Properties

Label 189.2.v.a.22.4
Level $189$
Weight $2$
Character 189.22
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.4
Character \(\chi\) \(=\) 189.22
Dual form 189.2.v.a.43.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0808704 - 0.0678583i) q^{2} +(1.71585 - 0.236354i) q^{3} +(-0.345361 + 1.95864i) q^{4} +(0.0449304 - 0.0163533i) q^{5} +(0.122723 - 0.135549i) q^{6} +(0.173648 + 0.984808i) q^{7} +(0.210549 + 0.364682i) q^{8} +(2.88827 - 0.811094i) q^{9} +O(q^{10})\) \(q+(0.0808704 - 0.0678583i) q^{2} +(1.71585 - 0.236354i) q^{3} +(-0.345361 + 1.95864i) q^{4} +(0.0449304 - 0.0163533i) q^{5} +(0.122723 - 0.135549i) q^{6} +(0.173648 + 0.984808i) q^{7} +(0.210549 + 0.364682i) q^{8} +(2.88827 - 0.811094i) q^{9} +(0.00252383 - 0.00437140i) q^{10} +(-2.08078 - 0.757342i) q^{11} +(-0.129656 + 3.44236i) q^{12} +(1.63110 + 1.36865i) q^{13} +(0.0808704 + 0.0678583i) q^{14} +(0.0732287 - 0.0386793i) q^{15} +(-3.69605 - 1.34525i) q^{16} +(1.30215 - 2.25539i) q^{17} +(0.178536 - 0.261587i) q^{18} +(-1.12700 - 1.95202i) q^{19} +(0.0165131 + 0.0936504i) q^{20} +(0.530717 + 1.64874i) q^{21} +(-0.219665 + 0.0799517i) q^{22} +(1.36751 - 7.75556i) q^{23} +(0.447465 + 0.575975i) q^{24} +(-3.82847 + 3.21247i) q^{25} +0.224782 q^{26} +(4.76414 - 2.07437i) q^{27} -1.98886 q^{28} +(0.516050 - 0.433017i) q^{29} +(0.00329732 - 0.00809719i) q^{30} +(-0.714158 + 4.05019i) q^{31} +(-1.18159 + 0.430065i) q^{32} +(-3.74930 - 0.807684i) q^{33} +(-0.0477416 - 0.270756i) q^{34} +(0.0239070 + 0.0414081i) q^{35} +(0.591144 + 5.93721i) q^{36} +(1.50163 - 2.60090i) q^{37} +(-0.223602 - 0.0813846i) q^{38} +(3.12220 + 1.96288i) q^{39} +(0.0154238 + 0.0129421i) q^{40} +(-4.51243 - 3.78637i) q^{41} +(0.154800 + 0.0973206i) q^{42} +(-7.25196 - 2.63950i) q^{43} +(2.20198 - 3.81394i) q^{44} +(0.116507 - 0.0836758i) q^{45} +(-0.415688 - 0.719992i) q^{46} +(0.831280 + 4.71442i) q^{47} +(-6.65982 - 1.43467i) q^{48} +(-0.939693 + 0.342020i) q^{49} +(-0.0916172 + 0.519587i) q^{50} +(1.70122 - 4.17768i) q^{51} +(-3.24401 + 2.72205i) q^{52} -2.27812 q^{53} +(0.244514 - 0.491041i) q^{54} -0.105875 q^{55} +(-0.322580 + 0.270677i) q^{56} +(-2.39513 - 3.08301i) q^{57} +(0.0123493 - 0.0700365i) q^{58} +(-11.3193 + 4.11987i) q^{59} +(0.0504686 + 0.156787i) q^{60} +(0.115915 + 0.657385i) q^{61} +(0.217085 + 0.376002i) q^{62} +(1.30032 + 2.70355i) q^{63} +(3.86688 - 6.69764i) q^{64} +(0.0956679 + 0.0348203i) q^{65} +(-0.358016 + 0.189104i) q^{66} +(7.86315 + 6.59797i) q^{67} +(3.96779 + 3.32937i) q^{68} +(0.513393 - 13.6306i) q^{69} +(0.00474325 + 0.00172640i) q^{70} +(7.10068 - 12.2987i) q^{71} +(0.903916 + 0.882527i) q^{72} +(1.97659 + 3.42355i) q^{73} +(-0.0550553 - 0.312234i) q^{74} +(-5.80980 + 6.41698i) q^{75} +(4.21254 - 1.53324i) q^{76} +(0.384513 - 2.18068i) q^{77} +(0.385691 - 0.0531280i) q^{78} +(2.63514 - 2.21115i) q^{79} -0.188065 q^{80} +(7.68425 - 4.68533i) q^{81} -0.621859 q^{82} +(-9.22727 + 7.74259i) q^{83} +(-3.41257 + 0.470073i) q^{84} +(0.0216230 - 0.122630i) q^{85} +(-0.765580 + 0.278649i) q^{86} +(0.783118 - 0.864962i) q^{87} +(-0.161918 - 0.918281i) q^{88} +(5.98967 + 10.3744i) q^{89} +(0.00374390 - 0.0146729i) q^{90} +(-1.06462 + 1.84398i) q^{91} +(14.7181 + 5.35694i) q^{92} +(-0.268110 + 7.11831i) q^{93} +(0.387139 + 0.324848i) q^{94} +(-0.0825588 - 0.0692751i) q^{95} +(-1.92579 + 1.01720i) q^{96} +(17.1653 + 6.24766i) q^{97} +(-0.0527844 + 0.0914253i) q^{98} +(-6.62414 - 0.499702i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0808704 0.0678583i 0.0571840 0.0479831i −0.613748 0.789502i \(-0.710339\pi\)
0.670932 + 0.741519i \(0.265894\pi\)
\(3\) 1.71585 0.236354i 0.990646 0.136459i
\(4\) −0.345361 + 1.95864i −0.172681 + 0.979320i
\(5\) 0.0449304 0.0163533i 0.0200935 0.00731344i −0.331954 0.943296i \(-0.607708\pi\)
0.352047 + 0.935982i \(0.385486\pi\)
\(6\) 0.122723 0.135549i 0.0501014 0.0553375i
\(7\) 0.173648 + 0.984808i 0.0656328 + 0.372222i
\(8\) 0.210549 + 0.364682i 0.0744404 + 0.128935i
\(9\) 2.88827 0.811094i 0.962758 0.270365i
\(10\) 0.00252383 0.00437140i 0.000798106 0.00138236i
\(11\) −2.08078 0.757342i −0.627379 0.228347i 0.00871123 0.999962i \(-0.497227\pi\)
−0.636090 + 0.771615i \(0.719449\pi\)
\(12\) −0.129656 + 3.44236i −0.0374284 + 0.993723i
\(13\) 1.63110 + 1.36865i 0.452385 + 0.379596i 0.840320 0.542091i \(-0.182367\pi\)
−0.387935 + 0.921687i \(0.626812\pi\)
\(14\) 0.0808704 + 0.0678583i 0.0216135 + 0.0181359i
\(15\) 0.0732287 0.0386793i 0.0189076 0.00998696i
\(16\) −3.69605 1.34525i −0.924013 0.336313i
\(17\) 1.30215 2.25539i 0.315818 0.547013i −0.663793 0.747916i \(-0.731054\pi\)
0.979611 + 0.200903i \(0.0643878\pi\)
\(18\) 0.178536 0.261587i 0.0420814 0.0616566i
\(19\) −1.12700 1.95202i −0.258552 0.447825i 0.707302 0.706911i \(-0.249912\pi\)
−0.965854 + 0.259086i \(0.916579\pi\)
\(20\) 0.0165131 + 0.0936504i 0.00369244 + 0.0209409i
\(21\) 0.530717 + 1.64874i 0.115812 + 0.359784i
\(22\) −0.219665 + 0.0799517i −0.0468328 + 0.0170458i
\(23\) 1.36751 7.75556i 0.285146 1.61715i −0.419615 0.907702i \(-0.637835\pi\)
0.704762 0.709444i \(-0.251054\pi\)
\(24\) 0.447465 + 0.575975i 0.0913384 + 0.117570i
\(25\) −3.82847 + 3.21247i −0.765694 + 0.642494i
\(26\) 0.224782 0.0440833
\(27\) 4.76414 2.07437i 0.916858 0.399213i
\(28\) −1.98886 −0.375858
\(29\) 0.516050 0.433017i 0.0958280 0.0804093i −0.593615 0.804749i \(-0.702300\pi\)
0.689443 + 0.724340i \(0.257855\pi\)
\(30\) 0.00329732 0.00809719i 0.000602005 0.00147834i
\(31\) −0.714158 + 4.05019i −0.128267 + 0.727436i 0.851047 + 0.525089i \(0.175968\pi\)
−0.979314 + 0.202347i \(0.935143\pi\)
\(32\) −1.18159 + 0.430065i −0.208878 + 0.0760255i
\(33\) −3.74930 0.807684i −0.652670 0.140600i
\(34\) −0.0477416 0.270756i −0.00818762 0.0464343i
\(35\) 0.0239070 + 0.0414081i 0.00404102 + 0.00699925i
\(36\) 0.591144 + 5.93721i 0.0985241 + 0.989535i
\(37\) 1.50163 2.60090i 0.246867 0.427586i −0.715788 0.698318i \(-0.753932\pi\)
0.962655 + 0.270732i \(0.0872657\pi\)
\(38\) −0.223602 0.0813846i −0.0362731 0.0132023i
\(39\) 3.12220 + 1.96288i 0.499952 + 0.314313i
\(40\) 0.0154238 + 0.0129421i 0.00243872 + 0.00204633i
\(41\) −4.51243 3.78637i −0.704723 0.591332i 0.218390 0.975861i \(-0.429919\pi\)
−0.923113 + 0.384529i \(0.874364\pi\)
\(42\) 0.154800 + 0.0973206i 0.0238861 + 0.0150169i
\(43\) −7.25196 2.63950i −1.10591 0.402519i −0.276420 0.961037i \(-0.589148\pi\)
−0.829493 + 0.558517i \(0.811370\pi\)
\(44\) 2.20198 3.81394i 0.331961 0.574973i
\(45\) 0.116507 0.0836758i 0.0173679 0.0124736i
\(46\) −0.415688 0.719992i −0.0612898 0.106157i
\(47\) 0.831280 + 4.71442i 0.121255 + 0.687669i 0.983462 + 0.181114i \(0.0579703\pi\)
−0.862208 + 0.506555i \(0.830919\pi\)
\(48\) −6.65982 1.43467i −0.961262 0.207077i
\(49\) −0.939693 + 0.342020i −0.134242 + 0.0488600i
\(50\) −0.0916172 + 0.519587i −0.0129566 + 0.0734807i
\(51\) 1.70122 4.17768i 0.238219 0.584992i
\(52\) −3.24401 + 2.72205i −0.449864 + 0.377480i
\(53\) −2.27812 −0.312924 −0.156462 0.987684i \(-0.550009\pi\)
−0.156462 + 0.987684i \(0.550009\pi\)
\(54\) 0.244514 0.491041i 0.0332742 0.0668223i
\(55\) −0.105875 −0.0142762
\(56\) −0.322580 + 0.270677i −0.0431066 + 0.0361707i
\(57\) −2.39513 3.08301i −0.317243 0.408354i
\(58\) 0.0123493 0.0700365i 0.00162155 0.00919625i
\(59\) −11.3193 + 4.11987i −1.47364 + 0.536361i −0.949087 0.315015i \(-0.897990\pi\)
−0.524554 + 0.851377i \(0.675768\pi\)
\(60\) 0.0504686 + 0.156787i 0.00651546 + 0.0202411i
\(61\) 0.115915 + 0.657385i 0.0148414 + 0.0841695i 0.991329 0.131405i \(-0.0419488\pi\)
−0.976487 + 0.215574i \(0.930838\pi\)
\(62\) 0.217085 + 0.376002i 0.0275698 + 0.0477523i
\(63\) 1.30032 + 2.70355i 0.163824 + 0.340615i
\(64\) 3.86688 6.69764i 0.483360 0.837205i
\(65\) 0.0956679 + 0.0348203i 0.0118661 + 0.00431892i
\(66\) −0.358016 + 0.189104i −0.0440687 + 0.0232771i
\(67\) 7.86315 + 6.59797i 0.960637 + 0.806070i 0.981057 0.193721i \(-0.0620557\pi\)
−0.0204194 + 0.999792i \(0.506500\pi\)
\(68\) 3.96779 + 3.32937i 0.481165 + 0.403745i
\(69\) 0.513393 13.6306i 0.0618052 1.64093i
\(70\) 0.00474325 + 0.00172640i 0.000566927 + 0.000206345i
\(71\) 7.10068 12.2987i 0.842695 1.45959i −0.0449125 0.998991i \(-0.514301\pi\)
0.887608 0.460600i \(-0.152366\pi\)
\(72\) 0.903916 + 0.882527i 0.106527 + 0.104007i
\(73\) 1.97659 + 3.42355i 0.231342 + 0.400697i 0.958203 0.286088i \(-0.0923549\pi\)
−0.726861 + 0.686784i \(0.759022\pi\)
\(74\) −0.0550553 0.312234i −0.00640005 0.0362965i
\(75\) −5.80980 + 6.41698i −0.670858 + 0.740969i
\(76\) 4.21254 1.53324i 0.483211 0.175874i
\(77\) 0.384513 2.18068i 0.0438193 0.248511i
\(78\) 0.385691 0.0531280i 0.0436710 0.00601556i
\(79\) 2.63514 2.21115i 0.296477 0.248774i −0.482399 0.875951i \(-0.660235\pi\)
0.778876 + 0.627178i \(0.215790\pi\)
\(80\) −0.188065 −0.0210263
\(81\) 7.68425 4.68533i 0.853806 0.520592i
\(82\) −0.621859 −0.0686728
\(83\) −9.22727 + 7.74259i −1.01282 + 0.849860i −0.988709 0.149849i \(-0.952121\pi\)
−0.0241150 + 0.999709i \(0.507677\pi\)
\(84\) −3.41257 + 0.470073i −0.372342 + 0.0512892i
\(85\) 0.0216230 0.122630i 0.00234535 0.0133011i
\(86\) −0.765580 + 0.278649i −0.0825547 + 0.0300474i
\(87\) 0.783118 0.864962i 0.0839591 0.0927337i
\(88\) −0.161918 0.918281i −0.0172605 0.0978891i
\(89\) 5.98967 + 10.3744i 0.634903 + 1.09968i 0.986536 + 0.163547i \(0.0522935\pi\)
−0.351632 + 0.936138i \(0.614373\pi\)
\(90\) 0.00374390 0.0146729i 0.000394641 0.00154666i
\(91\) −1.06462 + 1.84398i −0.111603 + 0.193302i
\(92\) 14.7181 + 5.35694i 1.53446 + 0.558499i
\(93\) −0.268110 + 7.11831i −0.0278017 + 0.738134i
\(94\) 0.387139 + 0.324848i 0.0399303 + 0.0335055i
\(95\) −0.0825588 0.0692751i −0.00847036 0.00710747i
\(96\) −1.92579 + 1.01720i −0.196550 + 0.103818i
\(97\) 17.1653 + 6.24766i 1.74287 + 0.634354i 0.999407 0.0344215i \(-0.0109589\pi\)
0.743465 + 0.668775i \(0.233181\pi\)
\(98\) −0.0527844 + 0.0914253i −0.00533203 + 0.00923535i
\(99\) −6.62414 0.499702i −0.665751 0.0502220i
\(100\) −4.96986 8.60806i −0.496986 0.860806i
\(101\) 3.05705 + 17.3374i 0.304187 + 1.72513i 0.627305 + 0.778774i \(0.284158\pi\)
−0.323118 + 0.946359i \(0.604731\pi\)
\(102\) −0.145912 0.453293i −0.0144474 0.0448827i
\(103\) 2.61069 0.950212i 0.257238 0.0936271i −0.210182 0.977662i \(-0.567406\pi\)
0.467420 + 0.884035i \(0.345183\pi\)
\(104\) −0.155697 + 0.883000i −0.0152673 + 0.0865853i
\(105\) 0.0508077 + 0.0653996i 0.00495833 + 0.00638234i
\(106\) −0.184232 + 0.154589i −0.0178942 + 0.0150150i
\(107\) 9.20339 0.889725 0.444863 0.895599i \(-0.353253\pi\)
0.444863 + 0.895599i \(0.353253\pi\)
\(108\) 2.41760 + 10.0476i 0.232633 + 0.966834i
\(109\) 13.7809 1.31997 0.659984 0.751279i \(-0.270563\pi\)
0.659984 + 0.751279i \(0.270563\pi\)
\(110\) −0.00856219 + 0.00718453i −0.000816373 + 0.000685018i
\(111\) 1.96184 4.81767i 0.186210 0.457273i
\(112\) 0.683003 3.87350i 0.0645377 0.366011i
\(113\) −13.0043 + 4.73319i −1.22334 + 0.445261i −0.871313 0.490728i \(-0.836731\pi\)
−0.352031 + 0.935988i \(0.614509\pi\)
\(114\) −0.402903 0.0867944i −0.0377353 0.00812904i
\(115\) −0.0653863 0.370824i −0.00609730 0.0345795i
\(116\) 0.669901 + 1.16030i 0.0621988 + 0.107731i
\(117\) 5.82116 + 2.63007i 0.538166 + 0.243150i
\(118\) −0.635825 + 1.10128i −0.0585324 + 0.101381i
\(119\) 2.44724 + 0.890724i 0.224338 + 0.0816525i
\(120\) 0.0295239 + 0.0185613i 0.00269515 + 0.00169441i
\(121\) −4.67041 3.91894i −0.424583 0.356267i
\(122\) 0.0539831 + 0.0452972i 0.00488740 + 0.00410102i
\(123\) −8.63756 5.43032i −0.778823 0.489635i
\(124\) −7.68622 2.79756i −0.690243 0.251228i
\(125\) −0.239015 + 0.413986i −0.0213782 + 0.0370281i
\(126\) 0.288615 + 0.130400i 0.0257119 + 0.0116169i
\(127\) −2.94106 5.09406i −0.260977 0.452025i 0.705525 0.708685i \(-0.250711\pi\)
−0.966502 + 0.256660i \(0.917378\pi\)
\(128\) −0.578474 3.28069i −0.0511303 0.289975i
\(129\) −13.0671 2.81495i −1.15050 0.247843i
\(130\) 0.0100995 0.00367593i 0.000885788 0.000322401i
\(131\) 3.05420 17.3212i 0.266847 1.51336i −0.496877 0.867821i \(-0.665520\pi\)
0.763724 0.645543i \(-0.223369\pi\)
\(132\) 2.87683 7.06460i 0.250396 0.614894i
\(133\) 1.72667 1.44885i 0.149721 0.125631i
\(134\) 1.08362 0.0936108
\(135\) 0.180132 0.171112i 0.0155033 0.0147270i
\(136\) 1.09667 0.0940385
\(137\) −7.00858 + 5.88089i −0.598783 + 0.502439i −0.891054 0.453897i \(-0.850033\pi\)
0.292271 + 0.956335i \(0.405589\pi\)
\(138\) −0.883430 1.13715i −0.0752026 0.0968005i
\(139\) 0.922429 5.23136i 0.0782394 0.443718i −0.920372 0.391043i \(-0.872114\pi\)
0.998612 0.0526746i \(-0.0167746\pi\)
\(140\) −0.0893601 + 0.0325244i −0.00755231 + 0.00274882i
\(141\) 2.54062 + 7.89276i 0.213959 + 0.664690i
\(142\) −0.260337 1.47644i −0.0218470 0.123900i
\(143\) −2.35741 4.08316i −0.197137 0.341451i
\(144\) −11.7663 0.887612i −0.980528 0.0739677i
\(145\) 0.0161051 0.0278948i 0.00133745 0.00231654i
\(146\) 0.392164 + 0.142736i 0.0324557 + 0.0118129i
\(147\) −1.53153 + 0.808955i −0.126319 + 0.0667215i
\(148\) 4.57563 + 3.83941i 0.376114 + 0.315597i
\(149\) 12.3904 + 10.3968i 1.01506 + 0.851735i 0.988999 0.147925i \(-0.0472595\pi\)
0.0260597 + 0.999660i \(0.491704\pi\)
\(150\) −0.0343950 + 0.913187i −0.00280834 + 0.0745614i
\(151\) −11.6602 4.24395i −0.948891 0.345368i −0.179220 0.983809i \(-0.557357\pi\)
−0.769671 + 0.638441i \(0.779580\pi\)
\(152\) 0.474579 0.821995i 0.0384934 0.0666726i
\(153\) 1.93163 7.57036i 0.156163 0.612027i
\(154\) −0.116882 0.202445i −0.00941858 0.0163135i
\(155\) 0.0341467 + 0.193656i 0.00274273 + 0.0155548i
\(156\) −4.92287 + 5.43736i −0.394145 + 0.435337i
\(157\) 7.03913 2.56204i 0.561784 0.204473i −0.0454904 0.998965i \(-0.514485\pi\)
0.607275 + 0.794492i \(0.292263\pi\)
\(158\) 0.0630603 0.357633i 0.00501681 0.0284517i
\(159\) −3.90891 + 0.538442i −0.309997 + 0.0427012i
\(160\) −0.0460565 + 0.0386460i −0.00364109 + 0.00305524i
\(161\) 7.87520 0.620653
\(162\) 0.303490 0.900344i 0.0238444 0.0707377i
\(163\) −6.90048 −0.540488 −0.270244 0.962792i \(-0.587104\pi\)
−0.270244 + 0.962792i \(0.587104\pi\)
\(164\) 8.97456 7.53055i 0.700796 0.588037i
\(165\) −0.181666 + 0.0250240i −0.0141427 + 0.00194812i
\(166\) −0.220813 + 1.25229i −0.0171384 + 0.0971968i
\(167\) −16.9249 + 6.16016i −1.30969 + 0.476687i −0.900140 0.435601i \(-0.856536\pi\)
−0.409548 + 0.912289i \(0.634314\pi\)
\(168\) −0.489523 + 0.540684i −0.0377676 + 0.0417147i
\(169\) −1.47016 8.33770i −0.113089 0.641361i
\(170\) −0.00657282 0.0113845i −0.000504112 0.000873148i
\(171\) −4.83837 4.72388i −0.369999 0.361244i
\(172\) 7.67437 13.2924i 0.585165 1.01354i
\(173\) −14.6159 5.31976i −1.11123 0.404454i −0.279784 0.960063i \(-0.590263\pi\)
−0.831443 + 0.555610i \(0.812485\pi\)
\(174\) 0.00463619 0.123091i 0.000351469 0.00933150i
\(175\) −3.82847 3.21247i −0.289405 0.242840i
\(176\) 6.67185 + 5.59835i 0.502910 + 0.421991i
\(177\) −18.4484 + 9.74442i −1.38666 + 0.732436i
\(178\) 1.18838 + 0.432534i 0.0890726 + 0.0324198i
\(179\) −9.72046 + 16.8363i −0.726541 + 1.25841i 0.231795 + 0.972765i \(0.425540\pi\)
−0.958336 + 0.285642i \(0.907793\pi\)
\(180\) 0.123654 + 0.257094i 0.00921659 + 0.0191627i
\(181\) 8.62738 + 14.9431i 0.641268 + 1.11071i 0.985150 + 0.171696i \(0.0549248\pi\)
−0.343882 + 0.939013i \(0.611742\pi\)
\(182\) 0.0390329 + 0.221367i 0.00289331 + 0.0164088i
\(183\) 0.354268 + 1.10058i 0.0261882 + 0.0813570i
\(184\) 3.11624 1.13422i 0.229733 0.0836158i
\(185\) 0.0249355 0.141416i 0.00183330 0.0103971i
\(186\) 0.461354 + 0.593854i 0.0338281 + 0.0435435i
\(187\) −4.41759 + 3.70680i −0.323046 + 0.271068i
\(188\) −9.52095 −0.694386
\(189\) 2.87014 + 4.33155i 0.208772 + 0.315074i
\(190\) −0.0113775 −0.000825407
\(191\) 4.75336 3.98855i 0.343941 0.288601i −0.454410 0.890792i \(-0.650150\pi\)
0.798352 + 0.602191i \(0.205706\pi\)
\(192\) 5.05198 12.4061i 0.364595 0.895332i
\(193\) −2.63729 + 14.9568i −0.189836 + 1.07661i 0.729747 + 0.683718i \(0.239638\pi\)
−0.919583 + 0.392896i \(0.871473\pi\)
\(194\) 1.81212 0.659558i 0.130103 0.0473535i
\(195\) 0.172381 + 0.0371348i 0.0123445 + 0.00265928i
\(196\) −0.345361 1.95864i −0.0246686 0.139903i
\(197\) −4.97901 8.62390i −0.354740 0.614427i 0.632334 0.774696i \(-0.282097\pi\)
−0.987073 + 0.160269i \(0.948764\pi\)
\(198\) −0.569606 + 0.409092i −0.0404801 + 0.0290729i
\(199\) 2.16427 3.74863i 0.153421 0.265733i −0.779062 0.626947i \(-0.784304\pi\)
0.932483 + 0.361214i \(0.117638\pi\)
\(200\) −1.97761 0.719792i −0.139838 0.0508970i
\(201\) 15.0514 + 9.46263i 1.06165 + 0.667443i
\(202\) 1.42371 + 1.19463i 0.100172 + 0.0840541i
\(203\) 0.516050 + 0.433017i 0.0362196 + 0.0303919i
\(204\) 7.59503 + 4.77489i 0.531759 + 0.334309i
\(205\) −0.264665 0.0963302i −0.0184850 0.00672800i
\(206\) 0.146647 0.254001i 0.0102174 0.0176971i
\(207\) −2.34073 23.5094i −0.162692 1.63401i
\(208\) −4.18743 7.25284i −0.290346 0.502894i
\(209\) 0.866693 + 4.91526i 0.0599504 + 0.339996i
\(210\) 0.00854675 + 0.00184116i 0.000589781 + 0.000127052i
\(211\) −17.4247 + 6.34206i −1.19956 + 0.436605i −0.863072 0.505082i \(-0.831462\pi\)
−0.336491 + 0.941687i \(0.609240\pi\)
\(212\) 0.786774 4.46201i 0.0540358 0.306452i
\(213\) 9.27684 22.7810i 0.635638 1.56093i
\(214\) 0.744282 0.624526i 0.0508780 0.0426918i
\(215\) −0.368998 −0.0251655
\(216\) 1.75957 + 1.30064i 0.119724 + 0.0884972i
\(217\) −4.11267 −0.279186
\(218\) 1.11446 0.935147i 0.0754811 0.0633361i
\(219\) 4.20070 + 5.40712i 0.283857 + 0.365380i
\(220\) 0.0365653 0.207372i 0.00246523 0.0139810i
\(221\) 5.21078 1.89657i 0.350515 0.127577i
\(222\) −0.168264 0.522734i −0.0112932 0.0350836i
\(223\) 3.98630 + 22.6075i 0.266943 + 1.51391i 0.763446 + 0.645872i \(0.223506\pi\)
−0.496503 + 0.868035i \(0.665383\pi\)
\(224\) −0.628713 1.08896i −0.0420077 0.0727594i
\(225\) −8.45206 + 12.3837i −0.563471 + 0.825583i
\(226\) −0.730479 + 1.26523i −0.0485907 + 0.0841616i
\(227\) −9.42513 3.43047i −0.625568 0.227688i 0.00973318 0.999953i \(-0.496902\pi\)
−0.635301 + 0.772265i \(0.719124\pi\)
\(228\) 6.86569 3.62645i 0.454691 0.240168i
\(229\) −1.73941 1.45954i −0.114943 0.0964490i 0.583504 0.812110i \(-0.301681\pi\)
−0.698448 + 0.715661i \(0.746126\pi\)
\(230\) −0.0304513 0.0255517i −0.00200790 0.00168483i
\(231\) 0.144354 3.83260i 0.00949779 0.252166i
\(232\) 0.266568 + 0.0970227i 0.0175010 + 0.00636985i
\(233\) −10.8572 + 18.8052i −0.711278 + 1.23197i 0.253100 + 0.967440i \(0.418550\pi\)
−0.964378 + 0.264529i \(0.914784\pi\)
\(234\) 0.649231 0.182319i 0.0424416 0.0119186i
\(235\) 0.114446 + 0.198227i 0.00746565 + 0.0129309i
\(236\) −4.16011 23.5932i −0.270800 1.53579i
\(237\) 3.99889 4.41682i 0.259756 0.286903i
\(238\) 0.258353 0.0940326i 0.0167465 0.00609523i
\(239\) 2.57538 14.6057i 0.166588 0.944766i −0.780824 0.624750i \(-0.785201\pi\)
0.947412 0.320016i \(-0.103688\pi\)
\(240\) −0.322690 + 0.0444498i −0.0208296 + 0.00286922i
\(241\) 15.2735 12.8160i 0.983850 0.825548i −0.000815769 1.00000i \(-0.500260\pi\)
0.984666 + 0.174451i \(0.0558152\pi\)
\(242\) −0.643631 −0.0413741
\(243\) 12.0776 9.85551i 0.774780 0.632231i
\(244\) −1.32761 −0.0849917
\(245\) −0.0366276 + 0.0307342i −0.00234005 + 0.00196354i
\(246\) −1.06702 + 0.146979i −0.0680304 + 0.00937101i
\(247\) 0.833394 4.72641i 0.0530276 0.300734i
\(248\) −1.62740 + 0.592324i −0.103340 + 0.0376126i
\(249\) −14.0026 + 15.4660i −0.887379 + 0.980119i
\(250\) 0.00876317 + 0.0496984i 0.000554232 + 0.00314320i
\(251\) −2.71457 4.70177i −0.171342 0.296773i 0.767547 0.640992i \(-0.221477\pi\)
−0.938889 + 0.344219i \(0.888144\pi\)
\(252\) −5.74436 + 1.61315i −0.361861 + 0.101619i
\(253\) −8.71911 + 15.1019i −0.548166 + 0.949451i
\(254\) −0.583519 0.212384i −0.0366132 0.0133261i
\(255\) 0.00811773 0.215526i 0.000508352 0.0134967i
\(256\) 11.5794 + 9.71628i 0.723713 + 0.607268i
\(257\) 9.87540 + 8.28644i 0.616011 + 0.516894i 0.896547 0.442949i \(-0.146068\pi\)
−0.280536 + 0.959843i \(0.590512\pi\)
\(258\) −1.24776 + 0.659066i −0.0776822 + 0.0410317i
\(259\) 2.82214 + 1.02718i 0.175359 + 0.0638256i
\(260\) −0.101240 + 0.175353i −0.00627866 + 0.0108750i
\(261\) 1.13928 1.66924i 0.0705194 0.103323i
\(262\) −0.928396 1.60803i −0.0573565 0.0993444i
\(263\) −5.20032 29.4925i −0.320666 1.81858i −0.538531 0.842606i \(-0.681020\pi\)
0.217865 0.975979i \(-0.430091\pi\)
\(264\) −0.494865 1.53736i −0.0304569 0.0946181i
\(265\) −0.102357 + 0.0372549i −0.00628773 + 0.00228855i
\(266\) 0.0413200 0.234337i 0.00253349 0.0143682i
\(267\) 12.7294 + 16.3852i 0.779026 + 1.00276i
\(268\) −15.6387 + 13.1224i −0.955284 + 0.801579i
\(269\) 8.35546 0.509441 0.254721 0.967015i \(-0.418016\pi\)
0.254721 + 0.967015i \(0.418016\pi\)
\(270\) 0.00295597 0.0260613i 0.000179895 0.00158604i
\(271\) 2.44853 0.148737 0.0743687 0.997231i \(-0.476306\pi\)
0.0743687 + 0.997231i \(0.476306\pi\)
\(272\) −7.84689 + 6.58432i −0.475788 + 0.399233i
\(273\) −1.39090 + 3.41562i −0.0841810 + 0.206723i
\(274\) −0.167719 + 0.951180i −0.0101323 + 0.0574629i
\(275\) 10.3991 3.78498i 0.627092 0.228243i
\(276\) 26.5201 + 5.71303i 1.59632 + 0.343884i
\(277\) −1.13897 6.45940i −0.0684338 0.388107i −0.999716 0.0238101i \(-0.992420\pi\)
0.931283 0.364297i \(-0.118691\pi\)
\(278\) −0.280394 0.485656i −0.0168169 0.0291277i
\(279\) 1.22240 + 12.2773i 0.0731834 + 0.735023i
\(280\) −0.0100672 + 0.0174369i −0.000601630 + 0.00104205i
\(281\) 12.1311 + 4.41537i 0.723683 + 0.263399i 0.677488 0.735533i \(-0.263068\pi\)
0.0461944 + 0.998932i \(0.485291\pi\)
\(282\) 0.741050 + 0.465888i 0.0441289 + 0.0277432i
\(283\) −12.2500 10.2789i −0.728185 0.611019i 0.201451 0.979499i \(-0.435434\pi\)
−0.929636 + 0.368479i \(0.879879\pi\)
\(284\) 21.6365 + 18.1552i 1.28389 + 1.07731i
\(285\) −0.158032 0.0993525i −0.00936100 0.00588513i
\(286\) −0.467721 0.170237i −0.0276569 0.0100663i
\(287\) 2.94528 5.10137i 0.173854 0.301124i
\(288\) −3.06394 + 2.20053i −0.180545 + 0.129667i
\(289\) 5.10881 + 8.84871i 0.300518 + 0.520512i
\(290\) −0.000590471 0.00334873i −3.46736e−5 0.000196644i
\(291\) 30.9297 + 6.66295i 1.81313 + 0.390589i
\(292\) −7.38814 + 2.68906i −0.432358 + 0.157366i
\(293\) 0.173966 0.986612i 0.0101632 0.0576385i −0.979304 0.202393i \(-0.935128\pi\)
0.989468 + 0.144755i \(0.0462393\pi\)
\(294\) −0.0689614 + 0.169348i −0.00402191 + 0.00987656i
\(295\) −0.441205 + 0.370215i −0.0256880 + 0.0215548i
\(296\) 1.26467 0.0735074
\(297\) −11.4841 + 0.708226i −0.666377 + 0.0410954i
\(298\) 1.70752 0.0989140
\(299\) 12.8452 10.7784i 0.742858 0.623331i
\(300\) −10.5621 13.5955i −0.609802 0.784935i
\(301\) 1.34011 7.60013i 0.0772425 0.438064i
\(302\) −1.23095 + 0.448029i −0.0708332 + 0.0257812i
\(303\) 9.34318 + 29.0258i 0.536752 + 1.66749i
\(304\) 1.53949 + 8.73089i 0.0882959 + 0.500751i
\(305\) 0.0159585 + 0.0276410i 0.000913784 + 0.00158272i
\(306\) −0.357500 0.743295i −0.0204369 0.0424914i
\(307\) −17.3639 + 30.0752i −0.991010 + 1.71648i −0.379641 + 0.925134i \(0.623953\pi\)
−0.611369 + 0.791346i \(0.709381\pi\)
\(308\) 4.13837 + 1.50624i 0.235806 + 0.0858262i
\(309\) 4.25496 2.24746i 0.242056 0.127854i
\(310\) 0.0159026 + 0.0133439i 0.000903208 + 0.000757881i
\(311\) −1.69583 1.42297i −0.0961615 0.0806891i 0.593440 0.804879i \(-0.297770\pi\)
−0.689601 + 0.724190i \(0.742214\pi\)
\(312\) −0.0584517 + 1.55189i −0.00330918 + 0.0878587i
\(313\) 2.22955 + 0.811489i 0.126021 + 0.0458681i 0.404261 0.914644i \(-0.367529\pi\)
−0.278240 + 0.960512i \(0.589751\pi\)
\(314\) 0.395402 0.684857i 0.0223138 0.0386487i
\(315\) 0.102636 + 0.100207i 0.00578287 + 0.00564603i
\(316\) 3.42077 + 5.92494i 0.192433 + 0.333304i
\(317\) 1.42162 + 8.06239i 0.0798460 + 0.452829i 0.998350 + 0.0574179i \(0.0182867\pi\)
−0.918504 + 0.395411i \(0.870602\pi\)
\(318\) −0.279577 + 0.308796i −0.0156779 + 0.0173164i
\(319\) −1.40173 + 0.510187i −0.0784817 + 0.0285650i
\(320\) 0.0642120 0.364164i 0.00358956 0.0203574i
\(321\) 15.7916 2.17525i 0.881402 0.121411i
\(322\) 0.636871 0.534398i 0.0354914 0.0297808i
\(323\) −5.87011 −0.326622
\(324\) 6.52302 + 16.6688i 0.362390 + 0.926045i
\(325\) −10.6414 −0.590276
\(326\) −0.558045 + 0.468255i −0.0309072 + 0.0259343i
\(327\) 23.6459 3.25716i 1.30762 0.180121i
\(328\) 0.430735 2.44282i 0.0237834 0.134882i
\(329\) −4.49845 + 1.63730i −0.248008 + 0.0902674i
\(330\) −0.0129933 + 0.0143513i −0.000715259 + 0.000790011i
\(331\) −1.10168 6.24791i −0.0605536 0.343416i −1.00000 0.000719872i \(-0.999771\pi\)
0.939446 0.342697i \(-0.111340\pi\)
\(332\) −11.9782 20.7469i −0.657390 1.13863i
\(333\) 2.22755 8.73008i 0.122069 0.478406i
\(334\) −0.950705 + 1.64667i −0.0520203 + 0.0901017i
\(335\) 0.461194 + 0.167861i 0.0251977 + 0.00917122i
\(336\) 0.256413 6.80777i 0.0139885 0.371394i
\(337\) −19.3497 16.2363i −1.05404 0.884448i −0.0605315 0.998166i \(-0.519280\pi\)
−0.993513 + 0.113718i \(0.963724\pi\)
\(338\) −0.684675 0.574510i −0.0372414 0.0312492i
\(339\) −21.1948 + 11.1951i −1.15114 + 0.608032i
\(340\) 0.232721 + 0.0847034i 0.0126211 + 0.00459369i
\(341\) 4.55339 7.88670i 0.246580 0.427089i
\(342\) −0.711835 0.0536984i −0.0384916 0.00290368i
\(343\) −0.500000 0.866025i −0.0269975 0.0467610i
\(344\) −0.564318 3.20040i −0.0304260 0.172554i
\(345\) −0.199839 0.620824i −0.0107590 0.0334240i
\(346\) −1.54298 + 0.561600i −0.0829513 + 0.0301918i
\(347\) 4.76192 27.0062i 0.255633 1.44977i −0.538809 0.842428i \(-0.681126\pi\)
0.794442 0.607340i \(-0.207763\pi\)
\(348\) 1.42369 + 1.83257i 0.0763179 + 0.0982361i
\(349\) 23.1748 19.4460i 1.24052 1.04092i 0.243036 0.970017i \(-0.421857\pi\)
0.997483 0.0709015i \(-0.0225876\pi\)
\(350\) −0.527603 −0.0282015
\(351\) 10.6099 + 3.13695i 0.566312 + 0.167438i
\(352\) 2.78434 0.148406
\(353\) 14.6203 12.2679i 0.778159 0.652953i −0.164625 0.986356i \(-0.552641\pi\)
0.942784 + 0.333403i \(0.108197\pi\)
\(354\) −0.830687 + 2.03991i −0.0441505 + 0.108420i
\(355\) 0.117911 0.668707i 0.00625807 0.0354913i
\(356\) −22.3883 + 8.14868i −1.18658 + 0.431879i
\(357\) 4.40963 + 0.949932i 0.233382 + 0.0502757i
\(358\) 0.356388 + 2.02117i 0.0188357 + 0.106822i
\(359\) 0.0467450 + 0.0809648i 0.00246711 + 0.00427316i 0.867256 0.497862i \(-0.165881\pi\)
−0.864789 + 0.502135i \(0.832548\pi\)
\(360\) 0.0550456 + 0.0248703i 0.00290116 + 0.00131078i
\(361\) 6.95973 12.0546i 0.366302 0.634453i
\(362\) 1.71171 + 0.623012i 0.0899655 + 0.0327448i
\(363\) −8.93997 5.62044i −0.469227 0.294997i
\(364\) −3.24401 2.72205i −0.170032 0.142674i
\(365\) 0.144796 + 0.121498i 0.00757895 + 0.00635949i
\(366\) 0.103333 + 0.0649641i 0.00540130 + 0.00339573i
\(367\) 18.1715 + 6.61390i 0.948547 + 0.345243i 0.769535 0.638604i \(-0.220488\pi\)
0.179011 + 0.983847i \(0.442710\pi\)
\(368\) −15.4876 + 26.8253i −0.807347 + 1.39837i
\(369\) −16.1042 7.27608i −0.838353 0.378778i
\(370\) −0.00757973 0.0131285i −0.000394051 0.000682517i
\(371\) −0.395591 2.24351i −0.0205381 0.116477i
\(372\) −13.8496 2.98352i −0.718069 0.154688i
\(373\) −17.8957 + 6.51350i −0.926604 + 0.337256i −0.760863 0.648913i \(-0.775224\pi\)
−0.165741 + 0.986169i \(0.553002\pi\)
\(374\) −0.105715 + 0.599541i −0.00546640 + 0.0310015i
\(375\) −0.312267 + 0.766830i −0.0161254 + 0.0395989i
\(376\) −1.54424 + 1.29577i −0.0796381 + 0.0668243i
\(377\) 1.43438 0.0738741
\(378\) 0.526041 + 0.155531i 0.0270566 + 0.00799966i
\(379\) −17.4412 −0.895894 −0.447947 0.894060i \(-0.647845\pi\)
−0.447947 + 0.894060i \(0.647845\pi\)
\(380\) 0.164198 0.137778i 0.00842316 0.00706787i
\(381\) −6.25041 8.04551i −0.320218 0.412184i
\(382\) 0.113750 0.645111i 0.00581998 0.0330067i
\(383\) 12.9295 4.70596i 0.660667 0.240463i 0.0101426 0.999949i \(-0.496771\pi\)
0.650524 + 0.759485i \(0.274549\pi\)
\(384\) −1.76798 5.49244i −0.0902216 0.280285i
\(385\) −0.0183851 0.104267i −0.000936990 0.00531394i
\(386\) 0.801665 + 1.38852i 0.0408037 + 0.0706740i
\(387\) −23.0865 1.74157i −1.17355 0.0885289i
\(388\) −18.1651 + 31.4629i −0.922195 + 1.59729i
\(389\) −16.0006 5.82376i −0.811265 0.295276i −0.0971185 0.995273i \(-0.530963\pi\)
−0.714146 + 0.699997i \(0.753185\pi\)
\(390\) 0.0164605 0.00869441i 0.000833508 0.000440258i
\(391\) −15.7111 13.1832i −0.794545 0.666703i
\(392\) −0.322580 0.270677i −0.0162928 0.0136713i
\(393\) 1.14661 30.4425i 0.0578388 1.53562i
\(394\) −0.987858 0.359551i −0.0497676 0.0181139i
\(395\) 0.0822385 0.142441i 0.00413787 0.00716700i
\(396\) 3.26646 12.8017i 0.164146 0.643311i
\(397\) 4.94769 + 8.56965i 0.248317 + 0.430099i 0.963059 0.269290i \(-0.0867890\pi\)
−0.714742 + 0.699389i \(0.753456\pi\)
\(398\) −0.0793502 0.450017i −0.00397747 0.0225573i
\(399\) 2.62026 2.89410i 0.131177 0.144886i
\(400\) 18.4718 6.72319i 0.923590 0.336159i
\(401\) −0.707807 + 4.01417i −0.0353462 + 0.200458i −0.997367 0.0725173i \(-0.976897\pi\)
0.962021 + 0.272976i \(0.0880078\pi\)
\(402\) 1.85933 0.256118i 0.0927352 0.0127740i
\(403\) −6.70816 + 5.62882i −0.334157 + 0.280391i
\(404\) −35.0134 −1.74198
\(405\) 0.268636 0.336177i 0.0133486 0.0167048i
\(406\) 0.0711170 0.00352948
\(407\) −5.09434 + 4.27466i −0.252517 + 0.211887i
\(408\) 1.88172 0.259202i 0.0931589 0.0128324i
\(409\) 5.00771 28.4001i 0.247615 1.40430i −0.566724 0.823907i \(-0.691790\pi\)
0.814340 0.580389i \(-0.197099\pi\)
\(410\) −0.0279404 + 0.0101695i −0.00137988 + 0.000502234i
\(411\) −10.6357 + 11.7472i −0.524620 + 0.579448i
\(412\) 0.959494 + 5.44156i 0.0472709 + 0.268086i
\(413\) −6.02285 10.4319i −0.296365 0.513319i
\(414\) −1.78460 1.74237i −0.0877084 0.0856330i
\(415\) −0.287968 + 0.498775i −0.0141358 + 0.0244839i
\(416\) −2.51590 0.915714i −0.123352 0.0448966i
\(417\) 0.346299 9.19424i 0.0169583 0.450244i
\(418\) 0.403631 + 0.338687i 0.0197422 + 0.0165657i
\(419\) 11.2026 + 9.40013i 0.547285 + 0.459226i 0.874020 0.485889i \(-0.161504\pi\)
−0.326736 + 0.945116i \(0.605949\pi\)
\(420\) −0.145641 + 0.0769276i −0.00710656 + 0.00375368i
\(421\) 30.1366 + 10.9688i 1.46877 + 0.534588i 0.947766 0.318968i \(-0.103336\pi\)
0.521002 + 0.853555i \(0.325558\pi\)
\(422\) −0.978777 + 1.69529i −0.0476461 + 0.0825255i
\(423\) 6.22480 + 12.9423i 0.302660 + 0.629276i
\(424\) −0.479656 0.830789i −0.0232942 0.0403467i
\(425\) 2.26013 + 12.8178i 0.109632 + 0.621756i
\(426\) −0.795661 2.47182i −0.0385499 0.119760i
\(427\) −0.627270 + 0.228307i −0.0303557 + 0.0110486i
\(428\) −3.17849 + 18.0261i −0.153638 + 0.871326i
\(429\) −5.01004 6.44890i −0.241887 0.311356i
\(430\) −0.0298410 + 0.0250396i −0.00143906 + 0.00120752i
\(431\) 2.09915 0.101113 0.0505563 0.998721i \(-0.483901\pi\)
0.0505563 + 0.998721i \(0.483901\pi\)
\(432\) −20.3990 + 1.25801i −0.981449 + 0.0605260i
\(433\) −4.97773 −0.239214 −0.119607 0.992821i \(-0.538164\pi\)
−0.119607 + 0.992821i \(0.538164\pi\)
\(434\) −0.332593 + 0.279079i −0.0159650 + 0.0133962i
\(435\) 0.0210408 0.0516697i 0.00100883 0.00247737i
\(436\) −4.75938 + 26.9918i −0.227933 + 1.29267i
\(437\) −16.6802 + 6.07111i −0.797924 + 0.290421i
\(438\) 0.706630 + 0.152224i 0.0337641 + 0.00727355i
\(439\) −4.93634 27.9954i −0.235599 1.33615i −0.841349 0.540492i \(-0.818238\pi\)
0.605751 0.795654i \(-0.292873\pi\)
\(440\) −0.0222920 0.0386109i −0.00106273 0.00184070i
\(441\) −2.43668 + 1.75003i −0.116032 + 0.0833346i
\(442\) 0.292700 0.506971i 0.0139223 0.0241141i
\(443\) −27.8701 10.1439i −1.32415 0.481951i −0.419363 0.907818i \(-0.637747\pi\)
−0.904785 + 0.425868i \(0.859969\pi\)
\(444\) 8.75854 + 5.50637i 0.415662 + 0.261321i
\(445\) 0.438775 + 0.368176i 0.0207999 + 0.0174532i
\(446\) 1.85648 + 1.55777i 0.0879068 + 0.0737625i
\(447\) 23.7173 + 14.9107i 1.12179 + 0.705254i
\(448\) 7.26736 + 2.64510i 0.343351 + 0.124969i
\(449\) 3.34561 5.79477i 0.157889 0.273472i −0.776218 0.630464i \(-0.782864\pi\)
0.934107 + 0.356992i \(0.116198\pi\)
\(450\) 0.156819 + 1.57502i 0.00739250 + 0.0742472i
\(451\) 6.52179 + 11.2961i 0.307099 + 0.531911i
\(452\) −4.77942 27.1055i −0.224805 1.27493i
\(453\) −21.0102 4.52606i −0.987143 0.212653i
\(454\) −0.995000 + 0.362150i −0.0466977 + 0.0169966i
\(455\) −0.0176787 + 0.100261i −0.000828791 + 0.00470030i
\(456\) 0.620024 1.52259i 0.0290353 0.0713017i
\(457\) 13.3387 11.1925i 0.623958 0.523563i −0.275087 0.961419i \(-0.588707\pi\)
0.899045 + 0.437857i \(0.144262\pi\)
\(458\) −0.239709 −0.0112008
\(459\) 1.52511 13.4461i 0.0711860 0.627612i
\(460\) 0.748893 0.0349173
\(461\) 8.95670 7.51556i 0.417155 0.350035i −0.409925 0.912119i \(-0.634445\pi\)
0.827080 + 0.562085i \(0.190001\pi\)
\(462\) −0.248400 0.319739i −0.0115566 0.0148756i
\(463\) 5.04729 28.6246i 0.234567 1.33030i −0.608956 0.793204i \(-0.708411\pi\)
0.843523 0.537093i \(-0.180478\pi\)
\(464\) −2.48986 + 0.906236i −0.115589 + 0.0420710i
\(465\) 0.104362 + 0.324213i 0.00483967 + 0.0150350i
\(466\) 0.398064 + 2.25753i 0.0184400 + 0.104578i
\(467\) 19.9136 + 34.4914i 0.921492 + 1.59607i 0.797108 + 0.603837i \(0.206362\pi\)
0.124384 + 0.992234i \(0.460305\pi\)
\(468\) −7.16176 + 10.4932i −0.331052 + 0.485050i
\(469\) −5.13231 + 8.88942i −0.236988 + 0.410475i
\(470\) 0.0227067 + 0.00826455i 0.00104738 + 0.000381215i
\(471\) 11.4725 6.05979i 0.528627 0.279220i
\(472\) −3.88570 3.26049i −0.178854 0.150076i
\(473\) 13.0907 + 10.9844i 0.601912 + 0.505064i
\(474\) 0.0236741 0.628548i 0.00108739 0.0288702i
\(475\) 10.5855 + 3.85281i 0.485697 + 0.176779i
\(476\) −2.58979 + 4.48565i −0.118703 + 0.205599i
\(477\) −6.57983 + 1.84777i −0.301270 + 0.0846035i
\(478\) −0.782848 1.35593i −0.0358066 0.0620189i
\(479\) 7.23541 + 41.0341i 0.330595 + 1.87489i 0.467024 + 0.884245i \(0.345326\pi\)
−0.136429 + 0.990650i \(0.543563\pi\)
\(480\) −0.0698919 + 0.0771964i −0.00319012 + 0.00352352i
\(481\) 6.00903 2.18711i 0.273988 0.0997236i
\(482\) 0.365502 2.07286i 0.0166481 0.0944163i
\(483\) 13.5127 1.86133i 0.614847 0.0846936i
\(484\) 9.28877 7.79420i 0.422217 0.354282i
\(485\) 0.873415 0.0396597
\(486\) 0.307944 1.61659i 0.0139686 0.0733298i
\(487\) −1.17610 −0.0532942 −0.0266471 0.999645i \(-0.508483\pi\)
−0.0266471 + 0.999645i \(0.508483\pi\)
\(488\) −0.215331 + 0.180684i −0.00974757 + 0.00817918i
\(489\) −11.8402 + 1.63095i −0.535432 + 0.0737543i
\(490\) −0.000876518 0.00497098i −3.95970e−5 0.000224566i
\(491\) 8.49669 3.09254i 0.383450 0.139564i −0.143101 0.989708i \(-0.545707\pi\)
0.526551 + 0.850144i \(0.323485\pi\)
\(492\) 13.6191 15.0425i 0.613997 0.678166i
\(493\) −0.304649 1.72775i −0.0137207 0.0778139i
\(494\) −0.253329 0.438780i −0.0113978 0.0197416i
\(495\) −0.305797 + 0.0858750i −0.0137446 + 0.00385979i
\(496\) 8.08810 14.0090i 0.363166 0.629022i
\(497\) 13.3449 + 4.85715i 0.598601 + 0.217873i
\(498\) −0.0828978 + 2.20094i −0.00371474 + 0.0986263i
\(499\) 5.72426 + 4.80323i 0.256253 + 0.215022i 0.761859 0.647742i \(-0.224287\pi\)
−0.505606 + 0.862764i \(0.668731\pi\)
\(500\) −0.728304 0.611120i −0.0325707 0.0273301i
\(501\) −27.5846 + 14.5702i −1.23239 + 0.650947i
\(502\) −0.538582 0.196028i −0.0240381 0.00874916i
\(503\) 13.4363 23.2723i 0.599094 1.03766i −0.393861 0.919170i \(-0.628861\pi\)
0.992955 0.118492i \(-0.0378059\pi\)
\(504\) −0.712156 + 1.04343i −0.0317219 + 0.0464782i
\(505\) 0.420878 + 0.728983i 0.0187288 + 0.0324393i
\(506\) 0.319674 + 1.81296i 0.0142113 + 0.0805961i
\(507\) −4.49322 13.9587i −0.199551 0.619930i
\(508\) 10.9932 4.00118i 0.487743 0.177524i
\(509\) −3.76876 + 21.3737i −0.167047 + 0.947373i 0.779881 + 0.625928i \(0.215280\pi\)
−0.946928 + 0.321445i \(0.895832\pi\)
\(510\) −0.0139687 0.0179805i −0.000618546 0.000796190i
\(511\) −3.02831 + 2.54105i −0.133965 + 0.112410i
\(512\) 8.25836 0.364971
\(513\) −9.41841 6.96189i −0.415833 0.307375i
\(514\) 1.36093 0.0600281
\(515\) 0.101760 0.0853869i 0.00448409 0.00376259i
\(516\) 10.0263 24.6216i 0.441385 1.08391i
\(517\) 1.84072 10.4392i 0.0809547 0.459117i
\(518\) 0.297930 0.108438i 0.0130903 0.00476448i
\(519\) −26.3360 5.67337i −1.15602 0.249033i
\(520\) 0.00744448 + 0.0422197i 0.000326462 + 0.00185146i
\(521\) 2.71989 + 4.71098i 0.119160 + 0.206392i 0.919435 0.393242i \(-0.128646\pi\)
−0.800275 + 0.599633i \(0.795313\pi\)
\(522\) −0.0211380 0.212301i −0.000925185 0.00929217i
\(523\) 19.5453 33.8534i 0.854655 1.48031i −0.0223099 0.999751i \(-0.507102\pi\)
0.876965 0.480555i \(-0.159565\pi\)
\(524\) 32.8713 + 11.9642i 1.43599 + 0.522657i
\(525\) −7.32836 4.60724i −0.319836 0.201076i
\(526\) −2.42186 2.03218i −0.105598 0.0886074i
\(527\) 8.20483 + 6.88467i 0.357408 + 0.299901i
\(528\) 12.7711 + 8.02900i 0.555790 + 0.349418i
\(529\) −36.6657 13.3452i −1.59416 0.580227i
\(530\) −0.00574959 + 0.00995858i −0.000249746 + 0.000432573i
\(531\) −29.3515 + 21.0803i −1.27375 + 0.914807i
\(532\) 2.24144 + 3.88230i 0.0971789 + 0.168319i
\(533\) −2.17797 12.3519i −0.0943383 0.535019i
\(534\) 2.14131 + 0.461285i 0.0926633 + 0.0199618i
\(535\) 0.413512 0.150506i 0.0178777 0.00650695i
\(536\) −0.750580 + 4.25675i −0.0324201 + 0.183864i
\(537\) −12.6995 + 31.1861i −0.548024 + 1.34578i
\(538\) 0.675709 0.566988i 0.0291319 0.0244446i
\(539\) 2.21432 0.0953775
\(540\) 0.272936 + 0.411909i 0.0117453 + 0.0177257i
\(541\) 12.6914 0.545648 0.272824 0.962064i \(-0.412042\pi\)
0.272824 + 0.962064i \(0.412042\pi\)
\(542\) 0.198013 0.166153i 0.00850540 0.00713688i
\(543\) 18.3351 + 23.6009i 0.786836 + 1.01281i
\(544\) −0.568649 + 3.22497i −0.0243806 + 0.138269i
\(545\) 0.619181 0.225363i 0.0265228 0.00965351i
\(546\) 0.119295 + 0.370606i 0.00510538 + 0.0158605i
\(547\) 3.32842 + 18.8764i 0.142313 + 0.807097i 0.969485 + 0.245149i \(0.0788368\pi\)
−0.827173 + 0.561948i \(0.810052\pi\)
\(548\) −9.09807 15.7583i −0.388650 0.673162i
\(549\) 0.867995 + 1.80469i 0.0370451 + 0.0770223i
\(550\) 0.584141 1.01176i 0.0249078 0.0431416i
\(551\) −1.42685 0.519331i −0.0607858 0.0221242i
\(552\) 5.07893 2.68269i 0.216173 0.114183i
\(553\) 2.63514 + 2.21115i 0.112058 + 0.0940276i
\(554\) −0.530432 0.445086i −0.0225359 0.0189099i
\(555\) 0.00936130 0.248543i 0.000397365 0.0105500i
\(556\) 9.92777 + 3.61341i 0.421031 + 0.153243i
\(557\) −15.4423 + 26.7469i −0.654312 + 1.13330i 0.327753 + 0.944763i \(0.393709\pi\)
−0.982066 + 0.188539i \(0.939625\pi\)
\(558\) 0.931974 + 0.909921i 0.0394536 + 0.0385200i
\(559\) −8.21608 14.2307i −0.347503 0.601893i
\(560\) −0.0326571 0.185207i −0.00138001 0.00782644i
\(561\) −6.70381 + 7.40442i −0.283035 + 0.312615i
\(562\) 1.28067 0.466126i 0.0540218 0.0196623i
\(563\) 0.220230 1.24899i 0.00928160 0.0526386i −0.979815 0.199905i \(-0.935936\pi\)
0.989097 + 0.147267i \(0.0470476\pi\)
\(564\) −16.3365 + 2.25031i −0.687891 + 0.0947552i
\(565\) −0.506887 + 0.425328i −0.0213249 + 0.0178937i
\(566\) −1.68817 −0.0709591
\(567\) 5.94850 + 6.75391i 0.249814 + 0.283638i
\(568\) 5.98017 0.250922
\(569\) 22.0655 18.5151i 0.925033 0.776195i −0.0498862 0.998755i \(-0.515886\pi\)
0.974919 + 0.222560i \(0.0714414\pi\)
\(570\) −0.0195220 + 0.00268910i −0.000817686 + 0.000112634i
\(571\) −5.88358 + 33.3674i −0.246220 + 1.39638i 0.571422 + 0.820656i \(0.306392\pi\)
−0.817642 + 0.575727i \(0.804719\pi\)
\(572\) 8.81160 3.20716i 0.368432 0.134098i
\(573\) 7.21335 7.96722i 0.301342 0.332835i
\(574\) −0.107985 0.612411i −0.00450719 0.0255616i
\(575\) 19.6790 + 34.0850i 0.820671 + 1.42144i
\(576\) 5.73620 22.4810i 0.239008 0.936709i
\(577\) −1.16820 + 2.02338i −0.0486329 + 0.0842346i −0.889317 0.457291i \(-0.848820\pi\)
0.840684 + 0.541526i \(0.182153\pi\)
\(578\) 1.01361 + 0.368924i 0.0421606 + 0.0153452i
\(579\) −0.990092 + 26.2869i −0.0411468 + 1.09245i
\(580\) 0.0490738 + 0.0411778i 0.00203768 + 0.00170982i
\(581\) −9.22727 7.74259i −0.382811 0.321217i
\(582\) 2.95344 1.56000i 0.122424 0.0646642i
\(583\) 4.74026 + 1.72532i 0.196322 + 0.0714552i
\(584\) −0.832339 + 1.44165i −0.0344424 + 0.0596560i
\(585\) 0.304558 + 0.0229748i 0.0125919 + 0.000949890i
\(586\) −0.0528811 0.0915928i −0.00218450 0.00378366i
\(587\) 2.13337 + 12.0990i 0.0880538 + 0.499378i 0.996656 + 0.0817148i \(0.0260397\pi\)
−0.908602 + 0.417663i \(0.862849\pi\)
\(588\) −1.05552 3.27910i −0.0435289 0.135228i
\(589\) 8.71093 3.17052i 0.358928 0.130639i
\(590\) −0.0105583 + 0.0598789i −0.000434677 + 0.00246518i
\(591\) −10.5815 13.6205i −0.435266 0.560272i
\(592\) −9.04898 + 7.59299i −0.371911 + 0.312070i
\(593\) −30.6098 −1.25699 −0.628497 0.777812i \(-0.716330\pi\)
−0.628497 + 0.777812i \(0.716330\pi\)
\(594\) −0.880667 + 0.836568i −0.0361342 + 0.0343248i
\(595\) 0.124522 0.00510491
\(596\) −24.6426 + 20.6776i −1.00940 + 0.846989i
\(597\) 2.82756 6.94362i 0.115724 0.284183i
\(598\) 0.307392 1.74331i 0.0125702 0.0712892i
\(599\) 43.0953 15.6854i 1.76083 0.640888i 0.760858 0.648919i \(-0.224779\pi\)
0.999968 + 0.00803083i \(0.00255632\pi\)
\(600\) −3.56341 0.767638i −0.145476 0.0313387i
\(601\) −6.32071 35.8465i −0.257827 1.46221i −0.788710 0.614766i \(-0.789251\pi\)
0.530883 0.847445i \(-0.321861\pi\)
\(602\) −0.407357 0.705563i −0.0166026 0.0287566i
\(603\) 28.0625 + 12.6790i 1.14279 + 0.516328i
\(604\) 12.3393 21.3724i 0.502081 0.869630i
\(605\) −0.273931 0.0997028i −0.0111369 0.00405350i
\(606\) 2.72523 + 1.71331i 0.110705 + 0.0695985i
\(607\) 30.1352 + 25.2865i 1.22315 + 1.02635i 0.998654 + 0.0518707i \(0.0165184\pi\)
0.224497 + 0.974475i \(0.427926\pi\)
\(608\) 2.17116 + 1.82182i 0.0880521 + 0.0738844i
\(609\) 0.987809 + 0.621022i 0.0400280 + 0.0251651i
\(610\) 0.00316625 + 0.00115242i 0.000128198 + 4.66601e-5i
\(611\) −5.09650 + 8.82740i −0.206183 + 0.357119i
\(612\) 14.1605 + 6.39788i 0.572404 + 0.258619i
\(613\) −3.14950 5.45509i −0.127207 0.220329i 0.795386 0.606103i \(-0.207268\pi\)
−0.922594 + 0.385774i \(0.873935\pi\)
\(614\) 0.636624 + 3.61047i 0.0256921 + 0.145707i
\(615\) −0.476893 0.102734i −0.0192302 0.00414262i
\(616\) 0.876214 0.318916i 0.0353037 0.0128495i
\(617\) 0.786407 4.45994i 0.0316596 0.179550i −0.964877 0.262700i \(-0.915387\pi\)
0.996537 + 0.0831500i \(0.0264981\pi\)
\(618\) 0.191591 0.470487i 0.00770691 0.0189258i
\(619\) −1.43509 + 1.20418i −0.0576812 + 0.0484003i −0.671172 0.741301i \(-0.734209\pi\)
0.613491 + 0.789701i \(0.289765\pi\)
\(620\) −0.391095 −0.0157067
\(621\) −9.57287 39.7853i −0.384146 1.59653i
\(622\) −0.233702 −0.00937061
\(623\) −9.17670 + 7.70017i −0.367657 + 0.308501i
\(624\) −8.89923 11.4551i −0.356254 0.458570i
\(625\) 4.33525 24.5864i 0.173410 0.983457i
\(626\) 0.235371 0.0856679i 0.00940730 0.00342398i
\(627\) 2.64885 + 8.22900i 0.105785 + 0.328635i
\(628\) 2.58706 + 14.6720i 0.103235 + 0.585475i
\(629\) −3.91070 6.77353i −0.155930 0.270079i
\(630\) 0.0151001 + 0.00113910i 0.000601602 + 4.53828e-5i
\(631\) −15.2094 + 26.3435i −0.605478 + 1.04872i 0.386498 + 0.922290i \(0.373685\pi\)
−0.991976 + 0.126428i \(0.959649\pi\)
\(632\) 1.36119 + 0.495434i 0.0541454 + 0.0197073i
\(633\) −28.3991 + 15.0004i −1.12876 + 0.596212i
\(634\) 0.662067 + 0.555540i 0.0262940 + 0.0220633i
\(635\) −0.215448 0.180782i −0.00854979 0.00717413i
\(636\) 0.295371 7.84210i 0.0117122 0.310959i
\(637\) −2.00083 0.728244i −0.0792760 0.0288541i
\(638\) −0.0787379 + 0.136378i −0.00311726 + 0.00539926i
\(639\) 10.5333 41.2814i 0.416690 1.63307i
\(640\) −0.0796413 0.137943i −0.00314810 0.00545267i
\(641\) −1.14041 6.46760i −0.0450436 0.255455i 0.953968 0.299909i \(-0.0969563\pi\)
−0.999011 + 0.0444540i \(0.985845\pi\)
\(642\) 1.12947 1.24751i 0.0445765 0.0492352i
\(643\) −4.18213 + 1.52217i −0.164927 + 0.0600285i −0.423164 0.906053i \(-0.639081\pi\)
0.258237 + 0.966082i \(0.416858\pi\)
\(644\) −2.71979 + 15.4247i −0.107175 + 0.607818i
\(645\) −0.633145 + 0.0872141i −0.0249301 + 0.00343405i
\(646\) −0.474718 + 0.398336i −0.0186775 + 0.0156723i
\(647\) 34.1036 1.34075 0.670375 0.742023i \(-0.266133\pi\)
0.670375 + 0.742023i \(0.266133\pi\)
\(648\) 3.32657 + 1.81582i 0.130680 + 0.0713320i
\(649\) 26.6730 1.04701
\(650\) −0.860570 + 0.722104i −0.0337543 + 0.0283233i
\(651\) −7.05672 + 0.972045i −0.276575 + 0.0380975i
\(652\) 2.38316 13.5156i 0.0933317 0.529310i
\(653\) 0.0454216 0.0165321i 0.00177749 0.000646952i −0.341131 0.940016i \(-0.610810\pi\)
0.342909 + 0.939369i \(0.388588\pi\)
\(654\) 1.69123 1.86798i 0.0661322 0.0730437i
\(655\) −0.146034 0.828198i −0.00570600 0.0323604i
\(656\) 11.5845 + 20.0650i 0.452300 + 0.783406i
\(657\) 8.48576 + 8.28496i 0.331061 + 0.323227i
\(658\) −0.252687 + 0.437666i −0.00985076 + 0.0170620i
\(659\) −19.8969 7.24187i −0.775072 0.282103i −0.0759557 0.997111i \(-0.524201\pi\)
−0.699116 + 0.715008i \(0.746423\pi\)
\(660\) 0.0137273 0.364461i 0.000534336 0.0141866i
\(661\) −2.18952 1.83723i −0.0851627 0.0714599i 0.599212 0.800590i \(-0.295480\pi\)
−0.684375 + 0.729130i \(0.739925\pi\)
\(662\) −0.513066 0.430513i −0.0199409 0.0167324i
\(663\) 8.49265 4.48581i 0.329827 0.174214i
\(664\) −4.76638 1.73482i −0.184971 0.0673241i
\(665\) 0.0538864 0.0933341i 0.00208963 0.00361934i
\(666\) −0.412266 0.857163i −0.0159750 0.0332144i
\(667\) −2.65259 4.59441i −0.102709 0.177896i
\(668\) −6.22033 35.2773i −0.240672 1.36492i
\(669\) 12.1832 + 37.8488i 0.471032 + 1.46332i
\(670\) 0.0486877 0.0177209i 0.00188097 0.000684617i
\(671\) 0.256672 1.45566i 0.00990872 0.0561952i
\(672\) −1.33616 1.71990i −0.0515434 0.0663465i
\(673\) 7.80007 6.54504i 0.300671 0.252293i −0.479953 0.877294i \(-0.659346\pi\)
0.780623 + 0.625002i \(0.214902\pi\)
\(674\) −2.66659 −0.102713
\(675\) −11.5755 + 23.2463i −0.445542 + 0.894750i
\(676\) 16.8383 0.647626
\(677\) −14.1407 + 11.8655i −0.543473 + 0.456028i −0.872724 0.488215i \(-0.837648\pi\)
0.329251 + 0.944243i \(0.393204\pi\)
\(678\) −0.954350 + 2.34359i −0.0366516 + 0.0900050i
\(679\) −3.17202 + 17.9894i −0.121731 + 0.690370i
\(680\) 0.0492738 0.0179342i 0.00188956 0.000687745i
\(681\) −16.9829 3.65850i −0.650786 0.140194i
\(682\) −0.166944 0.946785i −0.00639261 0.0362543i
\(683\) 5.58052 + 9.66575i 0.213533 + 0.369850i 0.952818 0.303543i \(-0.0981696\pi\)
−0.739285 + 0.673393i \(0.764836\pi\)
\(684\) 10.9234 7.84518i 0.417665 0.299968i
\(685\) −0.218726 + 0.378845i −0.00835710 + 0.0144749i
\(686\) −0.0992022 0.0361067i −0.00378756 0.00137856i
\(687\) −3.32953 2.09323i −0.127030 0.0798617i
\(688\) 23.2528 + 19.5114i 0.886505 + 0.743866i
\(689\) −3.71583 3.11795i −0.141562 0.118784i
\(690\) −0.0582891 0.0366456i −0.00221903 0.00139507i
\(691\) −36.6561 13.3417i −1.39446 0.507543i −0.467934 0.883764i \(-0.655001\pi\)
−0.926530 + 0.376220i \(0.877224\pi\)
\(692\) 15.4673 26.7901i 0.587977 1.01841i
\(693\) −0.658159 6.61028i −0.0250014 0.251104i
\(694\) −1.44750 2.50714i −0.0549462 0.0951696i
\(695\) −0.0441050 0.250132i −0.00167300 0.00948804i
\(696\) 0.480321 + 0.103472i 0.0182065 + 0.00392210i
\(697\) −14.4156 + 5.24686i −0.546030 + 0.198739i
\(698\) 0.554585 3.14521i 0.0209913 0.119048i
\(699\) −14.1846 + 34.8330i −0.536511 + 1.31750i
\(700\) 7.61427 6.38913i 0.287793 0.241487i
\(701\) −29.4093 −1.11077 −0.555387 0.831592i \(-0.687430\pi\)
−0.555387 + 0.831592i \(0.687430\pi\)
\(702\) 1.07089 0.466280i 0.0404182 0.0175986i
\(703\) −6.76937 −0.255312
\(704\) −13.1185 + 11.0078i −0.494423 + 0.414871i
\(705\) 0.243224 + 0.313077i 0.00916035 + 0.0117912i
\(706\) 0.349871 1.98422i 0.0131676 0.0746770i
\(707\) −16.5431 + 6.02120i −0.622168 + 0.226451i
\(708\) −12.7145 39.4991i −0.477839 1.48447i
\(709\) 0.526940 + 2.98842i 0.0197896 + 0.112233i 0.993102 0.117250i \(-0.0374078\pi\)
−0.973313 + 0.229482i \(0.926297\pi\)
\(710\) −0.0358418 0.0620799i −0.00134512 0.00232982i
\(711\) 5.81757 8.52375i 0.218176 0.319666i
\(712\) −2.52224 + 4.36865i −0.0945250 + 0.163722i
\(713\) 30.4349 + 11.0774i 1.13980 + 0.414852i
\(714\) 0.421069 0.222408i 0.0157581 0.00832342i
\(715\) −0.172693 0.144907i −0.00645835 0.00541920i
\(716\) −29.6192 24.8535i −1.10692 0.928819i
\(717\) 0.966852 25.6699i 0.0361077 0.958661i
\(718\) 0.00927442 + 0.00337561i 0.000346118 + 0.000125977i
\(719\) 16.4133 28.4287i 0.612114 1.06021i −0.378770 0.925491i \(-0.623653\pi\)
0.990884 0.134721i \(-0.0430138\pi\)
\(720\) −0.543182 + 0.152538i −0.0202432 + 0.00568476i
\(721\) 1.38912 + 2.40602i 0.0517334 + 0.0896049i
\(722\) −0.255169 1.44714i −0.00949642 0.0538569i
\(723\) 23.1778 25.6002i 0.861993 0.952081i
\(724\) −32.2477 + 11.7372i −1.19847 + 0.436209i
\(725\) −0.584628 + 3.31559i −0.0217125 + 0.123138i
\(726\) −1.10437 + 0.152124i −0.0409871 + 0.00564587i
\(727\) −28.6154 + 24.0112i −1.06129 + 0.890526i −0.994235 0.107224i \(-0.965804\pi\)
−0.0670522 + 0.997749i \(0.521359\pi\)
\(728\) −0.896622 −0.0332310
\(729\) 18.3940 19.7652i 0.681259 0.732043i
\(730\) 0.0199543 0.000738542
\(731\) −15.3962 + 12.9190i −0.569451 + 0.477826i
\(732\) −2.27798 + 0.313786i −0.0841967 + 0.0115979i
\(733\) −9.33587 + 52.9464i −0.344828 + 1.95562i −0.0552151 + 0.998474i \(0.517584\pi\)
−0.289613 + 0.957144i \(0.593527\pi\)
\(734\) 1.91835 0.698222i 0.0708075 0.0257718i
\(735\) −0.0555833 + 0.0613924i −0.00205022 + 0.00226449i
\(736\) 1.71955 + 9.75205i 0.0633834 + 0.359465i
\(737\) −11.3646 19.6840i −0.418619 0.725070i
\(738\) −1.79610 + 0.504386i −0.0661153 + 0.0185667i
\(739\) 18.8178 32.5934i 0.692224 1.19897i −0.278883 0.960325i \(-0.589964\pi\)
0.971107 0.238643i \(-0.0767025\pi\)
\(740\) 0.268372 + 0.0976794i 0.00986555 + 0.00359077i
\(741\) 0.312873 8.30678i 0.0114937 0.305157i
\(742\) −0.184232 0.154589i −0.00676338 0.00567515i
\(743\) −24.0622 20.1906i −0.882757 0.740721i 0.0839870 0.996467i \(-0.473235\pi\)
−0.966744 + 0.255746i \(0.917679\pi\)
\(744\) −2.65237 + 1.40098i −0.0972406 + 0.0513624i
\(745\) 0.726726 + 0.264507i 0.0266252 + 0.00969077i
\(746\) −1.00524 + 1.74112i −0.0368043 + 0.0637470i
\(747\) −20.3709 + 29.8469i −0.745332 + 1.09204i
\(748\) −5.73462 9.93266i −0.209679 0.363174i
\(749\) 1.59815 + 9.06357i 0.0583952 + 0.331176i
\(750\) 0.0267827 + 0.0832038i 0.000977965 + 0.00303817i
\(751\) 25.2279 9.18220i 0.920579 0.335063i 0.162110 0.986773i \(-0.448170\pi\)
0.758469 + 0.651709i \(0.225948\pi\)
\(752\) 3.26964 18.5430i 0.119231 0.676195i
\(753\) −5.76907 7.42593i −0.210237 0.270616i
\(754\) 0.115999 0.0973344i 0.00422442 0.00354471i
\(755\) −0.593299 −0.0215924
\(756\) −9.47518 + 4.12562i −0.344609 + 0.150047i
\(757\) −11.5926 −0.421339 −0.210670 0.977557i \(-0.567564\pi\)
−0.210670 + 0.977557i \(0.567564\pi\)
\(758\) −1.41048 + 1.18353i −0.0512308 + 0.0429878i
\(759\) −11.3913 + 27.9734i −0.413477 + 1.01537i
\(760\) 0.00788068 0.0446936i 0.000285862 0.00162121i
\(761\) −28.2342 + 10.2764i −1.02349 + 0.372520i −0.798599 0.601864i \(-0.794425\pi\)
−0.224891 + 0.974384i \(0.572203\pi\)
\(762\) −1.05143 0.226501i −0.0380892 0.00820527i
\(763\) 2.39302 + 13.5715i 0.0866333 + 0.491322i
\(764\) 6.17050 + 10.6876i 0.223241 + 0.386664i
\(765\) −0.0370115 0.371728i −0.00133815 0.0134399i
\(766\) 0.726276 1.25795i 0.0262414 0.0454515i