Properties

Label 189.2.v.a.22.7
Level $189$
Weight $2$
Character 189.22
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.7
Character \(\chi\) \(=\) 189.22
Dual form 189.2.v.a.43.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.969537 - 0.813538i) q^{2} +(-0.430185 + 1.67778i) q^{3} +(-0.0691389 + 0.392106i) q^{4} +(-0.855069 + 0.311220i) q^{5} +(0.947857 + 1.97664i) q^{6} +(0.173648 + 0.984808i) q^{7} +(1.51760 + 2.62856i) q^{8} +(-2.62988 - 1.44351i) q^{9} +O(q^{10})\) \(q+(0.969537 - 0.813538i) q^{2} +(-0.430185 + 1.67778i) q^{3} +(-0.0691389 + 0.392106i) q^{4} +(-0.855069 + 0.311220i) q^{5} +(0.947857 + 1.97664i) q^{6} +(0.173648 + 0.984808i) q^{7} +(1.51760 + 2.62856i) q^{8} +(-2.62988 - 1.44351i) q^{9} +(-0.575832 + 0.997370i) q^{10} +(5.60170 + 2.03885i) q^{11} +(-0.628125 - 0.284678i) q^{12} +(-2.54437 - 2.13498i) q^{13} +(0.969537 + 0.813538i) q^{14} +(-0.154320 - 1.56850i) q^{15} +(2.86152 + 1.04151i) q^{16} +(0.518461 - 0.898001i) q^{17} +(-3.72412 + 0.739974i) q^{18} +(-1.02967 - 1.78343i) q^{19} +(-0.0629126 - 0.356795i) q^{20} +(-1.72699 - 0.132306i) q^{21} +(7.08973 - 2.58045i) q^{22} +(0.554384 - 3.14407i) q^{23} +(-5.06299 + 1.41543i) q^{24} +(-3.19594 + 2.68171i) q^{25} -4.20376 q^{26} +(3.55322 - 3.79139i) q^{27} -0.398155 q^{28} +(5.59972 - 4.69872i) q^{29} +(-1.42565 - 1.39517i) q^{30} +(1.21241 - 6.87590i) q^{31} +(-2.08266 + 0.758027i) q^{32} +(-5.83050 + 8.52132i) q^{33} +(-0.227891 - 1.29243i) q^{34} +(-0.454973 - 0.788036i) q^{35} +(0.747836 - 0.931390i) q^{36} +(1.93726 - 3.35543i) q^{37} +(-2.44919 - 0.891432i) q^{38} +(4.67658 - 3.35046i) q^{39} +(-2.11571 - 1.77529i) q^{40} +(4.36990 + 3.66678i) q^{41} +(-1.78202 + 1.27670i) q^{42} +(-4.17077 - 1.51804i) q^{43} +(-1.18674 + 2.05550i) q^{44} +(2.69798 + 0.415829i) q^{45} +(-2.02032 - 3.49930i) q^{46} +(1.09019 + 6.18276i) q^{47} +(-2.97840 + 4.35295i) q^{48} +(-0.939693 + 0.342020i) q^{49} +(-0.916906 + 5.20003i) q^{50} +(1.28361 + 1.25617i) q^{51} +(1.01306 - 0.850054i) q^{52} +1.64075 q^{53} +(0.360545 - 6.56657i) q^{54} -5.42437 q^{55} +(-2.32510 + 1.95099i) q^{56} +(3.43515 - 0.960346i) q^{57} +(1.60654 - 9.11117i) q^{58} +(-9.01389 + 3.28079i) q^{59} +(0.625687 + 0.0479343i) q^{60} +(2.19228 + 12.4331i) q^{61} +(-4.41833 - 7.65277i) q^{62} +(0.964905 - 2.84059i) q^{63} +(-4.44770 + 7.70364i) q^{64} +(2.84006 + 1.03370i) q^{65} +(1.27953 + 13.0051i) q^{66} +(-7.72379 - 6.48103i) q^{67} +(0.316266 + 0.265378i) q^{68} +(5.03657 + 2.28267i) q^{69} +(-1.08221 - 0.393892i) q^{70} +(-2.11115 + 3.65661i) q^{71} +(-0.196759 - 9.10348i) q^{72} +(2.29380 + 3.97297i) q^{73} +(-0.851527 - 4.82925i) q^{74} +(-3.12447 - 6.51571i) q^{75} +(0.770485 - 0.280434i) q^{76} +(-1.03515 + 5.87064i) q^{77} +(1.80839 - 7.05297i) q^{78} +(11.0138 - 9.24166i) q^{79} -2.77093 q^{80} +(4.83256 + 7.59252i) q^{81} +7.21984 q^{82} +(13.1807 - 11.0599i) q^{83} +(0.171280 - 0.668016i) q^{84} +(-0.163844 + 0.929208i) q^{85} +(-5.27869 + 1.92129i) q^{86} +(5.47450 + 11.4164i) q^{87} +(3.14189 + 17.8186i) q^{88} +(-0.379514 - 0.657337i) q^{89} +(2.95408 - 1.79175i) q^{90} +(1.66072 - 2.87646i) q^{91} +(1.19448 + 0.434755i) q^{92} +(11.0147 + 4.99205i) q^{93} +(6.08689 + 5.10751i) q^{94} +(1.43548 + 1.20451i) q^{95} +(-0.375872 - 3.82034i) q^{96} +(-9.76000 - 3.55235i) q^{97} +(-0.632820 + 1.09608i) q^{98} +(-11.7887 - 13.4480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.969537 0.813538i 0.685566 0.575258i −0.232061 0.972701i \(-0.574547\pi\)
0.917627 + 0.397443i \(0.130102\pi\)
\(3\) −0.430185 + 1.67778i −0.248367 + 0.968666i
\(4\) −0.0691389 + 0.392106i −0.0345694 + 0.196053i
\(5\) −0.855069 + 0.311220i −0.382398 + 0.139182i −0.526065 0.850445i \(-0.676333\pi\)
0.143666 + 0.989626i \(0.454111\pi\)
\(6\) 0.947857 + 1.97664i 0.386961 + 0.806960i
\(7\) 0.173648 + 0.984808i 0.0656328 + 0.372222i
\(8\) 1.51760 + 2.62856i 0.536553 + 0.929337i
\(9\) −2.62988 1.44351i −0.876627 0.481170i
\(10\) −0.575832 + 0.997370i −0.182094 + 0.315396i
\(11\) 5.60170 + 2.03885i 1.68898 + 0.614737i 0.994496 0.104776i \(-0.0334126\pi\)
0.694479 + 0.719513i \(0.255635\pi\)
\(12\) −0.628125 0.284678i −0.181324 0.0821794i
\(13\) −2.54437 2.13498i −0.705683 0.592138i 0.217701 0.976015i \(-0.430144\pi\)
−0.923384 + 0.383877i \(0.874589\pi\)
\(14\) 0.969537 + 0.813538i 0.259120 + 0.217427i
\(15\) −0.154320 1.56850i −0.0398453 0.404984i
\(16\) 2.86152 + 1.04151i 0.715379 + 0.260377i
\(17\) 0.518461 0.898001i 0.125745 0.217797i −0.796279 0.604930i \(-0.793201\pi\)
0.922024 + 0.387133i \(0.126534\pi\)
\(18\) −3.72412 + 0.739974i −0.877783 + 0.174414i
\(19\) −1.02967 1.78343i −0.236222 0.409148i 0.723405 0.690424i \(-0.242576\pi\)
−0.959627 + 0.281276i \(0.909242\pi\)
\(20\) −0.0629126 0.356795i −0.0140677 0.0797818i
\(21\) −1.72699 0.132306i −0.376860 0.0288715i
\(22\) 7.08973 2.58045i 1.51154 0.550154i
\(23\) 0.554384 3.14407i 0.115597 0.655584i −0.870856 0.491539i \(-0.836435\pi\)
0.986453 0.164045i \(-0.0524543\pi\)
\(24\) −5.06299 + 1.41543i −1.03348 + 0.288924i
\(25\) −3.19594 + 2.68171i −0.639187 + 0.536342i
\(26\) −4.20376 −0.824424
\(27\) 3.55322 3.79139i 0.683818 0.729652i
\(28\) −0.398155 −0.0752442
\(29\) 5.59972 4.69872i 1.03984 0.872531i 0.0478528 0.998854i \(-0.484762\pi\)
0.991989 + 0.126323i \(0.0403177\pi\)
\(30\) −1.42565 1.39517i −0.260287 0.254722i
\(31\) 1.21241 6.87590i 0.217755 1.23495i −0.658308 0.752749i \(-0.728727\pi\)
0.876062 0.482198i \(-0.160162\pi\)
\(32\) −2.08266 + 0.758027i −0.368166 + 0.134001i
\(33\) −5.83050 + 8.52132i −1.01496 + 1.48337i
\(34\) −0.227891 1.29243i −0.0390829 0.221650i
\(35\) −0.454973 0.788036i −0.0769044 0.133202i
\(36\) 0.747836 0.931390i 0.124639 0.155232i
\(37\) 1.93726 3.35543i 0.318483 0.551630i −0.661688 0.749779i \(-0.730160\pi\)
0.980172 + 0.198149i \(0.0634931\pi\)
\(38\) −2.44919 0.891432i −0.397311 0.144609i
\(39\) 4.67658 3.35046i 0.748852 0.536503i
\(40\) −2.11571 1.77529i −0.334524 0.280699i
\(41\) 4.36990 + 3.66678i 0.682463 + 0.572654i 0.916725 0.399519i \(-0.130823\pi\)
−0.234262 + 0.972174i \(0.575267\pi\)
\(42\) −1.78202 + 1.27670i −0.274971 + 0.196999i
\(43\) −4.17077 1.51804i −0.636036 0.231498i 0.00382025 0.999993i \(-0.498784\pi\)
−0.639856 + 0.768494i \(0.721006\pi\)
\(44\) −1.18674 + 2.05550i −0.178908 + 0.309878i
\(45\) 2.69798 + 0.415829i 0.402191 + 0.0619881i
\(46\) −2.02032 3.49930i −0.297881 0.515944i
\(47\) 1.09019 + 6.18276i 0.159020 + 0.901849i 0.955018 + 0.296549i \(0.0958357\pi\)
−0.795997 + 0.605300i \(0.793053\pi\)
\(48\) −2.97840 + 4.35295i −0.429895 + 0.628294i
\(49\) −0.939693 + 0.342020i −0.134242 + 0.0488600i
\(50\) −0.916906 + 5.20003i −0.129670 + 0.735396i
\(51\) 1.28361 + 1.25617i 0.179742 + 0.175899i
\(52\) 1.01306 0.850054i 0.140486 0.117881i
\(53\) 1.64075 0.225374 0.112687 0.993631i \(-0.464054\pi\)
0.112687 + 0.993631i \(0.464054\pi\)
\(54\) 0.360545 6.56657i 0.0490640 0.893597i
\(55\) −5.42437 −0.731421
\(56\) −2.32510 + 1.95099i −0.310704 + 0.260712i
\(57\) 3.43515 0.960346i 0.454997 0.127201i
\(58\) 1.60654 9.11117i 0.210950 1.19636i
\(59\) −9.01389 + 3.28079i −1.17351 + 0.427122i −0.853905 0.520429i \(-0.825772\pi\)
−0.319604 + 0.947551i \(0.603550\pi\)
\(60\) 0.625687 + 0.0479343i 0.0807759 + 0.00618829i
\(61\) 2.19228 + 12.4331i 0.280693 + 1.59189i 0.720276 + 0.693687i \(0.244015\pi\)
−0.439583 + 0.898202i \(0.644874\pi\)
\(62\) −4.41833 7.65277i −0.561128 0.971903i
\(63\) 0.964905 2.84059i 0.121567 0.357881i
\(64\) −4.44770 + 7.70364i −0.555962 + 0.962954i
\(65\) 2.84006 + 1.03370i 0.352267 + 0.128215i
\(66\) 1.27953 + 13.0051i 0.157500 + 1.60081i
\(67\) −7.72379 6.48103i −0.943612 0.791784i 0.0345986 0.999401i \(-0.488985\pi\)
−0.978210 + 0.207617i \(0.933429\pi\)
\(68\) 0.316266 + 0.265378i 0.0383529 + 0.0321819i
\(69\) 5.03657 + 2.28267i 0.606331 + 0.274801i
\(70\) −1.08221 0.393892i −0.129349 0.0470791i
\(71\) −2.11115 + 3.65661i −0.250547 + 0.433960i −0.963676 0.267072i \(-0.913944\pi\)
0.713130 + 0.701032i \(0.247277\pi\)
\(72\) −0.196759 9.10348i −0.0231883 1.07286i
\(73\) 2.29380 + 3.97297i 0.268469 + 0.465001i 0.968467 0.249144i \(-0.0801491\pi\)
−0.699998 + 0.714145i \(0.746816\pi\)
\(74\) −0.851527 4.82925i −0.0989880 0.561389i
\(75\) −3.12447 6.51571i −0.360783 0.752369i
\(76\) 0.770485 0.280434i 0.0883807 0.0321680i
\(77\) −1.03515 + 5.87064i −0.117966 + 0.669021i
\(78\) 1.80839 7.05297i 0.204760 0.798592i
\(79\) 11.0138 9.24166i 1.23915 1.03977i 0.241557 0.970387i \(-0.422342\pi\)
0.997590 0.0693810i \(-0.0221024\pi\)
\(80\) −2.77093 −0.309800
\(81\) 4.83256 + 7.59252i 0.536951 + 0.843613i
\(82\) 7.21984 0.797298
\(83\) 13.1807 11.0599i 1.44677 1.21399i 0.511878 0.859058i \(-0.328950\pi\)
0.934894 0.354927i \(-0.115494\pi\)
\(84\) 0.171280 0.668016i 0.0186882 0.0728865i
\(85\) −0.163844 + 0.929208i −0.0177714 + 0.100787i
\(86\) −5.27869 + 1.92129i −0.569216 + 0.207178i
\(87\) 5.47450 + 11.4164i 0.586928 + 1.22397i
\(88\) 3.14189 + 17.8186i 0.334927 + 1.89947i
\(89\) −0.379514 0.657337i −0.0402284 0.0696776i 0.845210 0.534434i \(-0.179475\pi\)
−0.885439 + 0.464756i \(0.846142\pi\)
\(90\) 2.95408 1.79175i 0.311388 0.188867i
\(91\) 1.66072 2.87646i 0.174091 0.301535i
\(92\) 1.19448 + 0.434755i 0.124533 + 0.0453263i
\(93\) 11.0147 + 4.99205i 1.14217 + 0.517652i
\(94\) 6.08689 + 5.10751i 0.627815 + 0.526799i
\(95\) 1.43548 + 1.20451i 0.147277 + 0.123580i
\(96\) −0.375872 3.82034i −0.0383623 0.389911i
\(97\) −9.76000 3.55235i −0.990978 0.360686i −0.204879 0.978787i \(-0.565680\pi\)
−0.786099 + 0.618101i \(0.787902\pi\)
\(98\) −0.632820 + 1.09608i −0.0639245 + 0.110720i
\(99\) −11.7887 13.4480i −1.18481 1.35158i
\(100\) −0.830551 1.43856i −0.0830551 0.143856i
\(101\) −2.50505 14.2068i −0.249262 1.41363i −0.810384 0.585899i \(-0.800741\pi\)
0.561122 0.827733i \(-0.310370\pi\)
\(102\) 2.26645 + 0.173634i 0.224412 + 0.0171924i
\(103\) 2.58428 0.940602i 0.254637 0.0926803i −0.211548 0.977368i \(-0.567850\pi\)
0.466185 + 0.884687i \(0.345628\pi\)
\(104\) 1.75059 9.92810i 0.171660 0.973530i
\(105\) 1.51787 0.424343i 0.148129 0.0414116i
\(106\) 1.59077 1.33481i 0.154509 0.129648i
\(107\) −4.35433 −0.420949 −0.210475 0.977599i \(-0.567501\pi\)
−0.210475 + 0.977599i \(0.567501\pi\)
\(108\) 1.24096 + 1.65537i 0.119411 + 0.159288i
\(109\) −16.1963 −1.55132 −0.775660 0.631151i \(-0.782583\pi\)
−0.775660 + 0.631151i \(0.782583\pi\)
\(110\) −5.25912 + 4.41293i −0.501438 + 0.420756i
\(111\) 4.79629 + 4.69375i 0.455244 + 0.445511i
\(112\) −0.528787 + 2.99890i −0.0499657 + 0.283369i
\(113\) −5.39706 + 1.96437i −0.507713 + 0.184792i −0.583160 0.812357i \(-0.698184\pi\)
0.0754469 + 0.997150i \(0.475962\pi\)
\(114\) 2.54923 3.72572i 0.238757 0.348945i
\(115\) 0.504459 + 2.86093i 0.0470411 + 0.266783i
\(116\) 1.45524 + 2.52055i 0.135116 + 0.234027i
\(117\) 3.60954 + 9.28759i 0.333702 + 0.858638i
\(118\) −6.07025 + 10.5140i −0.558812 + 0.967891i
\(119\) 0.974388 + 0.354648i 0.0893220 + 0.0325105i
\(120\) 3.88870 2.78599i 0.354988 0.254325i
\(121\) 18.7956 + 15.7714i 1.70869 + 1.43376i
\(122\) 12.2403 + 10.2708i 1.10818 + 0.929874i
\(123\) −8.03190 + 5.75433i −0.724212 + 0.518850i
\(124\) 2.61226 + 0.950784i 0.234588 + 0.0853829i
\(125\) 4.17301 7.22786i 0.373245 0.646480i
\(126\) −1.37542 3.53904i −0.122532 0.315283i
\(127\) −1.26783 2.19594i −0.112501 0.194858i 0.804277 0.594255i \(-0.202553\pi\)
−0.916778 + 0.399397i \(0.869220\pi\)
\(128\) 1.18527 + 6.72202i 0.104764 + 0.594149i
\(129\) 4.34113 6.34459i 0.382215 0.558610i
\(130\) 3.59450 1.30829i 0.315258 0.114745i
\(131\) 0.397749 2.25575i 0.0347515 0.197085i −0.962489 0.271319i \(-0.912540\pi\)
0.997241 + 0.0742340i \(0.0236512\pi\)
\(132\) −2.93815 2.87533i −0.255733 0.250265i
\(133\) 1.57754 1.32371i 0.136790 0.114780i
\(134\) −12.7611 −1.10239
\(135\) −1.85830 + 4.34773i −0.159937 + 0.374193i
\(136\) 3.14727 0.269876
\(137\) −8.44087 + 7.08273i −0.721152 + 0.605118i −0.927704 0.373317i \(-0.878220\pi\)
0.206552 + 0.978436i \(0.433776\pi\)
\(138\) 6.74017 1.88431i 0.573761 0.160403i
\(139\) −3.71019 + 21.0415i −0.314694 + 1.78472i 0.259233 + 0.965815i \(0.416530\pi\)
−0.573928 + 0.818906i \(0.694581\pi\)
\(140\) 0.340450 0.123914i 0.0287733 0.0104726i
\(141\) −10.8423 0.830635i −0.913086 0.0699521i
\(142\) 0.927958 + 5.26271i 0.0778725 + 0.441637i
\(143\) −9.89990 17.1471i −0.827871 1.43392i
\(144\) −6.02203 6.86967i −0.501836 0.572472i
\(145\) −3.32581 + 5.76047i −0.276194 + 0.478381i
\(146\) 5.45608 + 1.98585i 0.451549 + 0.164350i
\(147\) −0.169593 1.72373i −0.0139878 0.142171i
\(148\) 1.18175 + 0.991602i 0.0971389 + 0.0815092i
\(149\) −6.07567 5.09809i −0.497738 0.417652i 0.359052 0.933318i \(-0.383100\pi\)
−0.856790 + 0.515666i \(0.827545\pi\)
\(150\) −8.33006 3.77534i −0.680147 0.308255i
\(151\) 4.36436 + 1.58850i 0.355166 + 0.129270i 0.513440 0.858125i \(-0.328371\pi\)
−0.158274 + 0.987395i \(0.550593\pi\)
\(152\) 3.12524 5.41308i 0.253491 0.439059i
\(153\) −2.65976 + 1.61323i −0.215029 + 0.130422i
\(154\) 3.77237 + 6.53393i 0.303986 + 0.526519i
\(155\) 1.10322 + 6.25669i 0.0886130 + 0.502549i
\(156\) 0.990402 + 2.06536i 0.0792957 + 0.165361i
\(157\) −20.5332 + 7.47348i −1.63873 + 0.596449i −0.986816 0.161845i \(-0.948255\pi\)
−0.651913 + 0.758294i \(0.726033\pi\)
\(158\) 3.15982 17.9203i 0.251382 1.42566i
\(159\) −0.705825 + 2.75281i −0.0559755 + 0.218312i
\(160\) 1.54491 1.29633i 0.122136 0.102484i
\(161\) 3.19257 0.251610
\(162\) 10.8621 + 3.42975i 0.853411 + 0.269467i
\(163\) −13.0830 −1.02474 −0.512369 0.858765i \(-0.671232\pi\)
−0.512369 + 0.858765i \(0.671232\pi\)
\(164\) −1.73990 + 1.45995i −0.135863 + 0.114003i
\(165\) 2.33348 9.10089i 0.181661 0.708503i
\(166\) 3.78151 21.4460i 0.293502 1.66453i
\(167\) −3.36251 + 1.22386i −0.260199 + 0.0947047i −0.468826 0.883291i \(-0.655323\pi\)
0.208627 + 0.977995i \(0.433101\pi\)
\(168\) −2.27311 4.74029i −0.175374 0.365721i
\(169\) −0.341739 1.93810i −0.0262876 0.149085i
\(170\) 0.597093 + 1.03419i 0.0457949 + 0.0793191i
\(171\) 0.133498 + 6.17655i 0.0102088 + 0.472333i
\(172\) 0.883593 1.53043i 0.0673733 0.116694i
\(173\) −4.02819 1.46614i −0.306258 0.111469i 0.184320 0.982866i \(-0.440992\pi\)
−0.490577 + 0.871398i \(0.663214\pi\)
\(174\) 14.5954 + 6.61491i 1.10648 + 0.501475i
\(175\) −3.19594 2.68171i −0.241590 0.202718i
\(176\) 13.9059 + 11.6684i 1.04819 + 0.879540i
\(177\) −1.62680 16.5347i −0.122278 1.24282i
\(178\) −0.902721 0.328564i −0.0676618 0.0246269i
\(179\) 8.76305 15.1780i 0.654981 1.13446i −0.326917 0.945053i \(-0.606010\pi\)
0.981899 0.189408i \(-0.0606568\pi\)
\(180\) −0.349584 + 1.02914i −0.0260565 + 0.0767079i
\(181\) −0.687118 1.19012i −0.0510731 0.0884611i 0.839359 0.543578i \(-0.182931\pi\)
−0.890432 + 0.455117i \(0.849597\pi\)
\(182\) −0.729974 4.13989i −0.0541093 0.306869i
\(183\) −21.8030 1.67034i −1.61172 0.123475i
\(184\) 9.10572 3.31421i 0.671282 0.244327i
\(185\) −0.612214 + 3.47204i −0.0450109 + 0.255269i
\(186\) 14.7404 4.12087i 1.08082 0.302157i
\(187\) 4.73515 3.97326i 0.346269 0.290554i
\(188\) −2.49967 −0.182307
\(189\) 4.35080 + 2.84087i 0.316474 + 0.206643i
\(190\) 2.37166 0.172058
\(191\) 5.23350 4.39143i 0.378683 0.317753i −0.433502 0.901152i \(-0.642722\pi\)
0.812185 + 0.583400i \(0.198278\pi\)
\(192\) −11.0117 10.7762i −0.794698 0.777708i
\(193\) −0.457288 + 2.59341i −0.0329163 + 0.186678i −0.996833 0.0795276i \(-0.974659\pi\)
0.963916 + 0.266205i \(0.0857699\pi\)
\(194\) −12.3526 + 4.49600i −0.886868 + 0.322794i
\(195\) −2.95607 + 4.32032i −0.211689 + 0.309384i
\(196\) −0.0691389 0.392106i −0.00493849 0.0280076i
\(197\) −0.219915 0.380905i −0.0156683 0.0271383i 0.858085 0.513508i \(-0.171654\pi\)
−0.873753 + 0.486369i \(0.838321\pi\)
\(198\) −22.3701 3.44781i −1.58977 0.245025i
\(199\) 10.7197 18.5671i 0.759899 1.31618i −0.183003 0.983112i \(-0.558582\pi\)
0.942902 0.333071i \(-0.108085\pi\)
\(200\) −11.8992 4.33095i −0.841400 0.306245i
\(201\) 14.1964 10.1708i 1.00134 0.717391i
\(202\) −13.9865 11.7361i −0.984089 0.825748i
\(203\) 5.59972 + 4.69872i 0.393023 + 0.329786i
\(204\) −0.581299 + 0.416462i −0.0406991 + 0.0291582i
\(205\) −4.87773 1.77535i −0.340676 0.123996i
\(206\) 1.74034 3.01436i 0.121255 0.210020i
\(207\) −5.99646 + 7.46828i −0.416783 + 0.519081i
\(208\) −5.05717 8.75928i −0.350652 0.607347i
\(209\) −2.13172 12.0896i −0.147454 0.836255i
\(210\) 1.12641 1.64626i 0.0777299 0.113603i
\(211\) −9.87861 + 3.59552i −0.680071 + 0.247526i −0.658878 0.752250i \(-0.728969\pi\)
−0.0211932 + 0.999775i \(0.506747\pi\)
\(212\) −0.113439 + 0.643347i −0.00779106 + 0.0441853i
\(213\) −5.22680 5.11505i −0.358135 0.350478i
\(214\) −4.22168 + 3.54241i −0.288588 + 0.242154i
\(215\) 4.03874 0.275440
\(216\) 15.3583 + 3.58606i 1.04500 + 0.244000i
\(217\) 6.98197 0.473967
\(218\) −15.7029 + 13.1763i −1.06353 + 0.892409i
\(219\) −7.65253 + 2.13937i −0.517110 + 0.144565i
\(220\) 0.375035 2.12693i 0.0252848 0.143397i
\(221\) −3.23638 + 1.17794i −0.217702 + 0.0792371i
\(222\) 8.46872 + 0.648795i 0.568383 + 0.0435442i
\(223\) −2.24722 12.7446i −0.150485 0.853441i −0.962798 0.270220i \(-0.912903\pi\)
0.812314 0.583221i \(-0.198208\pi\)
\(224\) −1.10816 1.91939i −0.0740421 0.128245i
\(225\) 12.2760 2.43922i 0.818401 0.162614i
\(226\) −3.63456 + 6.29524i −0.241767 + 0.418753i
\(227\) −5.72511 2.08377i −0.379989 0.138305i 0.144962 0.989437i \(-0.453694\pi\)
−0.524951 + 0.851133i \(0.675916\pi\)
\(228\) 0.139055 + 1.41334i 0.00920913 + 0.0936009i
\(229\) 15.3246 + 12.8589i 1.01268 + 0.849738i 0.988690 0.149974i \(-0.0479191\pi\)
0.0239882 + 0.999712i \(0.492364\pi\)
\(230\) 2.81657 + 2.36338i 0.185719 + 0.155837i
\(231\) −9.40432 4.26221i −0.618759 0.280433i
\(232\) 20.8490 + 7.58842i 1.36881 + 0.498204i
\(233\) −13.5795 + 23.5205i −0.889625 + 1.54088i −0.0493064 + 0.998784i \(0.515701\pi\)
−0.840319 + 0.542092i \(0.817632\pi\)
\(234\) 11.0554 + 6.06816i 0.722713 + 0.396688i
\(235\) −2.85638 4.94740i −0.186330 0.322733i
\(236\) −0.663206 3.76123i −0.0431711 0.244835i
\(237\) 10.7675 + 22.4543i 0.699424 + 1.45856i
\(238\) 1.23322 0.448857i 0.0799381 0.0290951i
\(239\) 1.97250 11.1866i 0.127591 0.723602i −0.852145 0.523306i \(-0.824698\pi\)
0.979735 0.200296i \(-0.0641904\pi\)
\(240\) 1.19201 4.64901i 0.0769440 0.300092i
\(241\) −5.06797 + 4.25253i −0.326457 + 0.273930i −0.791254 0.611487i \(-0.790572\pi\)
0.464798 + 0.885417i \(0.346127\pi\)
\(242\) 31.0536 1.99620
\(243\) −14.8175 + 4.84179i −0.950540 + 0.310601i
\(244\) −5.02665 −0.321798
\(245\) 0.697058 0.584902i 0.0445334 0.0373680i
\(246\) −3.10586 + 12.1133i −0.198023 + 0.772315i
\(247\) −1.18775 + 6.73605i −0.0755745 + 0.428604i
\(248\) 19.9137 7.24798i 1.26452 0.460247i
\(249\) 12.8860 + 26.8721i 0.816616 + 1.70295i
\(250\) −1.83426 10.4026i −0.116008 0.657917i
\(251\) 8.13620 + 14.0923i 0.513552 + 0.889499i 0.999876 + 0.0157201i \(0.00500406\pi\)
−0.486324 + 0.873778i \(0.661663\pi\)
\(252\) 1.04710 + 0.574740i 0.0659611 + 0.0362052i
\(253\) 9.51578 16.4818i 0.598252 1.03620i
\(254\) −3.01568 1.09762i −0.189221 0.0688707i
\(255\) −1.48852 0.674625i −0.0932148 0.0422467i
\(256\) −7.01074 5.88271i −0.438172 0.367670i
\(257\) 10.2219 + 8.57718i 0.637624 + 0.535030i 0.903287 0.429036i \(-0.141147\pi\)
−0.265664 + 0.964066i \(0.585591\pi\)
\(258\) −0.952682 9.68298i −0.0593114 0.602836i
\(259\) 3.64086 + 1.32516i 0.226232 + 0.0823417i
\(260\) −0.601679 + 1.04214i −0.0373145 + 0.0646306i
\(261\) −21.5093 + 4.27384i −1.33139 + 0.264544i
\(262\) −1.44950 2.51061i −0.0895505 0.155106i
\(263\) 3.92210 + 22.2433i 0.241847 + 1.37158i 0.827702 + 0.561167i \(0.189648\pi\)
−0.585855 + 0.810416i \(0.699241\pi\)
\(264\) −31.2472 2.39387i −1.92313 0.147332i
\(265\) −1.40295 + 0.510633i −0.0861827 + 0.0313679i
\(266\) 0.452592 2.56678i 0.0277502 0.157379i
\(267\) 1.26613 0.353964i 0.0774857 0.0216622i
\(268\) 3.07527 2.58045i 0.187852 0.157626i
\(269\) 1.28401 0.0782877 0.0391439 0.999234i \(-0.487537\pi\)
0.0391439 + 0.999234i \(0.487537\pi\)
\(270\) 1.73535 + 5.72708i 0.105610 + 0.348539i
\(271\) 13.7466 0.835049 0.417525 0.908666i \(-0.362898\pi\)
0.417525 + 0.908666i \(0.362898\pi\)
\(272\) 2.41886 2.02966i 0.146665 0.123066i
\(273\) 4.11164 + 4.02373i 0.248848 + 0.243527i
\(274\) −2.42166 + 13.7339i −0.146298 + 0.829697i
\(275\) −23.3703 + 8.50608i −1.40928 + 0.512936i
\(276\) −1.24327 + 1.81705i −0.0748360 + 0.109373i
\(277\) −1.61921 9.18301i −0.0972891 0.551754i −0.994022 0.109181i \(-0.965177\pi\)
0.896733 0.442572i \(-0.145934\pi\)
\(278\) 13.5209 + 23.4189i 0.810931 + 1.40457i
\(279\) −13.1139 + 16.3327i −0.785109 + 0.977812i
\(280\) 1.38093 2.39185i 0.0825266 0.142940i
\(281\) 9.29228 + 3.38211i 0.554331 + 0.201760i 0.603970 0.797007i \(-0.293585\pi\)
−0.0496387 + 0.998767i \(0.515807\pi\)
\(282\) −11.1878 + 8.01528i −0.666221 + 0.477303i
\(283\) −12.8295 10.7652i −0.762635 0.639927i 0.176176 0.984359i \(-0.443627\pi\)
−0.938811 + 0.344432i \(0.888072\pi\)
\(284\) −1.28782 1.08061i −0.0764179 0.0641222i
\(285\) −2.63841 + 1.89025i −0.156286 + 0.111969i
\(286\) −23.5482 8.57083i −1.39243 0.506804i
\(287\) −2.85225 + 4.94024i −0.168363 + 0.291613i
\(288\) 6.57137 + 1.01282i 0.387222 + 0.0596810i
\(289\) 7.96240 + 13.7913i 0.468376 + 0.811251i
\(290\) 1.46187 + 8.29066i 0.0858438 + 0.486845i
\(291\) 10.1587 14.8470i 0.595511 0.870344i
\(292\) −1.71642 + 0.624725i −0.100446 + 0.0365593i
\(293\) 2.69578 15.2885i 0.157489 0.893167i −0.798985 0.601351i \(-0.794629\pi\)
0.956475 0.291816i \(-0.0942594\pi\)
\(294\) −1.56674 1.53325i −0.0913744 0.0894208i
\(295\) 6.68645 5.61060i 0.389300 0.326662i
\(296\) 11.7599 0.683533
\(297\) 27.6341 13.9937i 1.60350 0.811997i
\(298\) −10.0381 −0.581490
\(299\) −8.12310 + 6.81609i −0.469771 + 0.394185i
\(300\) 2.77087 0.774636i 0.159976 0.0447236i
\(301\) 0.770727 4.37101i 0.0444240 0.251941i
\(302\) 5.52370 2.01046i 0.317853 0.115689i
\(303\) 24.9135 + 1.90864i 1.43125 + 0.109649i
\(304\) −1.08895 6.17573i −0.0624555 0.354202i
\(305\) −5.74396 9.94883i −0.328898 0.569669i
\(306\) −1.26631 + 3.72791i −0.0723902 + 0.213110i
\(307\) −1.74046 + 3.01457i −0.0993335 + 0.172051i −0.911409 0.411502i \(-0.865004\pi\)
0.812075 + 0.583552i \(0.198338\pi\)
\(308\) −2.23034 0.811778i −0.127086 0.0462554i
\(309\) 0.466403 + 4.74049i 0.0265328 + 0.269677i
\(310\) 6.15967 + 5.16858i 0.349846 + 0.293555i
\(311\) 10.6115 + 8.90413i 0.601725 + 0.504907i 0.891999 0.452036i \(-0.149302\pi\)
−0.290275 + 0.956943i \(0.593747\pi\)
\(312\) 15.9041 + 7.20802i 0.900391 + 0.408074i
\(313\) −9.67485 3.52136i −0.546855 0.199039i 0.0537937 0.998552i \(-0.482869\pi\)
−0.600649 + 0.799513i \(0.705091\pi\)
\(314\) −13.8277 + 23.9504i −0.780345 + 1.35160i
\(315\) 0.0589879 + 2.72920i 0.00332359 + 0.153773i
\(316\) 2.86223 + 4.95753i 0.161013 + 0.278883i
\(317\) 4.94275 + 28.0317i 0.277613 + 1.57442i 0.730539 + 0.682871i \(0.239269\pi\)
−0.452926 + 0.891548i \(0.649620\pi\)
\(318\) 1.55519 + 3.24317i 0.0872110 + 0.181868i
\(319\) 40.9479 14.9038i 2.29264 0.834454i
\(320\) 1.40556 7.97135i 0.0785734 0.445612i
\(321\) 1.87317 7.30560i 0.104550 0.407759i
\(322\) 3.09532 2.59728i 0.172495 0.144741i
\(323\) −2.13537 −0.118815
\(324\) −3.31119 + 1.36994i −0.183955 + 0.0761077i
\(325\) 13.8571 0.768652
\(326\) −12.6844 + 10.6435i −0.702526 + 0.589489i
\(327\) 6.96738 27.1737i 0.385297 1.50271i
\(328\) −3.00659 + 17.0512i −0.166011 + 0.941497i
\(329\) −5.89952 + 2.14725i −0.325251 + 0.118382i
\(330\) −5.14152 10.7220i −0.283031 0.590228i
\(331\) −4.67529 26.5149i −0.256977 1.45739i −0.790946 0.611886i \(-0.790411\pi\)
0.533969 0.845504i \(-0.320700\pi\)
\(332\) 3.42537 + 5.93291i 0.187991 + 0.325611i
\(333\) −9.93836 + 6.02794i −0.544619 + 0.330329i
\(334\) −2.26443 + 3.92210i −0.123904 + 0.214608i
\(335\) 8.62140 + 3.13793i 0.471037 + 0.171444i
\(336\) −4.80401 2.17727i −0.262080 0.118780i
\(337\) 3.56596 + 2.99220i 0.194250 + 0.162995i 0.734725 0.678365i \(-0.237311\pi\)
−0.540475 + 0.841360i \(0.681755\pi\)
\(338\) −1.90805 1.60104i −0.103784 0.0870852i
\(339\) −0.974045 9.90012i −0.0529029 0.537701i
\(340\) −0.353020 0.128489i −0.0191452 0.00696828i
\(341\) 20.8105 36.0448i 1.12695 1.95193i
\(342\) 5.15429 + 5.87979i 0.278712 + 0.317943i
\(343\) −0.500000 0.866025i −0.0269975 0.0467610i
\(344\) −2.33931 13.2669i −0.126127 0.715303i
\(345\) −5.01702 0.384357i −0.270107 0.0206931i
\(346\) −5.09824 + 1.85561i −0.274083 + 0.0997581i
\(347\) 1.36919 7.76507i 0.0735020 0.416851i −0.925748 0.378140i \(-0.876564\pi\)
0.999250 0.0387107i \(-0.0123251\pi\)
\(348\) −4.85494 + 1.35727i −0.260252 + 0.0727572i
\(349\) 8.63445 7.24516i 0.462191 0.387825i −0.381745 0.924268i \(-0.624677\pi\)
0.843937 + 0.536443i \(0.180232\pi\)
\(350\) −5.28025 −0.282241
\(351\) −17.1353 + 2.06063i −0.914614 + 0.109988i
\(352\) −13.2119 −0.704199
\(353\) 14.1108 11.8404i 0.751043 0.630200i −0.184735 0.982788i \(-0.559143\pi\)
0.935779 + 0.352588i \(0.114698\pi\)
\(354\) −15.0288 14.7075i −0.798772 0.781694i
\(355\) 0.667165 3.78368i 0.0354095 0.200817i
\(356\) 0.283985 0.103362i 0.0150512 0.00547818i
\(357\) −1.01419 + 1.48224i −0.0536765 + 0.0784486i
\(358\) −3.85182 21.8447i −0.203575 1.15453i
\(359\) 9.58093 + 16.5947i 0.505662 + 0.875832i 0.999979 + 0.00655044i \(0.00208508\pi\)
−0.494316 + 0.869282i \(0.664582\pi\)
\(360\) 3.00142 + 7.72286i 0.158189 + 0.407031i
\(361\) 7.37958 12.7818i 0.388399 0.672726i
\(362\) −1.63440 0.594871i −0.0859019 0.0312657i
\(363\) −34.5465 + 24.7503i −1.81322 + 1.29905i
\(364\) 1.01306 + 0.850054i 0.0530985 + 0.0445550i
\(365\) −3.19782 2.68329i −0.167382 0.140450i
\(366\) −22.4977 + 16.1181i −1.17597 + 0.842507i
\(367\) −5.88643 2.14249i −0.307269 0.111837i 0.183783 0.982967i \(-0.441166\pi\)
−0.491053 + 0.871130i \(0.663388\pi\)
\(368\) 4.86095 8.41942i 0.253395 0.438892i
\(369\) −6.19929 15.9512i −0.322722 0.830385i
\(370\) 2.23107 + 3.86433i 0.115988 + 0.200897i
\(371\) 0.284913 + 1.61582i 0.0147919 + 0.0838893i
\(372\) −2.71896 + 3.97378i −0.140971 + 0.206031i
\(373\) −18.0622 + 6.57411i −0.935227 + 0.340395i −0.764279 0.644885i \(-0.776905\pi\)
−0.170948 + 0.985280i \(0.554683\pi\)
\(374\) 1.35850 7.70445i 0.0702465 0.398388i
\(375\) 10.3316 + 10.1107i 0.533521 + 0.522114i
\(376\) −14.5973 + 12.2486i −0.752798 + 0.631673i
\(377\) −24.2795 −1.25046
\(378\) 6.52942 0.785205i 0.335837 0.0403866i
\(379\) 30.6727 1.57555 0.787775 0.615963i \(-0.211233\pi\)
0.787775 + 0.615963i \(0.211233\pi\)
\(380\) −0.571541 + 0.479580i −0.0293195 + 0.0246019i
\(381\) 4.22970 1.18247i 0.216694 0.0605799i
\(382\) 1.50148 8.51530i 0.0768223 0.435681i
\(383\) 3.67776 1.33860i 0.187925 0.0683991i −0.246344 0.969183i \(-0.579229\pi\)
0.434268 + 0.900783i \(0.357007\pi\)
\(384\) −11.7880 0.903083i −0.601551 0.0460853i
\(385\) −0.941931 5.34196i −0.0480053 0.272251i
\(386\) 1.66648 + 2.88643i 0.0848216 + 0.146915i
\(387\) 8.77733 + 10.0128i 0.446177 + 0.508979i
\(388\) 2.06769 3.58135i 0.104971 0.181815i
\(389\) −25.3344 9.22096i −1.28450 0.467521i −0.392585 0.919716i \(-0.628419\pi\)
−0.891919 + 0.452194i \(0.850641\pi\)
\(390\) 0.648724 + 6.59358i 0.0328494 + 0.333879i
\(391\) −2.53595 2.12792i −0.128249 0.107613i
\(392\) −2.32510 1.95099i −0.117435 0.0985399i
\(393\) 3.61354 + 1.63772i 0.182279 + 0.0826121i
\(394\) −0.523096 0.190392i −0.0263532 0.00959179i
\(395\) −6.54135 + 11.3300i −0.329131 + 0.570072i
\(396\) 6.08811 3.69264i 0.305939 0.185562i
\(397\) −1.99273 3.45151i −0.100012 0.173226i 0.811677 0.584106i \(-0.198555\pi\)
−0.911689 + 0.410880i \(0.865222\pi\)
\(398\) −4.71187 26.7223i −0.236184 1.33947i
\(399\) 1.54226 + 3.21620i 0.0772098 + 0.161012i
\(400\) −11.9382 + 4.34517i −0.596912 + 0.217258i
\(401\) 5.30540 30.0884i 0.264939 1.50254i −0.504270 0.863546i \(-0.668238\pi\)
0.769209 0.638997i \(-0.220650\pi\)
\(402\) 5.48961 21.4102i 0.273797 1.06785i
\(403\) −17.7647 + 14.9064i −0.884925 + 0.742540i
\(404\) 5.74378 0.285764
\(405\) −6.49511 4.98814i −0.322745 0.247863i
\(406\) 9.25172 0.459155
\(407\) 17.6932 14.8463i 0.877018 0.735905i
\(408\) −1.35391 + 5.28042i −0.0670283 + 0.261420i
\(409\) −5.57941 + 31.6424i −0.275884 + 1.56462i 0.460256 + 0.887786i \(0.347758\pi\)
−0.736140 + 0.676830i \(0.763353\pi\)
\(410\) −6.17346 + 2.24695i −0.304885 + 0.110969i
\(411\) −8.25212 17.2088i −0.407047 0.848847i
\(412\) 0.190141 + 1.07835i 0.00936759 + 0.0531263i
\(413\) −4.79619 8.30724i −0.236005 0.408773i
\(414\) 0.261938 + 12.1191i 0.0128736 + 0.595622i
\(415\) −7.82835 + 13.5591i −0.384279 + 0.665590i
\(416\) 6.91745 + 2.51774i 0.339156 + 0.123443i
\(417\) −33.7070 15.2766i −1.65064 0.748100i
\(418\) −11.9021 9.98707i −0.582152 0.488483i
\(419\) −3.87959 3.25537i −0.189531 0.159035i 0.543085 0.839678i \(-0.317256\pi\)
−0.732615 + 0.680643i \(0.761701\pi\)
\(420\) 0.0614433 + 0.624505i 0.00299813 + 0.0304727i
\(421\) −10.0867 3.67125i −0.491594 0.178926i 0.0843153 0.996439i \(-0.473130\pi\)
−0.575909 + 0.817514i \(0.695352\pi\)
\(422\) −6.65258 + 11.5226i −0.323843 + 0.560912i
\(423\) 6.05781 17.8336i 0.294541 0.867101i
\(424\) 2.49000 + 4.31281i 0.120925 + 0.209448i
\(425\) 0.751209 + 4.26032i 0.0364390 + 0.206656i
\(426\) −9.22886 0.707030i −0.447140 0.0342557i
\(427\) −11.8635 + 4.31795i −0.574114 + 0.208960i
\(428\) 0.301054 1.70736i 0.0145520 0.0825283i
\(429\) 33.0279 9.23341i 1.59460 0.445793i
\(430\) 3.91570 3.28566i 0.188832 0.158449i
\(431\) 34.2002 1.64736 0.823682 0.567052i \(-0.191916\pi\)
0.823682 + 0.567052i \(0.191916\pi\)
\(432\) 14.1164 7.14841i 0.679174 0.343928i
\(433\) 36.4825 1.75324 0.876619 0.481185i \(-0.159793\pi\)
0.876619 + 0.481185i \(0.159793\pi\)
\(434\) 6.76927 5.68010i 0.324936 0.272653i
\(435\) −8.23409 8.05804i −0.394794 0.386354i
\(436\) 1.11979 6.35065i 0.0536283 0.304141i
\(437\) −6.17807 + 2.24863i −0.295537 + 0.107567i
\(438\) −5.67894 + 8.29982i −0.271350 + 0.396581i
\(439\) 6.89969 + 39.1301i 0.329304 + 1.86758i 0.477519 + 0.878622i \(0.341536\pi\)
−0.148215 + 0.988955i \(0.547353\pi\)
\(440\) −8.23202 14.2583i −0.392446 0.679737i
\(441\) 2.96499 + 0.456982i 0.141190 + 0.0217610i
\(442\) −2.17948 + 3.77498i −0.103667 + 0.179557i
\(443\) 4.39345 + 1.59909i 0.208739 + 0.0759749i 0.444274 0.895891i \(-0.353462\pi\)
−0.235534 + 0.971866i \(0.575684\pi\)
\(444\) −2.17206 + 1.55613i −0.103081 + 0.0738509i
\(445\) 0.529087 + 0.443956i 0.0250811 + 0.0210455i
\(446\) −12.5470 10.5282i −0.594116 0.498523i
\(447\) 11.1671 8.00051i 0.528187 0.378411i
\(448\) −8.35893 3.04240i −0.394923 0.143740i
\(449\) −11.7994 + 20.4371i −0.556848 + 0.964488i 0.440910 + 0.897552i \(0.354656\pi\)
−0.997757 + 0.0669369i \(0.978677\pi\)
\(450\) 9.91765 12.3519i 0.467522 0.582275i
\(451\) 17.0028 + 29.4497i 0.800631 + 1.38673i
\(452\) −0.397095 2.25204i −0.0186778 0.105927i
\(453\) −4.54262 + 6.63908i −0.213431 + 0.311931i
\(454\) −7.24592 + 2.63730i −0.340068 + 0.123775i
\(455\) −0.524823 + 2.97642i −0.0246041 + 0.139537i
\(456\) 7.73752 + 7.57209i 0.362343 + 0.354596i
\(457\) −14.0954 + 11.8274i −0.659353 + 0.553263i −0.909893 0.414843i \(-0.863836\pi\)
0.250540 + 0.968106i \(0.419392\pi\)
\(458\) 25.3189 1.18308
\(459\) −1.56246 5.15648i −0.0729294 0.240684i
\(460\) −1.15667 −0.0539299
\(461\) 0.430417 0.361163i 0.0200465 0.0168210i −0.632709 0.774389i \(-0.718057\pi\)
0.652756 + 0.757568i \(0.273613\pi\)
\(462\) −12.5853 + 3.51840i −0.585521 + 0.163691i
\(463\) 4.26861 24.2085i 0.198379 1.12506i −0.709144 0.705063i \(-0.750919\pi\)
0.907524 0.420001i \(-0.137970\pi\)
\(464\) 20.9174 7.61333i 0.971068 0.353440i
\(465\) −10.9719 0.840567i −0.508811 0.0389804i
\(466\) 5.96892 + 33.8514i 0.276505 + 1.56814i
\(467\) 7.39203 + 12.8034i 0.342062 + 0.592470i 0.984816 0.173604i \(-0.0555412\pi\)
−0.642753 + 0.766073i \(0.722208\pi\)
\(468\) −3.89128 + 0.773189i −0.179874 + 0.0357407i
\(469\) 5.04135 8.73187i 0.232788 0.403200i
\(470\) −6.79427 2.47291i −0.313396 0.114067i
\(471\) −3.70577 37.6652i −0.170753 1.73552i
\(472\) −22.3032 18.7146i −1.02659 0.861411i
\(473\) −20.2683 17.0071i −0.931939 0.781989i
\(474\) 28.7069 + 13.0105i 1.31855 + 0.597592i
\(475\) 8.07340 + 2.93848i 0.370433 + 0.134827i
\(476\) −0.206428 + 0.357543i −0.00946160 + 0.0163880i
\(477\) −4.31498 2.36843i −0.197569 0.108443i
\(478\) −7.18832 12.4505i −0.328786 0.569474i
\(479\) 1.66574 + 9.44691i 0.0761098 + 0.431640i 0.998923 + 0.0463931i \(0.0147727\pi\)
−0.922813 + 0.385247i \(0.874116\pi\)
\(480\) 1.51036 + 3.14967i 0.0689382 + 0.143762i
\(481\) −12.0929 + 4.40146i −0.551389 + 0.200689i
\(482\) −1.45399 + 8.24597i −0.0662273 + 0.375594i
\(483\) −1.37340 + 5.35643i −0.0624917 + 0.243726i
\(484\) −7.48356 + 6.27945i −0.340162 + 0.285430i
\(485\) 9.45103 0.429149
\(486\) −10.4271 + 16.7489i −0.472983 + 0.759743i
\(487\) −10.5107 −0.476284 −0.238142 0.971230i \(-0.576538\pi\)
−0.238142 + 0.971230i \(0.576538\pi\)
\(488\) −29.3540 + 24.6310i −1.32879 + 1.11499i
\(489\) 5.62810 21.9504i 0.254511 0.992629i
\(490\) 0.199984 1.13417i 0.00903437 0.0512364i
\(491\) −30.4235 + 11.0732i −1.37299 + 0.499728i −0.920046 0.391810i \(-0.871849\pi\)
−0.452945 + 0.891538i \(0.649627\pi\)
\(492\) −1.70099 3.54721i −0.0766865 0.159920i
\(493\) −1.31622 7.46466i −0.0592796 0.336191i
\(494\) 4.32846 + 7.49712i 0.194747 + 0.337311i
\(495\) 14.2654 + 7.83012i 0.641184 + 0.351938i
\(496\) 10.6306 18.4128i 0.477329 0.826758i
\(497\) −3.96765 1.44411i −0.177974 0.0647771i
\(498\) 34.3549 + 15.5703i 1.53948 + 0.697721i
\(499\) 8.50526 + 7.13676i 0.380748 + 0.319485i 0.812996 0.582269i \(-0.197835\pi\)
−0.432248 + 0.901755i \(0.642280\pi\)
\(500\) 2.54557 + 2.13599i 0.113841 + 0.0955243i
\(501\) −0.606856 6.16804i −0.0271123 0.275568i
\(502\) 19.3530 + 7.04390i 0.863765 + 0.314385i
\(503\) 8.24287 14.2771i 0.367531 0.636583i −0.621648 0.783297i \(-0.713536\pi\)
0.989179 + 0.146714i \(0.0468697\pi\)
\(504\) 8.93101 1.77457i 0.397819 0.0790457i
\(505\) 6.56343 + 11.3682i 0.292069 + 0.505878i
\(506\) −4.18268 23.7212i −0.185943 1.05454i
\(507\) 3.39871 + 0.260378i 0.150942 + 0.0115638i
\(508\) 0.948697 0.345297i 0.0420916 0.0153201i
\(509\) −0.0998034 + 0.566013i −0.00442371 + 0.0250881i −0.986940 0.161090i \(-0.948499\pi\)
0.982516 + 0.186178i \(0.0596102\pi\)
\(510\) −1.99201 + 0.556895i −0.0882077 + 0.0246597i
\(511\) −3.51430 + 2.94885i −0.155464 + 0.130449i
\(512\) −25.2344 −1.11521
\(513\) −10.4203 2.43308i −0.460068 0.107423i
\(514\) 16.8884 0.744913
\(515\) −1.91701 + 1.60856i −0.0844734 + 0.0708816i
\(516\) 2.18761 + 2.14084i 0.0963042 + 0.0942452i
\(517\) −6.49883 + 36.8567i −0.285818 + 1.62096i
\(518\) 4.60801 1.67718i 0.202465 0.0736911i
\(519\) 4.19273 6.12770i 0.184040 0.268976i
\(520\) 1.59294 + 9.03403i 0.0698552 + 0.396168i
\(521\) −0.717246 1.24231i −0.0314231 0.0544264i 0.849886 0.526966i \(-0.176671\pi\)
−0.881309 + 0.472540i \(0.843337\pi\)
\(522\) −17.3771 + 21.6422i −0.760574 + 0.947255i
\(523\) 8.90816 15.4294i 0.389527 0.674680i −0.602859 0.797848i \(-0.705972\pi\)
0.992386 + 0.123167i \(0.0393052\pi\)
\(524\) 0.856992 + 0.311919i 0.0374378 + 0.0136263i
\(525\) 5.87416 4.20845i 0.256369 0.183672i
\(526\) 21.8984 + 18.3750i 0.954816 + 0.801186i
\(527\) −5.54598 4.65363i −0.241586 0.202715i
\(528\) −25.5591 + 18.3114i −1.11232 + 0.796902i
\(529\) 12.0351 + 4.38042i 0.523265 + 0.190453i
\(530\) −0.944795 + 1.63643i −0.0410393 + 0.0710821i
\(531\) 28.4413 + 4.38354i 1.23425 + 0.190230i
\(532\) 0.409967 + 0.710083i 0.0177743 + 0.0307860i
\(533\) −3.29014 18.6593i −0.142512 0.808225i
\(534\) 0.939594 1.37322i 0.0406602 0.0594252i
\(535\) 3.72325 1.35515i 0.160970 0.0585884i
\(536\) 5.31416 30.1381i 0.229537 1.30177i
\(537\) 21.6957 + 21.2318i 0.936238 + 0.916221i
\(538\) 1.24490 1.04459i 0.0536714 0.0450357i
\(539\) −5.96120 −0.256767
\(540\) −1.57629 1.02925i −0.0678327 0.0442917i
\(541\) 2.90252 0.124789 0.0623946 0.998052i \(-0.480126\pi\)
0.0623946 + 0.998052i \(0.480126\pi\)
\(542\) 13.3279 11.1834i 0.572481 0.480369i
\(543\) 2.29235 0.640859i 0.0983741 0.0275019i
\(544\) −0.399070 + 2.26324i −0.0171100 + 0.0970356i
\(545\) 13.8489 5.04059i 0.593222 0.215915i
\(546\) 7.25984 + 0.556182i 0.310693 + 0.0238024i
\(547\) −5.04161 28.5924i −0.215564 1.22252i −0.879925 0.475112i \(-0.842408\pi\)
0.664362 0.747411i \(-0.268703\pi\)
\(548\) −2.19359 3.79941i −0.0937055 0.162303i
\(549\) 12.1818 35.8620i 0.519906 1.53055i
\(550\) −15.7383 + 27.2596i −0.671084 + 1.16235i
\(551\) −14.1457 5.14862i −0.602627 0.219338i
\(552\) 1.64337 + 16.7031i 0.0699465 + 0.710931i
\(553\) 11.0138 + 9.24166i 0.468354 + 0.392995i
\(554\) −9.04061 7.58598i −0.384099 0.322297i
\(555\) −5.56195 2.52078i −0.236091 0.107001i
\(556\) −7.99400 2.90958i −0.339021 0.123394i
\(557\) −16.6830 + 28.8958i −0.706882 + 1.22436i 0.259125 + 0.965844i \(0.416566\pi\)
−0.966008 + 0.258513i \(0.916768\pi\)
\(558\) 0.572843 + 26.5038i 0.0242504 + 1.12199i
\(559\) 7.37102 + 12.7670i 0.311761 + 0.539986i
\(560\) −0.481167 2.72883i −0.0203330 0.115314i
\(561\) 4.62927 + 9.65377i 0.195448 + 0.407583i
\(562\) 11.7607 4.28054i 0.496095 0.180564i
\(563\) −4.36987 + 24.7827i −0.184168 + 1.04447i 0.742852 + 0.669456i \(0.233473\pi\)
−0.927020 + 0.375012i \(0.877639\pi\)
\(564\) 1.07532 4.19390i 0.0452792 0.176595i
\(565\) 4.00351 3.35934i 0.168429 0.141329i
\(566\) −21.1966 −0.890960
\(567\) −6.63800 + 6.07757i −0.278770 + 0.255234i
\(568\) −12.8155 −0.537726
\(569\) −23.6612 + 19.8541i −0.991927 + 0.832326i −0.985846 0.167656i \(-0.946380\pi\)
−0.00608162 + 0.999982i \(0.501936\pi\)
\(570\) −1.02025 + 3.97912i −0.0427336 + 0.166667i
\(571\) 6.41747 36.3953i 0.268563 1.52309i −0.490132 0.871648i \(-0.663051\pi\)
0.758695 0.651446i \(-0.225837\pi\)
\(572\) 7.40796 2.69628i 0.309743 0.112737i
\(573\) 5.11647 + 10.6698i 0.213744 + 0.445736i
\(574\) 1.25371 + 7.11015i 0.0523289 + 0.296772i
\(575\) 6.65971 + 11.5349i 0.277729 + 0.481041i
\(576\) 22.8172 13.8394i 0.950716 0.576640i
\(577\) −18.9831 + 32.8798i −0.790278 + 1.36880i 0.135516 + 0.990775i \(0.456731\pi\)
−0.925794 + 0.378027i \(0.876603\pi\)
\(578\) 18.9396 + 6.89344i 0.787782 + 0.286729i
\(579\) −4.15445 1.88287i −0.172653 0.0782495i
\(580\) −2.02877 1.70234i −0.0842403 0.0706860i
\(581\) 13.1807 + 11.0599i 0.546828 + 0.458843i
\(582\) −2.22937 22.6591i −0.0924103 0.939251i
\(583\) 9.19097 + 3.34524i 0.380651 + 0.138546i
\(584\) −6.96214 + 12.0588i −0.288095 + 0.498996i
\(585\) −5.97688 6.81817i −0.247114 0.281896i
\(586\) −9.82415 17.0159i −0.405832 0.702922i
\(587\) 6.44293 + 36.5397i 0.265928 + 1.50815i 0.766379 + 0.642388i \(0.222056\pi\)
−0.500451 + 0.865765i \(0.666833\pi\)
\(588\) 0.687610 + 0.0526782i 0.0283565 + 0.00217241i
\(589\) −13.5111 + 4.91763i −0.556714 + 0.202627i
\(590\) 1.91832 10.8794i 0.0789762 0.447896i
\(591\) 0.733678 0.205110i 0.0301795 0.00843710i
\(592\) 9.03821 7.58396i 0.371468 0.311699i
\(593\) −26.3991 −1.08408 −0.542041 0.840352i \(-0.682348\pi\)
−0.542041 + 0.840352i \(0.682348\pi\)
\(594\) 15.4079 36.0488i 0.632195 1.47910i
\(595\) −0.943542 −0.0386815
\(596\) 2.41906 2.02983i 0.0990884 0.0831451i
\(597\) 26.5400 + 25.9725i 1.08621 + 1.06299i
\(598\) −2.33050 + 13.2169i −0.0953011 + 0.540479i
\(599\) −2.34587 + 0.853828i −0.0958498 + 0.0348865i −0.389500 0.921026i \(-0.627352\pi\)
0.293650 + 0.955913i \(0.405130\pi\)
\(600\) 12.3852 18.1011i 0.505625 0.738975i
\(601\) −6.87743 39.0039i −0.280536 1.59100i −0.720807 0.693136i \(-0.756229\pi\)
0.440270 0.897865i \(-0.354883\pi\)
\(602\) −2.80873 4.86487i −0.114475 0.198277i
\(603\) 10.9572 + 28.1937i 0.446213 + 1.14814i
\(604\) −0.924606 + 1.60146i −0.0376217 + 0.0651626i
\(605\) −20.9799 7.63606i −0.852954 0.310450i
\(606\) 25.7074 18.4176i 1.04429 0.748164i
\(607\) −5.54784 4.65519i −0.225180 0.188948i 0.523217 0.852199i \(-0.324732\pi\)
−0.748397 + 0.663251i \(0.769176\pi\)
\(608\) 3.49634 + 2.93377i 0.141795 + 0.118980i
\(609\) −10.2923 + 7.37377i −0.417066 + 0.298800i
\(610\) −13.6627 4.97283i −0.553188 0.201344i
\(611\) 10.4263 18.0588i 0.421801 0.730581i
\(612\) −0.448666 1.15445i −0.0181362 0.0466657i
\(613\) −8.97274 15.5412i −0.362405 0.627705i 0.625951 0.779863i \(-0.284711\pi\)
−0.988356 + 0.152158i \(0.951378\pi\)
\(614\) 0.765025 + 4.33867i 0.0308739 + 0.175095i
\(615\) 5.07697 7.42003i 0.204723 0.299205i
\(616\) −17.0023 + 6.18832i −0.685041 + 0.249335i
\(617\) 0.248854 1.41132i 0.0100185 0.0568177i −0.979389 0.201985i \(-0.935261\pi\)
0.989407 + 0.145167i \(0.0463720\pi\)
\(618\) 4.30876 + 4.21664i 0.173324 + 0.169618i
\(619\) −31.7747 + 26.6621i −1.27713 + 1.07164i −0.283500 + 0.958972i \(0.591496\pi\)
−0.993633 + 0.112669i \(0.964060\pi\)
\(620\) −2.52956 −0.101590
\(621\) −9.95053 13.2735i −0.399301 0.532646i
\(622\) 17.5321 0.702974
\(623\) 0.581449 0.487893i 0.0232953 0.0195470i
\(624\) 16.8716 4.71671i 0.675406 0.188819i
\(625\) 2.30354 13.0640i 0.0921417 0.522562i
\(626\) −12.2449 + 4.45677i −0.489404 + 0.178128i
\(627\) 21.2007 + 1.62420i 0.846674 + 0.0648643i
\(628\) −1.51075 8.56791i −0.0602856 0.341897i
\(629\) −2.00879 3.47932i −0.0800956 0.138730i
\(630\) 2.27750 + 2.59807i 0.0907377 + 0.103510i
\(631\) −11.2346 + 19.4589i −0.447243 + 0.774647i −0.998205 0.0598827i \(-0.980927\pi\)
0.550963 + 0.834530i \(0.314261\pi\)
\(632\) 41.0068 + 14.9252i 1.63116 + 0.593694i
\(633\) −1.78286 18.1209i −0.0708623 0.720239i
\(634\) 27.5971 + 23.1567i 1.09602 + 0.919669i
\(635\) 1.76750 + 1.48311i 0.0701410 + 0.0588553i
\(636\) −1.03059 0.467084i −0.0408657 0.0185211i
\(637\) 3.12114 + 1.13600i 0.123664 + 0.0450100i
\(638\) 27.5757 47.7625i 1.09173 1.89094i
\(639\) 10.8304 6.56900i 0.428445 0.259866i
\(640\) −3.10552 5.37891i −0.122756 0.212620i
\(641\) 3.90028 + 22.1196i 0.154052 + 0.873672i 0.959647 + 0.281206i \(0.0907344\pi\)
−0.805596 + 0.592466i \(0.798154\pi\)
\(642\) −4.12728 8.60694i −0.162891 0.339689i
\(643\) 28.7088 10.4492i 1.13217 0.412075i 0.293088 0.956085i \(-0.405317\pi\)
0.839078 + 0.544011i \(0.183095\pi\)
\(644\) −0.220731 + 1.25183i −0.00869802 + 0.0493289i
\(645\) −1.73740 + 6.77611i −0.0684101 + 0.266809i
\(646\) −2.07032 + 1.73720i −0.0814555 + 0.0683493i
\(647\) −36.1118 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(648\) −12.6235 + 24.2251i −0.495898 + 0.951652i
\(649\) −57.1821 −2.24459
\(650\) 13.4349 11.2733i 0.526962 0.442173i
\(651\) −3.00354 + 11.7142i −0.117718 + 0.459116i
\(652\) 0.904543 5.12992i 0.0354246 0.200903i
\(653\) 12.9734 4.72193i 0.507688 0.184783i −0.0754605 0.997149i \(-0.524043\pi\)
0.583149 + 0.812365i \(0.301820\pi\)
\(654\) −15.3517 32.0141i −0.600300 1.25185i
\(655\) 0.361930 + 2.05260i 0.0141418 + 0.0802019i
\(656\) 8.68556 + 15.0438i 0.339114 + 0.587363i
\(657\) −0.297394 13.7596i −0.0116025 0.536812i
\(658\) −3.97294 + 6.88133i −0.154881 + 0.268262i
\(659\) −0.168341 0.0612712i −0.00655764 0.00238679i 0.338739 0.940880i \(-0.390000\pi\)
−0.345297 + 0.938494i \(0.612222\pi\)
\(660\) 3.40718 + 1.54420i 0.132624 + 0.0601078i
\(661\) −2.00117 1.67918i −0.0778365 0.0653126i 0.603039 0.797711i \(-0.293956\pi\)
−0.680876 + 0.732399i \(0.738401\pi\)
\(662\) −26.1037 21.9036i −1.01455 0.851309i
\(663\) −0.584091 5.93666i −0.0226842 0.230561i
\(664\) 49.0748 + 17.8618i 1.90447 + 0.693171i
\(665\) −0.936940 + 1.62283i −0.0363330 + 0.0629305i
\(666\) −4.73165 + 13.9295i −0.183348 + 0.539759i
\(667\) −11.6687 20.2108i −0.451815 0.782566i
\(668\) −0.247401 1.40308i −0.00957221 0.0542867i
\(669\) 22.3493 + 1.71220i 0.864075 + 0.0661974i
\(670\) 10.9116 3.97149i 0.421551 0.153432i
\(671\) −13.0686 + 74.1159i −0.504509 + 2.86121i
\(672\) 3.69703 1.03356i 0.142616 0.0398703i
\(673\) −18.6504 + 15.6496i −0.718921 + 0.603247i −0.927087 0.374847i \(-0.877695\pi\)
0.208165 + 0.978094i \(0.433251\pi\)
\(674\) 5.89160 0.226936
\(675\) −1.18848 + 21.6457i −0.0457448 + 0.833145i
\(676\) 0.783568 0.0301372
\(677\) 23.0383 19.3315i 0.885435 0.742968i −0.0818541 0.996644i \(-0.526084\pi\)
0.967289 + 0.253676i \(0.0816397\pi\)
\(678\) −8.99849 8.80610i −0.345585 0.338196i
\(679\) 1.80357 10.2286i 0.0692149 0.392537i
\(680\) −2.69113 + 0.979491i −0.103200 + 0.0375618i
\(681\) 5.95895 8.70905i 0.228348 0.333732i
\(682\) −9.14728 51.8768i −0.350268 1.98647i
\(683\) −0.986904 1.70937i −0.0377628 0.0654071i 0.846526 0.532347i \(-0.178690\pi\)
−0.884289 + 0.466940i \(0.845356\pi\)
\(684\) −2.43109 0.374695i −0.0929552 0.0143268i
\(685\) 5.01324 8.68319i 0.191546 0.331767i
\(686\) −1.18931 0.432874i −0.0454082 0.0165272i
\(687\) −28.1667 + 20.1796i −1.07463 + 0.769900i
\(688\) −10.3537 8.68777i −0.394730 0.331218i
\(689\) −4.17468 3.50297i −0.159043 0.133453i
\(690\) −5.17688 + 3.70889i −0.197080 + 0.141195i
\(691\) 24.9545 + 9.08268i 0.949313 + 0.345522i 0.769837 0.638241i \(-0.220338\pi\)
0.179476 + 0.983762i \(0.442560\pi\)
\(692\) 0.853387 1.47811i 0.0324409 0.0561893i
\(693\) 11.1966 13.9448i 0.425325 0.529720i
\(694\) −4.98969 8.64240i −0.189406 0.328061i
\(695\) −3.37607 19.1467i −0.128062 0.726274i
\(696\) −21.7006 + 31.7156i −0.822560 + 1.20218i
\(697\) 5.55839 2.02309i 0.210539 0.0766299i
\(698\) 2.47720 14.0489i 0.0937634 0.531759i
\(699\) −33.6204 32.9016i −1.27164 1.24445i
\(700\) 1.27248 1.06774i 0.0480952 0.0403566i
\(701\) 6.58398 0.248673 0.124337 0.992240i \(-0.460320\pi\)
0.124337 + 0.992240i \(0.460320\pi\)
\(702\) −14.9369 + 15.9381i −0.563756 + 0.601543i
\(703\) −7.97892 −0.300931
\(704\) −40.6212 + 34.0852i −1.53097 + 1.28464i
\(705\) 9.52942 2.66408i 0.358899 0.100335i
\(706\) 4.04836 22.9594i 0.152362 0.864087i
\(707\) 13.5560 4.93398i 0.509826 0.185561i
\(708\) 6.59581 + 0.505310i 0.247886 + 0.0189907i
\(709\) 1.99560 + 11.3176i 0.0749462 + 0.425041i 0.999077 + 0.0429637i \(0.0136800\pi\)
−0.924130 + 0.382077i \(0.875209\pi\)
\(710\) −2.43133 4.21118i −0.0912461 0.158043i
\(711\) −42.3054 + 8.40598i −1.58657 + 0.315249i
\(712\) 1.15190 1.99515i 0.0431693 0.0747714i
\(713\) −20.9462 7.62378i −0.784440 0.285513i
\(714\) 0.222569 + 2.26217i 0.00832942 + 0.0846596i
\(715\) 13.8016 + 11.5809i 0.516151 + 0.433102i
\(716\) 5.34554 + 4.48544i 0.199772 + 0.167629i
\(717\) 17.9201 + 8.12173i 0.669239 + 0.303312i
\(718\) 22.7894 + 8.29468i 0.850494 + 0.309555i
\(719\) 22.7233 39.3580i 0.847438 1.46781i −0.0360492 0.999350i \(-0.511477\pi\)
0.883487 0.468455i \(-0.155189\pi\)
\(720\) 7.28722 + 3.99986i 0.271579 + 0.149066i
\(721\) 1.37507 + 2.38169i 0.0512102 + 0.0886987i
\(722\) −3.24371 18.3960i −0.120718 0.684628i
\(723\) −4.95465 10.3323i −0.184265 0.384263i
\(724\) 0.514161 0.187139i 0.0191086 0.00695498i
\(725\) −5.29574 + 30.0336i −0.196679 + 1.11542i
\(726\) −13.3588 + 52.1011i −0.495791 + 1.93365i
\(727\) 19.7408 16.5645i 0.732146 0.614344i −0.198570 0.980087i \(-0.563630\pi\)
0.930716 + 0.365743i \(0.119185\pi\)
\(728\) 10.0813 0.373636
\(729\) −1.74921 26.9433i −0.0647854 0.997899i
\(730\) −5.28336 −0.195546
\(731\) −3.52558 + 2.95831i −0.130398 + 0.109417i
\(732\) 2.16239 8.43360i 0.0799241 0.311715i
\(733\) −2.27159 + 12.8828i −0.0839030 + 0.475837i 0.913685 + 0.406423i \(0.133224\pi\)
−0.997588 + 0.0694142i \(0.977887\pi\)
\(734\) −7.45010 + 2.71162i −0.274988 + 0.100088i
\(735\) 0.681471 + 1.42113i 0.0251365 + 0.0524190i
\(736\) 1.22869 + 6.96827i 0.0452903 + 0.256854i
\(737\) −30.0525 52.0524i −1.10700 1.91738i
\(738\) −18.9873 10.4219i −0.698933 0.383635i
\(739\) 10.4383 18.0797i 0.383981 0.665074i −0.607646 0.794208i \(-0.707886\pi\)
0.991627 + 0.129133i \(0.0412196\pi\)
\(740\) −1.31908 0.480106i −0.0484903 0.0176490i
\(741\) −10.7906 4.89052i −0.396404 0.179658i
\(742\) 1.59077 + 1.33481i 0.0583988 + 0.0490024i
\(743\) 13.2930 + 11.1541i 0.487672 + 0.409205i 0.853191 0.521599i \(-0.174664\pi\)
−0.365519 + 0.930804i \(0.619109\pi\)
\(744\) 3.59396 + 36.5287i 0.131761 + 1.33921i
\(745\) 6.78174 + 2.46835i 0.248464 + 0.0904334i
\(746\) −12.1637 + 21.0682i −0.445345 + 0.771360i
\(747\) −50.6288 + 10.0598i −1.85241 + 0.368070i
\(748\) 1.23056 + 2.13139i 0.0449936 + 0.0779313i
\(749\) −0.756122 4.28818i −0.0276281 0.156687i
\(750\) 18.2423 + 1.39755i 0.666114 + 0.0510315i
\(751\) −5.99632 + 2.18248i −0.218809 + 0.0796399i −0.449099 0.893482i \(-0.648255\pi\)
0.230290 + 0.973122i \(0.426033\pi\)
\(752\) −3.31980 + 18.8275i −0.121061 + 0.686569i
\(753\) −27.1438 + 7.58844i −0.989176 + 0.276538i
\(754\) −23.5399 + 19.7523i −0.857271 + 0.719336i
\(755\) −4.22620 −0.153807
\(756\) −1.41473 + 1.50956i −0.0514534 + 0.0549021i
\(757\) −8.80999 −0.320205 −0.160102 0.987100i \(-0.551182\pi\)
−0.160102 + 0.987100i \(0.551182\pi\)
\(758\) 29.7383 24.9534i 1.08014 0.906348i
\(759\) 23.5593 + 23.0556i 0.855149 + 0.836865i
\(760\) −0.987642 + 5.60119i −0.0358255 + 0.203177i
\(761\) −6.43543 + 2.34231i −0.233284 + 0.0849085i −0.456017 0.889971i \(-0.650724\pi\)
0.222733 + 0.974880i \(0.428502\pi\)
\(762\) 3.13886 4.58747i 0.113709 0.166186i
\(763\) −2.81245 15.9502i −0.101818 0.577436i
\(764\) 1.36007 + 2.35571i 0.0492055 + 0.0852264i
\(765\) 1.77221 2.20720i 0.0640744 0.0798014i
\(766\) 2.47673 4.28982i 0.0894878 0.154997i
\(767\) 29.9391 + 10.8970i 1.08104 + 0.393466i