724 0.513772i
\(538\) 0.986597 0.827853i 0.0425352 0.0356913i
\(539\) 0.328776 0.0141614
\(540\) −78.0655 + 40.7908i −3.35940 + 1.75536i
\(541\) 4.13866 0.177935 0.0889674 0.996035i \(-0.471643\pi\)
0.0889674 + 0.996035i \(0.471643\pi\)
\(542\) −47.4399 + 39.8068i −2.03772 + 1.70985i
\(543\) −2.33235 22.7145i −0.100091 0.974773i
\(544\) 4.67144 26.4930i 0.200286 1.13588i
\(545\) −36.2819 + 13.2055i −1.55415 + 0.565663i
\(546\) 2.62752 10.4318i 0.112448 0.446441i
\(547\) −3.84645 21.8143i −0.164462 0.932712i −0.949617 0.313413i \(-0.898528\pi\)
0.785155 0.619300i \(-0.212583\pi\)
\(548\) −22.1455 38.3572i −0.946011 1.63854i
\(549\) −1.68750 + 2.13869i −0.0720208 + 0.0912771i
\(550\) −3.14147 + 5.44118i −0.133953 + 0.232013i
\(551\) −46.1161 16.7849i −1.96461 0.715060i
\(552\) −57.8535 4.18489i −2.46241 0.178121i
\(553\) −0.653105 0.548021i −0.0277729 0.0233042i
\(554\) 24.5293 + 20.5825i 1.04215 + 0.874468i
\(555\) −11.6213 + 17.1406i −0.493298 + 0.727576i
\(556\) 81.2977 + 29.5900i 3.44779 + 1.25489i
\(557\) 0.700682 1.21362i 0.0296888 0.0514226i −0.850799 0.525491i \(-0.823882\pi\)
0.880488 + 0.474068i \(0.157215\pi\)
\(558\) 24.1984 73.2777i 1.02440 3.10209i
\(559\) −1.06641 1.84707i −0.0451041 0.0781226i
\(560\) 5.89588 + 33.4372i 0.249146 + 1.41298i
\(561\) 1.40444 0.399076i 0.0592956 0.0168490i
\(562\) −32.8005 + 11.9384i −1.38361 + 0.503592i
\(563\) −1.05858 + 6.00352i −0.0446139 + 0.253018i −0.998955 0.0457004i \(-0.985448\pi\)
0.954341 + 0.298718i \(0.0965592\pi\)
\(564\) −38.4806 17.2433i −1.62033 0.726075i
\(565\) 3.34864 2.80985i 0.140879 0.118211i
\(566\) −7.87183 −0.330878
\(567\) −8.98368 + 0.541694i −0.377279 + 0.0227490i
\(568\) 80.8770 3.39352
\(569\) 18.8667 15.8311i 0.790935 0.663673i −0.155042 0.987908i \(-0.549551\pi\)
0.945977 + 0.324235i \(0.105107\pi\)
\(570\) −72.6600 32.5592i −3.04339 1.36376i
\(571\) −4.75575 + 26.9712i −0.199022 + 1.12871i 0.707552 + 0.706661i \(0.249800\pi\)
−0.906574 + 0.422047i \(0.861312\pi\)
\(572\) 3.54680 1.29093i 0.148299 0.0539765i
\(573\) −0.635641 + 0.180619i −0.0265543 + 0.00754548i
\(574\) −3.06994 17.4105i −0.128137 0.726699i
\(575\) −16.5467 28.6598i −0.690046 1.19519i
\(576\) −23.7053 + 4.92005i −0.987720 + 0.205002i
\(577\) 20.5067 35.5186i 0.853705 1.47866i −0.0241371 0.999709i \(-0.507684\pi\)
0.877842 0.478951i \(-0.158983\pi\)
\(578\) 25.6070 + 9.32018i 1.06511 + 0.387669i
\(579\) −10.4287 + 15.3816i −0.433404 + 0.639237i
\(580\) −127.130 106.675i −5.27879 4.42943i
\(581\) −1.71116 1.43583i −0.0709908 0.0595684i
\(582\) −13.1291 0.949710i −0.544220 0.0393667i
\(583\) −2.15576 0.784633i −0.0892825 0.0324962i
\(584\) 21.8374 37.8235i 0.903638 1.56515i
\(585\) 9.25937 + 23.2379i 0.382828 + 0.960769i
\(586\) 5.55461 + 9.62087i 0.229459 + 0.397434i
\(587\) −1.87320 10.6235i −0.0773154 0.438477i −0.998752 0.0499481i \(-0.984094\pi\)
0.921436 0.388529i \(-0.127017\pi\)
\(588\) −2.04374 + 8.11410i −0.0842826 + 0.334620i
\(589\) 46.3594 16.8735i 1.91021 0.695258i
\(590\) −11.6652 + 66.1568i −0.480250 + 2.72363i
\(591\) 0.0734102 + 0.714933i 0.00301969 + 0.0294084i
\(592\) −25.2585 + 21.1944i −1.03812 + 0.871084i
\(593\) 33.8232 1.38895 0.694475 0.719516i \(-0.255637\pi\)
0.694475 + 0.719516i \(0.255637\pi\)
\(594\) −2.72357 3.53817i −0.111749 0.145173i
\(595\) 8.99630 0.368812
\(596\) 74.1617 62.2290i 3.03778 2.54900i
\(597\) −27.6790 + 20.0088i −1.13283 + 0.818905i
\(598\) −4.88144 + 27.6840i −0.199617 + 1.13208i
\(599\) −45.6141 + 16.6022i −1.86374 + 0.678347i −0.887836 + 0.460161i \(0.847792\pi\)
−0.975907 + 0.218186i \(0.929986\pi\)
\(600\) −67.2493 65.2542i −2.74544 2.66399i
\(601\) 1.44066 + 8.17040i 0.0587658 + 0.333277i 0.999990 0.00450545i \(-0.00143414\pi\)
−0.941224 + 0.337783i \(0.890323\pi\)
\(602\) 1.17287 + 2.03147i 0.0478026 + 0.0827965i
\(603\) 0.526932 + 17.4936i 0.0214583 + 0.712395i
\(604\) 1.37879 2.38814i 0.0561024 0.0971722i
\(605\) 35.9128 + 13.0712i 1.46006 + 0.531420i
\(606\) −10.9044 22.4941i −0.442963 0.913761i
\(607\) 0.953898 + 0.800415i 0.0387175 + 0.0324879i 0.661941 0.749556i \(-0.269733\pi\)
−0.623224 + 0.782044i \(0.714177\pi\)
\(608\) −40.2900 33.8074i −1.63398 1.37107i
\(609\) −7.39707 15.2590i −0.299745 0.618325i
\(610\) −7.82558 2.84828i −0.316849 0.115323i
\(611\) −5.98776 + 10.3711i −0.242239 + 0.419570i
\(612\) 1.11877 + 37.1420i 0.0452236 + 1.50138i
\(613\) 21.5040 + 37.2460i 0.868539 + 1.50435i 0.863490 + 0.504366i \(0.168274\pi\)
0.00504868 + 0.999987i \(0.498393\pi\)
\(614\) −11.0698 62.7802i −0.446743 2.53360i
\(615\) 29.5028 + 28.6276i 1.18967 + 1.15437i
\(616\) −2.28595 + 0.832018i −0.0921035 + 0.0335229i
\(617\) −3.75376 + 21.2886i −0.151121 + 0.857048i 0.811127 + 0.584871i \(0.198855\pi\)
−0.962247 + 0.272177i \(0.912256\pi\)
\(618\) −16.2086 + 11.7170i −0.652006 + 0.471326i
\(619\) −19.4601 + 16.3289i −0.782166 + 0.656315i −0.943793 0.330537i \(-0.892770\pi\)
0.161627 + 0.986852i \(0.448326\pi\)
\(620\) 166.832 6.70015
\(621\) 23.3122 3.10553i 0.935487 0.124621i
\(622\) −37.1865 −1.49104
\(623\) −0.164688 + 0.138189i −0.00659807 + 0.00553644i
\(624\) 4.06825 + 39.6202i 0.162860 + 1.58608i
\(625\) −1.40607 + 7.97420i −0.0562427 + 0.318968i
\(626\) −19.0306 + 6.92656i −0.760615 + 0.276841i
\(627\) 0.697201 2.76804i 0.0278435 0.110545i
\(628\) 6.75506 + 38.3099i 0.269556 + 1.52873i
\(629\) 4.36826 + 7.56606i 0.174174 + 0.301678i
\(630\) −10.1838 25.5578i −0.405731 1.01825i
\(631\) −15.2296 + 26.3784i −0.606279 + 1.05011i 0.385569 + 0.922679i \(0.374005\pi\)
−0.991848 + 0.127427i \(0.959328\pi\)
\(632\) 5.92783 + 2.15755i 0.235797 + 0.0858229i
\(633\) −28.7645 2.08071i −1.14329 0.0827008i
\(634\) 25.3340 + 21.2577i 1.00614 + 0.844253i
\(635\) −34.3870 28.8541i −1.36461 1.14504i
\(636\) 32.7652 48.3261i 1.29922 1.91626i
\(637\) 2.23306 + 0.812767i 0.0884771 + 0.0322030i
\(638\) 4.20640 7.28570i 0.166533 0.288443i
\(639\) −32.1075 + 6.66395i −1.27015 + 0.263622i
\(640\) −0.188519 0.326525i −0.00745188 0.0129070i
\(641\) −2.47840 14.0557i −0.0978909 0.555167i −0.993823 0.110976i \(-0.964602\pi\)
0.895932 0.444191i \(-0.146509\pi\)
\(642\) −59.3275 + 16.8581i −2.34147 + 0.665335i
\(643\) 20.4760 7.45266i 0.807496 0.293904i 0.0949066 0.995486i \(-0.469745\pi\)
0.712589 + 0.701582i \(0.247523\pi\)
\(644\) 3.79689 21.5332i 0.149618 0.848528i
\(645\) −4.97763 2.23050i −0.195994 0.0878258i
\(646\) −25.7317 + 21.5915i −1.01240 + 0.849504i
\(647\) 44.4776 1.74860 0.874298 0.485389i \(-0.161322\pi\)
0.874298 + 0.485389i \(0.161322\pi\)
\(648\) 61.0919 26.5009i 2.39992 1.04105i
\(649\) −2.40836 −0.0945364
\(650\) −34.7881 + 29.1907i −1.36450 + 1.14495i
\(651\) 15.5564 + 6.97090i 0.609705 + 0.273211i
\(652\) −1.58429 + 8.98498i −0.0620458 + 0.351879i
\(653\) −2.67503 + 0.973633i −0.104682 + 0.0381012i −0.393830 0.919183i \(-0.628850\pi\)
0.289148 + 0.957284i \(0.406628\pi\)
\(654\) 47.9166 13.6156i 1.87369 0.532414i
\(655\) −4.39450 24.9225i −0.171707 0.973801i
\(656\) 32.7270 + 56.6848i 1.27777 + 2.21317i
\(657\) −5.55278 + 16.8150i −0.216634 + 0.656014i
\(658\) 6.58555 11.4065i 0.256731 0.444672i
\(659\) 14.5443 + 5.29368i 0.566564 + 0.206212i 0.609391 0.792870i \(-0.291414\pi\)
−0.0428267 + 0.999083i \(0.513636\pi\)
\(660\) 5.41699 7.98964i 0.210856 0.310996i
\(661\) 10.2102 + 8.56735i 0.397130 + 0.333231i 0.819383 0.573247i \(-0.194316\pi\)
−0.422253 + 0.906478i \(0.638761\pi\)
\(662\) 2.05363 + 1.72320i 0.0798166 + 0.0669741i
\(663\) 10.5256 + 0.761380i 0.408780 + 0.0295695i
\(664\) 15.5311 + 5.65286i 0.602724 + 0.219374i
\(665\) 8.79423 15.2320i 0.341025 0.590673i
\(666\) 16.5498 20.9747i 0.641290 0.812752i
\(667\) 22.1559 + 38.3752i 0.857881 + 1.48589i
\(668\) 4.22676 + 23.9712i 0.163538 + 0.927472i
\(669\) 4.01370 15.9352i 0.155178 0.616091i
\(670\) −50.2739 + 18.2982i −1.94225 + 0.706921i
\(671\) 0.0518441 0.294023i 0.00200142 0.0113506i
\(672\) −1.85631 18.0784i −0.0716086 0.697388i
\(673\) 10.7285 9.00232i 0.413555 0.347014i −0.412150 0.911116i \(-0.635222\pi\)
0.825705 + 0.564102i \(0.190778\pi\)
\(674\) 33.7874 1.30144
\(675\) 32.0742 + 20.3643i 1.23454 + 0.783824i
\(676\) −35.5216 −1.36621
\(677\) −19.5771 + 16.4272i −0.752410 + 0.631347i −0.936139 0.351630i \(-0.885628\pi\)
0.183729 + 0.982977i \(0.441183\pi\)
\(678\) −4.57057 + 3.30400i −0.175532 + 0.126889i
\(679\) 0.504937 2.86364i 0.0193777 0.109896i
\(680\) −62.5505 + 22.7665i −2.39870 + 0.873056i
\(681\) 17.4165 + 16.8998i 0.667400 + 0.647600i
\(682\) 1.46858 + 8.32871i 0.0562347 + 0.318923i
\(683\) −1.69604 2.93763i −0.0648971 0.112405i 0.831751 0.555149i \(-0.187339\pi\)
−0.896648 + 0.442743i \(0.854005\pi\)
\(684\) 63.9804 + 34.4135i 2.44635 + 1.31583i
\(685\) −16.0846 + 27.8593i −0.614560 + 1.06445i
\(686\) −2.45600 0.893910i −0.0937704 0.0341296i
\(687\) −15.5417 32.0600i −0.592953 1.22317i
\(688\) −6.65289 5.58244i −0.253639 0.212828i
\(689\) −12.7023 10.6585i −0.483920 0.406057i
\(690\) 31.3606 + 64.6919i 1.19388 + 2.46278i
\(691\) 1.64934 + 0.600311i 0.0627439 + 0.0228369i 0.373201 0.927750i \(-0.378260\pi\)
−0.310458 + 0.950587i \(0.600482\pi\)
\(692\) 41.8720 72.5244i 1.59173 2.75696i
\(693\) 0.838950 0.518658i 0.0318691 0.0197022i
\(694\) −36.0094 62.3702i −1.36690 2.36754i
\(695\) −10.9115 61.8824i −0.413898 2.34733i
\(696\) 90.0464 + 87.3749i 3.41320 + 3.31194i
\(697\) 16.2970 5.93162i 0.617293 0.224676i
\(698\) 10.0765 57.1469i 0.381403 2.16304i
\(699\) 22.0419 15.9338i 0.833703 0.602673i
\(700\) 27.0589 22.7051i 1.02273 0.858174i
\(701\) −49.6210 −1.87416 −0.937079 0.349118i \(-0.886481\pi\)
−0.937079 + 0.349118i \(0.886481\pi\)
\(702\) −9.75190 30.7643i −0.368062 1.16112i
\(703\) 17.0806 0.644206
\(704\) 2.03253 1.70549i 0.0766037 0.0642781i
\(705\) 3.12834 + 30.4665i 0.117820 + 1.14744i
\(706\) 6.28372 35.6367i 0.236491 1.34121i
\(707\) 5.18903 1.88865i 0.195153 0.0710301i
\(708\) 14.9709 59.4376i 0.562641 2.23380i
\(709\) 1.44806 + 8.21236i 0.0543831 + 0.308422i 0.999850 0.0172952i \(-0.00550550\pi\)
−0.945467 + 0.325717i \(0.894394\pi\)
\(710\) −50.1205 86.8113i −1.88099 3.25797i
\(711\) −2.53108 0.368103i −0.0949229 0.0138049i
\(712\) 0.795349 1.37758i 0.0298070 0.0516272i
\(713\) −41.8593 15.2355i −1.56764 0.570575i
\(714\) −11.5764 0.837392i −0.433236 0.0313386i
\(715\) −2.10004 1.76215i −0.0785372 0.0659005i
\(716\) −43.4216 36.4350i −1.62274 1.36164i
\(717\) 27.4807 40.5319i 1.02628 1.51369i
\(718\) 5.81255 + 2.11560i 0.216923 + 0.0789534i
\(719\) 9.33949 16.1765i 0.348304 0.603280i −0.637644 0.770331i \(-0.720091\pi\)
0.985948 + 0.167051i \(0.0534243\pi\)
\(720\) 67.7933 + 76.0219i 2.52651 + 2.83317i
\(721\) −2.20903 3.82615i −0.0822685 0.142493i
\(722\) 2.78062 + 15.7697i 0.103484 + 0.586886i
\(723\) 40.0507 11.3805i 1.48950 0.423246i
\(724\) −59.8470 + 21.7825i −2.22420 + 0.809541i
\(725\) −12.4305 + 70.4969i −0.461658 + 2.61819i
\(726\) −44.9958 20.1628i −1.66995 0.748311i
\(727\) 3.52947 2.96158i 0.130901 0.109839i −0.574987 0.818163i \(-0.694993\pi\)
0.705888 + 0.708324i \(0.250548\pi\)
\(728\) −17.5831 −0.651673
\(729\) −22.0695 + 15.5544i −0.817387 + 0.576089i
\(730\) −54.1317 −2.00350
\(731\) −1.76277 + 1.47914i −0.0651985 + 0.0547080i
\(732\) 6.93412 + 3.10721i 0.256293 + 0.114846i
\(733\) −6.38556 + 36.2143i −0.235856 + 1.33761i 0.604947 + 0.796265i \(0.293194\pi\)
−0.840803 + 0.541341i \(0.817917\pi\)
\(734\) −20.9723 + 7.63329i −0.774102 + 0.281750i
\(735\) 5.84600 1.66116i 0.215633 0.0612728i
\(736\) 8.24646 + 46.7680i 0.303969 + 1.72389i
\(737\) −0.959015 1.66106i −0.0353258 0.0611860i
\(738\) −35.2994 39.5840i −1.29939 1.45711i
\(739\) 15.7426 27.2670i 0.579101 1.00303i −0.416481 0.909144i \(-0.636737\pi\)
0.995583 0.0938889i \(-0.0299298\pi\)
\(740\) 54.2771 + 19.7552i 1.99526 + 0.726217i
\(741\) 11.5783 17.0771i 0.425339 0.627342i
\(742\) 13.9705 + 11.7226i 0.512872 + 0.430350i
\(743\) 33.0732 + 27.7517i 1.21334 + 1.01811i 0.999146 + 0.0413184i \(0.0131558\pi\)
0.214191 + 0.976792i \(0.431289\pi\)
\(744\) −125.803 9.10012i −4.61218 0.333627i
\(745\) −66.0746 24.0492i −2.42079 0.881094i
\(746\) −47.2977 + 81.9220i −1.73169 + 2.99938i
\(747\) −6.63151 0.964441i −0.242634 0.0352871i
\(748\) −2.03616 3.52673i −0.0744492 0.128950i
\(749\) −2.36584 13.4173i −0.0864458 0.490258i
\(750\) −8.96870 + 35.6076i −0.327491 + 1.30021i
\(751\) 34.1005 12.4116i 1.24435 0.452905i 0.365858 0.930671i \(-0.380776\pi\)
0.878487 + 0.477766i \(0.158553\pi\)
\(752\) −8.46777 + 48.0231i −0.308788 + 1.75122i
\(753\) 2.75707 + 26.8508i 0.100473 + 0.978497i
\(754\) 46.5810 39.0861i 1.69638 1.42343i
\(755\) −2.00287 −0.0728919
\(756\) 7.58524 + 23.9291i 0.275872 + 0.870294i
\(757\) 40.9390 1.48795 0.743977 0.668205i \(-0.232937\pi\)
0.743977 + 0.668205i \(0.232937\pi\)
\(758\) −17.1677 + 14.4054i −0.623559 + 0.523229i
\(759\) −2.08879 + 1.50996i −0.0758182 + 0.0548079i
\(760\) −22.5984 + 128.162i −0.819732 + 4.64893i
\(761\) −4.78591 + 1.74193i −0.173489 + 0.0631449i −0.427304 0.904108i \(-0.640537\pi\)
0.253815 + 0.967253i \(0.418314\pi\)
\(762\) 41.5633 + 40.3302i 1.50568 + 1.46101i
\(763\) 1.91080 + 10.8367i 0.0691756 + 0.392314i
\(764\) 0.921550 + 1.59617i 0.0333405 + 0.0577474i
\(765\) 22.9562 14.1920i 0.829983 0.513115i
\(766\) −4.55267 + 7.88545i −0.164495 + 0.284913i
\(767\) −16.3577 5.95371i −0.590642 0.214976i
\(768\) −11.9826 24.7181i −0.432384