Properties

Label 189.2.v.a.22.3
Level $189$
Weight $2$
Character 189.22
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.3
Character \(\chi\) \(=\) 189.22
Dual form 189.2.v.a.43.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09798 + 0.921318i) q^{2} +(-1.39977 - 1.02012i) q^{3} +(0.00944557 - 0.0535685i) q^{4} +(1.35272 - 0.492351i) q^{5} +(2.47678 - 0.169559i) q^{6} +(0.173648 + 0.984808i) q^{7} +(-1.39433 - 2.41506i) q^{8} +(0.918713 + 2.85587i) q^{9} +O(q^{10})\) \(q+(-1.09798 + 0.921318i) q^{2} +(-1.39977 - 1.02012i) q^{3} +(0.00944557 - 0.0535685i) q^{4} +(1.35272 - 0.492351i) q^{5} +(2.47678 - 0.169559i) q^{6} +(0.173648 + 0.984808i) q^{7} +(-1.39433 - 2.41506i) q^{8} +(0.918713 + 2.85587i) q^{9} +(-1.03166 + 1.78688i) q^{10} +(1.39413 + 0.507422i) q^{11} +(-0.0678679 + 0.0653480i) q^{12} +(3.79855 + 3.18736i) q^{13} +(-1.09798 - 0.921318i) q^{14} +(-2.39576 - 0.690761i) q^{15} +(3.85822 + 1.40428i) q^{16} +(-3.76596 + 6.52284i) q^{17} +(-3.63989 - 2.28927i) q^{18} +(4.13067 + 7.15453i) q^{19} +(-0.0135973 - 0.0771139i) q^{20} +(0.761554 - 1.55565i) q^{21} +(-1.99823 + 0.727296i) q^{22} +(1.31455 - 7.45520i) q^{23} +(-0.511900 + 4.80291i) q^{24} +(-2.24277 + 1.88191i) q^{25} -7.10732 q^{26} +(1.62734 - 4.93475i) q^{27} +0.0543949 q^{28} +(0.675850 - 0.567105i) q^{29} +(3.26692 - 1.44881i) q^{30} +(1.22342 - 6.93837i) q^{31} +(-0.289068 + 0.105212i) q^{32} +(-1.43383 - 2.13245i) q^{33} +(-1.87464 - 10.6316i) q^{34} +(0.719769 + 1.24668i) q^{35} +(0.161662 - 0.0222388i) q^{36} +(0.822178 - 1.42405i) q^{37} +(-11.1270 - 4.04990i) q^{38} +(-2.06561 - 8.33654i) q^{39} +(-3.07520 - 2.58040i) q^{40} +(7.19412 + 6.03659i) q^{41} +(0.597071 + 2.40971i) q^{42} +(-1.81964 - 0.662296i) q^{43} +(0.0403502 - 0.0698886i) q^{44} +(2.64885 + 3.41087i) q^{45} +(5.42525 + 9.39681i) q^{46} +(-0.0880328 - 0.499259i) q^{47} +(-3.96809 - 5.90151i) q^{48} +(-0.939693 + 0.342020i) q^{49} +(0.728690 - 4.13261i) q^{50} +(11.9256 - 5.28874i) q^{51} +(0.206622 - 0.173376i) q^{52} -0.788130 q^{53} +(2.75968 + 6.91757i) q^{54} +2.13570 q^{55} +(2.13624 - 1.79252i) q^{56} +(1.51649 - 14.2285i) q^{57} +(-0.219588 + 1.24534i) q^{58} +(-6.05674 + 2.20447i) q^{59} +(-0.0596324 + 0.121813i) q^{60} +(-0.792535 - 4.49469i) q^{61} +(5.04915 + 8.74538i) q^{62} +(-2.65295 + 1.40067i) q^{63} +(-3.88537 + 6.72966i) q^{64} +(6.70769 + 2.44140i) q^{65} +(3.53899 + 1.02039i) q^{66} +(-8.02892 - 6.73706i) q^{67} +(0.313847 + 0.263349i) q^{68} +(-9.44526 + 9.09456i) q^{69} +(-1.93888 - 0.705695i) q^{70} +(-1.83977 + 3.18657i) q^{71} +(5.61608 - 6.20077i) q^{72} +(-3.51964 - 6.09620i) q^{73} +(0.409268 + 2.32108i) q^{74} +(5.05913 - 0.346345i) q^{75} +(0.422274 - 0.153695i) q^{76} +(-0.257625 + 1.46106i) q^{77} +(9.94861 + 7.25031i) q^{78} +(4.16387 - 3.49390i) q^{79} +5.91050 q^{80} +(-7.31193 + 5.24744i) q^{81} -13.4606 q^{82} +(-2.26150 + 1.89762i) q^{83} +(-0.0761403 - 0.0554893i) q^{84} +(-1.88278 + 10.6778i) q^{85} +(2.60812 - 0.949280i) q^{86} +(-1.52455 + 0.104370i) q^{87} +(-0.718430 - 4.07442i) q^{88} +(1.57945 + 2.73568i) q^{89} +(-6.05089 - 1.30464i) q^{90} +(-2.47933 + 4.29432i) q^{91} +(-0.386947 - 0.140837i) q^{92} +(-8.79048 + 8.46409i) q^{93} +(0.556635 + 0.467072i) q^{94} +(9.11020 + 7.64436i) q^{95} +(0.511957 + 0.147611i) q^{96} +(14.0512 + 5.11421i) q^{97} +(0.716658 - 1.24129i) q^{98} +(-0.168323 + 4.44762i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09798 + 0.921318i −0.776392 + 0.651470i −0.942337 0.334665i \(-0.891377\pi\)
0.165945 + 0.986135i \(0.446932\pi\)
\(3\) −1.39977 1.02012i −0.808158 0.588966i
\(4\) 0.00944557 0.0535685i 0.00472279 0.0267842i
\(5\) 1.35272 0.492351i 0.604956 0.220186i −0.0213385 0.999772i \(-0.506793\pi\)
0.626295 + 0.779586i \(0.284571\pi\)
\(6\) 2.47678 0.169559i 1.01114 0.0692220i
\(7\) 0.173648 + 0.984808i 0.0656328 + 0.372222i
\(8\) −1.39433 2.41506i −0.492971 0.853851i
\(9\) 0.918713 + 2.85587i 0.306238 + 0.951955i
\(10\) −1.03166 + 1.78688i −0.326239 + 0.565062i
\(11\) 1.39413 + 0.507422i 0.420346 + 0.152993i 0.543529 0.839391i \(-0.317088\pi\)
−0.123183 + 0.992384i \(0.539310\pi\)
\(12\) −0.0678679 + 0.0653480i −0.0195918 + 0.0188643i
\(13\) 3.79855 + 3.18736i 1.05353 + 0.884015i 0.993460 0.114180i \(-0.0364240\pi\)
0.0600674 + 0.998194i \(0.480868\pi\)
\(14\) −1.09798 0.921318i −0.293449 0.246233i
\(15\) −2.39576 0.690761i −0.618582 0.178354i
\(16\) 3.85822 + 1.40428i 0.964555 + 0.351069i
\(17\) −3.76596 + 6.52284i −0.913380 + 1.58202i −0.104125 + 0.994564i \(0.533204\pi\)
−0.809256 + 0.587457i \(0.800129\pi\)
\(18\) −3.63989 2.28927i −0.857931 0.539586i
\(19\) 4.13067 + 7.15453i 0.947641 + 1.64136i 0.750376 + 0.661012i \(0.229873\pi\)
0.197265 + 0.980350i \(0.436794\pi\)
\(20\) −0.0135973 0.0771139i −0.00304044 0.0172432i
\(21\) 0.761554 1.55565i 0.166185 0.339470i
\(22\) −1.99823 + 0.727296i −0.426024 + 0.155060i
\(23\) 1.31455 7.45520i 0.274103 1.55452i −0.467693 0.883891i \(-0.654915\pi\)
0.741796 0.670625i \(-0.233974\pi\)
\(24\) −0.511900 + 4.80291i −0.104491 + 0.980390i
\(25\) −2.24277 + 1.88191i −0.448554 + 0.376382i
\(26\) −7.10732 −1.39386
\(27\) 1.62734 4.93475i 0.313181 0.949693i
\(28\) 0.0543949 0.0102797
\(29\) 0.675850 0.567105i 0.125502 0.105309i −0.577876 0.816124i \(-0.696118\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(30\) 3.26692 1.44881i 0.596454 0.264515i
\(31\) 1.22342 6.93837i 0.219733 1.24617i −0.652769 0.757557i \(-0.726393\pi\)
0.872502 0.488611i \(-0.162496\pi\)
\(32\) −0.289068 + 0.105212i −0.0511004 + 0.0185990i
\(33\) −1.43383 2.13245i −0.249598 0.371212i
\(34\) −1.87464 10.6316i −0.321498 1.82331i
\(35\) 0.719769 + 1.24668i 0.121663 + 0.210727i
\(36\) 0.161662 0.0222388i 0.0269437 0.00370646i
\(37\) 0.822178 1.42405i 0.135165 0.234113i −0.790495 0.612468i \(-0.790177\pi\)
0.925661 + 0.378355i \(0.123510\pi\)
\(38\) −11.1270 4.04990i −1.80504 0.656980i
\(39\) −2.06561 8.33654i −0.330762 1.33492i
\(40\) −3.07520 2.58040i −0.486232 0.407997i
\(41\) 7.19412 + 6.03659i 1.12353 + 0.942756i 0.998778 0.0494312i \(-0.0157409\pi\)
0.124756 + 0.992187i \(0.460185\pi\)
\(42\) 0.597071 + 2.40971i 0.0921300 + 0.371826i
\(43\) −1.81964 0.662296i −0.277493 0.100999i 0.199525 0.979893i \(-0.436060\pi\)
−0.477018 + 0.878894i \(0.658282\pi\)
\(44\) 0.0403502 0.0698886i 0.00608302 0.0105361i
\(45\) 2.64885 + 3.41087i 0.394868 + 0.508462i
\(46\) 5.42525 + 9.39681i 0.799909 + 1.38548i
\(47\) −0.0880328 0.499259i −0.0128409 0.0728244i 0.977714 0.209942i \(-0.0673274\pi\)
−0.990555 + 0.137117i \(0.956216\pi\)
\(48\) −3.96809 5.90151i −0.572744 0.851809i
\(49\) −0.939693 + 0.342020i −0.134242 + 0.0488600i
\(50\) 0.728690 4.13261i 0.103052 0.584439i
\(51\) 11.9256 5.28874i 1.66991 0.740572i
\(52\) 0.206622 0.173376i 0.0286533 0.0240429i
\(53\) −0.788130 −0.108258 −0.0541290 0.998534i \(-0.517238\pi\)
−0.0541290 + 0.998534i \(0.517238\pi\)
\(54\) 2.75968 + 6.91757i 0.375546 + 0.941362i
\(55\) 2.13570 0.287978
\(56\) 2.13624 1.79252i 0.285467 0.239536i
\(57\) 1.51649 14.2285i 0.200864 1.88461i
\(58\) −0.219588 + 1.24534i −0.0288333 + 0.163522i
\(59\) −6.05674 + 2.20447i −0.788520 + 0.286998i −0.704721 0.709485i \(-0.748928\pi\)
−0.0837995 + 0.996483i \(0.526706\pi\)
\(60\) −0.0596324 + 0.121813i −0.00769851 + 0.0157259i
\(61\) −0.792535 4.49469i −0.101474 0.575486i −0.992570 0.121672i \(-0.961174\pi\)
0.891097 0.453814i \(-0.149937\pi\)
\(62\) 5.04915 + 8.74538i 0.641242 + 1.11066i
\(63\) −2.65295 + 1.40067i −0.334240 + 0.176468i
\(64\) −3.88537 + 6.72966i −0.485672 + 0.841208i
\(65\) 6.70769 + 2.44140i 0.831986 + 0.302818i
\(66\) 3.53899 + 1.02039i 0.435620 + 0.125601i
\(67\) −8.02892 6.73706i −0.980888 0.823063i 0.00333501 0.999994i \(-0.498938\pi\)
−0.984223 + 0.176932i \(0.943383\pi\)
\(68\) 0.313847 + 0.263349i 0.0380595 + 0.0319358i
\(69\) −9.44526 + 9.09456i −1.13708 + 1.09486i
\(70\) −1.93888 0.705695i −0.231741 0.0843467i
\(71\) −1.83977 + 3.18657i −0.218340 + 0.378176i −0.954301 0.298848i \(-0.903398\pi\)
0.735961 + 0.677024i \(0.236731\pi\)
\(72\) 5.61608 6.20077i 0.661862 0.730768i
\(73\) −3.51964 6.09620i −0.411943 0.713507i 0.583159 0.812358i \(-0.301816\pi\)
−0.995102 + 0.0988515i \(0.968483\pi\)
\(74\) 0.409268 + 2.32108i 0.0475765 + 0.269820i
\(75\) 5.05913 0.346345i 0.584178 0.0399924i
\(76\) 0.422274 0.153695i 0.0484381 0.0176300i
\(77\) −0.257625 + 1.46106i −0.0293591 + 0.166504i
\(78\) 9.94861 + 7.25031i 1.12646 + 0.820936i
\(79\) 4.16387 3.49390i 0.468472 0.393095i −0.377765 0.925902i \(-0.623307\pi\)
0.846237 + 0.532807i \(0.178863\pi\)
\(80\) 5.91050 0.660814
\(81\) −7.31193 + 5.24744i −0.812437 + 0.583049i
\(82\) −13.4606 −1.48648
\(83\) −2.26150 + 1.89762i −0.248231 + 0.208291i −0.758410 0.651777i \(-0.774024\pi\)
0.510179 + 0.860068i \(0.329579\pi\)
\(84\) −0.0761403 0.0554893i −0.00830759 0.00605438i
\(85\) −1.88278 + 10.6778i −0.204216 + 1.15817i
\(86\) 2.60812 0.949280i 0.281241 0.102363i
\(87\) −1.52455 + 0.104370i −0.163449 + 0.0111896i
\(88\) −0.718430 4.07442i −0.0765849 0.434334i
\(89\) 1.57945 + 2.73568i 0.167421 + 0.289982i 0.937512 0.347952i \(-0.113123\pi\)
−0.770091 + 0.637934i \(0.779789\pi\)
\(90\) −6.05089 1.30464i −0.637820 0.137521i
\(91\) −2.47933 + 4.29432i −0.259904 + 0.450167i
\(92\) −0.386947 0.140837i −0.0403420 0.0146833i
\(93\) −8.79048 + 8.46409i −0.911530 + 0.877685i
\(94\) 0.556635 + 0.467072i 0.0574125 + 0.0481748i
\(95\) 9.11020 + 7.64436i 0.934686 + 0.784295i
\(96\) 0.511957 + 0.147611i 0.0522514 + 0.0150655i
\(97\) 14.0512 + 5.11421i 1.42668 + 0.519269i 0.935978 0.352058i \(-0.114518\pi\)
0.490703 + 0.871327i \(0.336740\pi\)
\(98\) 0.716658 1.24129i 0.0723934 0.125389i
\(99\) −0.168323 + 4.44762i −0.0169171 + 0.447003i
\(100\) 0.0796267 + 0.137918i 0.00796267 + 0.0137918i
\(101\) −0.672194 3.81220i −0.0668858 0.379328i −0.999814 0.0192667i \(-0.993867\pi\)
0.932929 0.360061i \(-0.117244\pi\)
\(102\) −8.22146 + 16.7942i −0.814045 + 1.66287i
\(103\) 0.481264 0.175166i 0.0474204 0.0172596i −0.318201 0.948023i \(-0.603079\pi\)
0.365621 + 0.930764i \(0.380856\pi\)
\(104\) 2.40121 13.6179i 0.235458 1.33535i
\(105\) 0.264248 2.47931i 0.0257879 0.241956i
\(106\) 0.865354 0.726119i 0.0840506 0.0705269i
\(107\) −12.7538 −1.23296 −0.616479 0.787371i \(-0.711442\pi\)
−0.616479 + 0.787371i \(0.711442\pi\)
\(108\) −0.248976 0.133786i −0.0239577 0.0128735i
\(109\) 7.04499 0.674787 0.337394 0.941364i \(-0.390455\pi\)
0.337394 + 0.941364i \(0.390455\pi\)
\(110\) −2.34497 + 1.96766i −0.223584 + 0.187609i
\(111\) −2.60357 + 1.15463i −0.247120 + 0.109593i
\(112\) −0.712970 + 4.04345i −0.0673693 + 0.382071i
\(113\) 10.3335 3.76109i 0.972095 0.353814i 0.193333 0.981133i \(-0.438070\pi\)
0.778762 + 0.627320i \(0.215848\pi\)
\(114\) 11.4439 + 17.0198i 1.07182 + 1.59405i
\(115\) −1.89235 10.7320i −0.176462 1.00077i
\(116\) −0.0239952 0.0415609i −0.00222790 0.00385883i
\(117\) −5.61290 + 13.7764i −0.518912 + 1.27363i
\(118\) 4.61918 8.00066i 0.425230 0.736520i
\(119\) −7.07770 2.57607i −0.648811 0.236148i
\(120\) 1.67226 + 6.74905i 0.152656 + 0.616101i
\(121\) −6.74037 5.65584i −0.612761 0.514167i
\(122\) 5.01123 + 4.20492i 0.453695 + 0.380695i
\(123\) −3.91208 15.7887i −0.352740 1.42362i
\(124\) −0.360122 0.131074i −0.0323399 0.0117708i
\(125\) −5.70614 + 9.88332i −0.510372 + 0.883991i
\(126\) 1.62243 3.98212i 0.144537 0.354755i
\(127\) −0.889792 1.54117i −0.0789563 0.136756i 0.823844 0.566817i \(-0.191825\pi\)
−0.902800 + 0.430061i \(0.858492\pi\)
\(128\) −2.04092 11.5746i −0.180393 1.02306i
\(129\) 1.87146 + 2.78332i 0.164773 + 0.245057i
\(130\) −9.61423 + 3.49930i −0.843224 + 0.306908i
\(131\) 0.382337 2.16834i 0.0334050 0.189449i −0.963539 0.267568i \(-0.913780\pi\)
0.996944 + 0.0781185i \(0.0248913\pi\)
\(132\) −0.127776 + 0.0566659i −0.0111214 + 0.00493214i
\(133\) −6.32855 + 5.31029i −0.548755 + 0.460460i
\(134\) 15.0226 1.29775
\(135\) −0.228293 7.47658i −0.0196484 0.643481i
\(136\) 21.0040 1.80108
\(137\) 9.82382 8.24316i 0.839305 0.704261i −0.118102 0.993001i \(-0.537681\pi\)
0.957407 + 0.288741i \(0.0932365\pi\)
\(138\) 1.99176 18.6878i 0.169550 1.59081i
\(139\) 0.441046 2.50130i 0.0374091 0.212157i −0.960373 0.278717i \(-0.910091\pi\)
0.997782 + 0.0665592i \(0.0212021\pi\)
\(140\) 0.0735812 0.0267814i 0.00621875 0.00226344i
\(141\) −0.386078 + 0.788651i −0.0325136 + 0.0664164i
\(142\) −0.915809 5.19381i −0.0768530 0.435855i
\(143\) 3.67833 + 6.37106i 0.307598 + 0.532775i
\(144\) −0.465831 + 12.3087i −0.0388192 + 1.02572i
\(145\) 0.635023 1.09989i 0.0527358 0.0913411i
\(146\) 9.48105 + 3.45082i 0.784657 + 0.285592i
\(147\) 1.66426 + 0.479849i 0.137265 + 0.0395773i
\(148\) −0.0685185 0.0574939i −0.00563219 0.00472597i
\(149\) −0.169290 0.142051i −0.0138688 0.0116373i 0.635827 0.771832i \(-0.280659\pi\)
−0.649696 + 0.760194i \(0.725104\pi\)
\(150\) −5.23575 + 5.04135i −0.427497 + 0.411625i
\(151\) 11.1962 + 4.07507i 0.911130 + 0.331624i 0.754704 0.656065i \(-0.227780\pi\)
0.156426 + 0.987690i \(0.450003\pi\)
\(152\) 11.5191 19.9516i 0.934319 1.61829i
\(153\) −22.0882 4.76247i −1.78572 0.385023i
\(154\) −1.06324 1.84158i −0.0856780 0.148399i
\(155\) −1.76116 9.98805i −0.141460 0.802260i
\(156\) −0.466087 + 0.0319080i −0.0373168 + 0.00255468i
\(157\) 1.94480 0.707848i 0.155212 0.0564924i −0.263246 0.964729i \(-0.584793\pi\)
0.418458 + 0.908236i \(0.362571\pi\)
\(158\) −1.35287 + 7.67249i −0.107628 + 0.610391i
\(159\) 1.10320 + 0.803987i 0.0874896 + 0.0637603i
\(160\) −0.339227 + 0.284646i −0.0268183 + 0.0225032i
\(161\) 7.57021 0.596616
\(162\) 3.19382 12.4982i 0.250931 0.981953i
\(163\) −7.03713 −0.551190 −0.275595 0.961274i \(-0.588875\pi\)
−0.275595 + 0.961274i \(0.588875\pi\)
\(164\) 0.391323 0.328359i 0.0305572 0.0256406i
\(165\) −2.98949 2.17867i −0.232732 0.169609i
\(166\) 0.734775 4.16711i 0.0570296 0.323431i
\(167\) 4.43396 1.61383i 0.343110 0.124882i −0.164717 0.986341i \(-0.552671\pi\)
0.507827 + 0.861459i \(0.330449\pi\)
\(168\) −4.81883 + 0.329894i −0.371781 + 0.0254519i
\(169\) 2.01227 + 11.4122i 0.154790 + 0.877860i
\(170\) −7.77036 13.4587i −0.595960 1.03223i
\(171\) −16.6375 + 18.3696i −1.27230 + 1.40476i
\(172\) −0.0526658 + 0.0912198i −0.00401573 + 0.00695545i
\(173\) −15.0802 5.48876i −1.14653 0.417303i −0.302262 0.953225i \(-0.597742\pi\)
−0.844268 + 0.535922i \(0.819964\pi\)
\(174\) 1.57777 1.51919i 0.119611 0.115170i
\(175\) −2.24277 1.88191i −0.169537 0.142259i
\(176\) 4.66630 + 3.91549i 0.351735 + 0.295141i
\(177\) 10.7269 + 3.09284i 0.806281 + 0.232472i
\(178\) −4.25464 1.54856i −0.318898 0.116070i
\(179\) 0.108115 0.187260i 0.00808088 0.0139965i −0.861957 0.506982i \(-0.830761\pi\)
0.870038 + 0.492985i \(0.164094\pi\)
\(180\) 0.207735 0.109678i 0.0154837 0.00817488i
\(181\) −11.3215 19.6094i −0.841521 1.45756i −0.888608 0.458667i \(-0.848327\pi\)
0.0470872 0.998891i \(-0.485006\pi\)
\(182\) −1.23417 6.99934i −0.0914829 0.518826i
\(183\) −3.47575 + 7.10001i −0.256935 + 0.524848i
\(184\) −19.8377 + 7.22031i −1.46245 + 0.532289i
\(185\) 0.411045 2.33115i 0.0302206 0.171390i
\(186\) 1.85369 17.3923i 0.135919 1.27526i
\(187\) −8.56007 + 7.18276i −0.625975 + 0.525255i
\(188\) −0.0275761 −0.00201119
\(189\) 5.14237 + 0.745703i 0.374052 + 0.0542419i
\(190\) −17.0457 −1.23663
\(191\) −5.12799 + 4.30289i −0.371048 + 0.311346i −0.809176 0.587566i \(-0.800086\pi\)
0.438128 + 0.898913i \(0.355642\pi\)
\(192\) 12.3037 5.45644i 0.887942 0.393784i
\(193\) 3.91915 22.2266i 0.282107 1.59991i −0.433334 0.901233i \(-0.642663\pi\)
0.715441 0.698674i \(-0.246226\pi\)
\(194\) −20.1398 + 7.33028i −1.44595 + 0.526283i
\(195\) −6.89870 10.2600i −0.494026 0.734736i
\(196\) 0.00944557 + 0.0535685i 0.000674684 + 0.00382632i
\(197\) −2.81292 4.87213i −0.200413 0.347125i 0.748249 0.663418i \(-0.230895\pi\)
−0.948661 + 0.316293i \(0.897562\pi\)
\(198\) −3.91286 5.03850i −0.278075 0.358070i
\(199\) 5.53756 9.59134i 0.392547 0.679912i −0.600237 0.799822i \(-0.704927\pi\)
0.992785 + 0.119910i \(0.0382605\pi\)
\(200\) 7.67208 + 2.79241i 0.542498 + 0.197453i
\(201\) 4.36603 + 17.6208i 0.307956 + 1.24287i
\(202\) 4.25031 + 3.56643i 0.299051 + 0.250933i
\(203\) 0.675850 + 0.567105i 0.0474353 + 0.0398030i
\(204\) −0.170666 0.688789i −0.0119490 0.0482249i
\(205\) 12.7038 + 4.62380i 0.887271 + 0.322940i
\(206\) −0.367037 + 0.635727i −0.0255727 + 0.0442932i
\(207\) 22.4987 3.09500i 1.56377 0.215117i
\(208\) 10.1797 + 17.6317i 0.705835 + 1.22254i
\(209\) 2.12833 + 12.0703i 0.147219 + 0.834923i
\(210\) 1.99409 + 2.96570i 0.137606 + 0.204653i
\(211\) 13.3117 4.84505i 0.916412 0.333547i 0.159602 0.987181i \(-0.448979\pi\)
0.756810 + 0.653635i \(0.226757\pi\)
\(212\) −0.00744434 + 0.0422190i −0.000511279 + 0.00289961i
\(213\) 5.82593 2.58368i 0.399186 0.177031i
\(214\) 14.0035 11.7503i 0.957259 0.803236i
\(215\) −2.78756 −0.190110
\(216\) −14.1868 + 2.95058i −0.965286 + 0.200761i
\(217\) 7.04541 0.478273
\(218\) −7.73528 + 6.49067i −0.523899 + 0.439604i
\(219\) −1.29216 + 12.1237i −0.0873162 + 0.819246i
\(220\) 0.0201729 0.114406i 0.00136006 0.00771328i
\(221\) −35.0958 + 12.7738i −2.36080 + 0.859261i
\(222\) 1.79489 3.66648i 0.120465 0.246078i
\(223\) 1.85948 + 10.5456i 0.124520 + 0.706188i 0.981592 + 0.190991i \(0.0611700\pi\)
−0.857072 + 0.515197i \(0.827719\pi\)
\(224\) −0.153810 0.266406i −0.0102768 0.0178000i
\(225\) −7.43494 4.67612i −0.495662 0.311741i
\(226\) −7.88087 + 13.6501i −0.524228 + 0.907989i
\(227\) 2.42922 + 0.884164i 0.161233 + 0.0586840i 0.421376 0.906886i \(-0.361547\pi\)
−0.260143 + 0.965570i \(0.583770\pi\)
\(228\) −0.747874 0.215632i −0.0495292 0.0142806i
\(229\) −2.45799 2.06250i −0.162429 0.136294i 0.557951 0.829874i \(-0.311588\pi\)
−0.720379 + 0.693580i \(0.756032\pi\)
\(230\) 11.9654 + 10.0402i 0.788975 + 0.662028i
\(231\) 1.85107 1.78234i 0.121792 0.117270i
\(232\) −2.31195 0.841481i −0.151787 0.0552460i
\(233\) −1.02459 + 1.77464i −0.0671230 + 0.116260i −0.897634 0.440742i \(-0.854715\pi\)
0.830511 + 0.557003i \(0.188049\pi\)
\(234\) −6.52958 20.2975i −0.426852 1.32689i
\(235\) −0.364895 0.632016i −0.0238031 0.0412282i
\(236\) 0.0608809 + 0.345273i 0.00396301 + 0.0224754i
\(237\) −9.39266 + 0.643015i −0.610119 + 0.0417683i
\(238\) 10.1446 3.69232i 0.657575 0.239338i
\(239\) 4.12642 23.4021i 0.266916 1.51376i −0.496607 0.867975i \(-0.665421\pi\)
0.763523 0.645780i \(-0.223468\pi\)
\(240\) −8.27334 6.02942i −0.534042 0.389197i
\(241\) −15.2614 + 12.8058i −0.983072 + 0.824896i −0.984550 0.175103i \(-0.943974\pi\)
0.00147786 + 0.999999i \(0.499530\pi\)
\(242\) 12.6116 0.810707
\(243\) 15.5880 + 0.113836i 0.999973 + 0.00730259i
\(244\) −0.248260 −0.0158932
\(245\) −1.10275 + 0.925318i −0.0704521 + 0.0591164i
\(246\) 18.8418 + 13.7315i 1.20131 + 0.875486i
\(247\) −7.11352 + 40.3428i −0.452622 + 2.56695i
\(248\) −18.4624 + 6.71977i −1.17236 + 0.426706i
\(249\) 5.10137 0.349236i 0.323286 0.0221320i
\(250\) −2.84043 16.1089i −0.179645 1.01882i
\(251\) 2.84078 + 4.92038i 0.179309 + 0.310572i 0.941644 0.336611i \(-0.109281\pi\)
−0.762335 + 0.647182i \(0.775947\pi\)
\(252\) 0.0499733 + 0.155344i 0.00314802 + 0.00978578i
\(253\) 5.61559 9.72648i 0.353049 0.611499i
\(254\) 2.39688 + 0.872393i 0.150394 + 0.0547388i
\(255\) 13.5281 13.0258i 0.847160 0.815705i
\(256\) 0.999320 + 0.838529i 0.0624575 + 0.0524081i
\(257\) 11.5452 + 9.68760i 0.720172 + 0.604296i 0.927433 0.373990i \(-0.122010\pi\)
−0.207261 + 0.978286i \(0.566455\pi\)
\(258\) −4.61915 1.33183i −0.287576 0.0829158i
\(259\) 1.54519 + 0.562403i 0.0960134 + 0.0349460i
\(260\) 0.194140 0.336260i 0.0120400 0.0208540i
\(261\) 2.24049 + 1.40913i 0.138683 + 0.0872229i
\(262\) 1.57793 + 2.73306i 0.0974850 + 0.168849i
\(263\) 1.03462 + 5.86765i 0.0637977 + 0.361815i 0.999948 + 0.0102142i \(0.00325133\pi\)
−0.936150 + 0.351601i \(0.885638\pi\)
\(264\) −3.15076 + 6.43613i −0.193916 + 0.396117i
\(265\) −1.06612 + 0.388037i −0.0654914 + 0.0238369i
\(266\) 2.05619 11.6612i 0.126073 0.714995i
\(267\) 0.579860 5.44055i 0.0354868 0.332956i
\(268\) −0.436732 + 0.366462i −0.0266776 + 0.0223852i
\(269\) 22.2275 1.35523 0.677616 0.735416i \(-0.263013\pi\)
0.677616 + 0.735416i \(0.263013\pi\)
\(270\) 7.13897 + 7.99883i 0.434464 + 0.486793i
\(271\) 17.2186 1.04596 0.522979 0.852346i \(-0.324821\pi\)
0.522979 + 0.852346i \(0.324821\pi\)
\(272\) −23.6898 + 19.8781i −1.43640 + 1.20529i
\(273\) 7.85120 3.48185i 0.475176 0.210731i
\(274\) −3.19182 + 18.1017i −0.192825 + 1.09356i
\(275\) −4.08163 + 1.48559i −0.246132 + 0.0895847i
\(276\) 0.397966 + 0.591872i 0.0239548 + 0.0356265i
\(277\) −0.775196 4.39636i −0.0465770 0.264151i 0.952623 0.304155i \(-0.0983741\pi\)
−0.999200 + 0.0400038i \(0.987263\pi\)
\(278\) 1.82023 + 3.15273i 0.109170 + 0.189088i
\(279\) 20.9390 2.88044i 1.25359 0.172448i
\(280\) 2.00720 3.47657i 0.119953 0.207765i
\(281\) −7.54137 2.74484i −0.449881 0.163743i 0.107136 0.994244i \(-0.465832\pi\)
−0.557017 + 0.830501i \(0.688054\pi\)
\(282\) −0.302691 1.22163i −0.0180250 0.0727468i
\(283\) 12.0607 + 10.1202i 0.716936 + 0.601581i 0.926536 0.376206i \(-0.122772\pi\)
−0.209600 + 0.977787i \(0.567216\pi\)
\(284\) 0.153322 + 0.128652i 0.00909799 + 0.00763412i
\(285\) −4.95402 19.9938i −0.293451 1.18433i
\(286\) −9.90852 3.60641i −0.585903 0.213251i
\(287\) −4.69563 + 8.13307i −0.277174 + 0.480080i
\(288\) −0.566041 0.728879i −0.0333543 0.0429496i
\(289\) −19.8650 34.4071i −1.16853 2.02395i
\(290\) 0.316105 + 1.79272i 0.0185623 + 0.105272i
\(291\) −14.4513 21.4926i −0.847151 1.25992i
\(292\) −0.359809 + 0.130960i −0.0210563 + 0.00766385i
\(293\) −1.32264 + 7.50104i −0.0772692 + 0.438215i 0.921489 + 0.388403i \(0.126973\pi\)
−0.998759 + 0.0498119i \(0.984138\pi\)
\(294\) −2.26942 + 1.00644i −0.132355 + 0.0586968i
\(295\) −7.10772 + 5.96409i −0.413828 + 0.347243i
\(296\) −4.58556 −0.266530
\(297\) 4.77272 6.05394i 0.276941 0.351285i
\(298\) 0.316752 0.0183490
\(299\) 28.7558 24.1290i 1.66299 1.39541i
\(300\) 0.0292332 0.274282i 0.00168778 0.0158357i
\(301\) 0.336257 1.90701i 0.0193815 0.109918i
\(302\) −16.0476 + 5.84086i −0.923437 + 0.336104i
\(303\) −2.94798 + 6.02192i −0.169357 + 0.345950i
\(304\) 5.89009 + 33.4043i 0.337820 + 1.91587i
\(305\) −3.28505 5.68987i −0.188101 0.325801i
\(306\) 28.6402 15.1211i 1.63725 0.864417i
\(307\) 6.71435 11.6296i 0.383208 0.663736i −0.608311 0.793699i \(-0.708153\pi\)
0.991519 + 0.129963i \(0.0414858\pi\)
\(308\) 0.0758335 + 0.0276012i 0.00432102 + 0.00157272i
\(309\) −0.852350 0.245755i −0.0484885 0.0139805i
\(310\) 11.1359 + 9.34413i 0.632477 + 0.530711i
\(311\) 4.17963 + 3.50712i 0.237005 + 0.198871i 0.753553 0.657388i \(-0.228339\pi\)
−0.516548 + 0.856259i \(0.672783\pi\)
\(312\) −17.2531 + 16.6125i −0.976763 + 0.940496i
\(313\) 13.6019 + 4.95068i 0.768824 + 0.279829i 0.696504 0.717552i \(-0.254738\pi\)
0.0723196 + 0.997382i \(0.476960\pi\)
\(314\) −1.48320 + 2.56898i −0.0837020 + 0.144976i
\(315\) −2.89908 + 3.20090i −0.163345 + 0.180350i
\(316\) −0.147833 0.256054i −0.00831625 0.0144042i
\(317\) 5.84460 + 33.1464i 0.328266 + 1.86169i 0.485655 + 0.874151i \(0.338581\pi\)
−0.157389 + 0.987537i \(0.550308\pi\)
\(318\) −1.95202 + 0.133634i −0.109464 + 0.00749384i
\(319\) 1.22998 0.447678i 0.0688659 0.0250651i
\(320\) −1.94248 + 11.0163i −0.108588 + 0.615832i
\(321\) 17.8524 + 13.0104i 0.996425 + 0.726171i
\(322\) −8.31196 + 6.97457i −0.463208 + 0.388677i
\(323\) −62.2238 −3.46222
\(324\) 0.212032 + 0.441254i 0.0117796 + 0.0245141i
\(325\) −14.5176 −0.805291
\(326\) 7.72665 6.48343i 0.427940 0.359084i
\(327\) −9.86136 7.18673i −0.545334 0.397427i
\(328\) 4.54769 25.7912i 0.251104 1.42408i
\(329\) 0.476387 0.173391i 0.0262641 0.00955934i
\(330\) 5.28966 0.362127i 0.291186 0.0199344i
\(331\) 1.63804 + 9.28977i 0.0900347 + 0.510612i 0.996156 + 0.0875946i \(0.0279180\pi\)
−0.906122 + 0.423018i \(0.860971\pi\)
\(332\) 0.0802916 + 0.139069i 0.00440657 + 0.00763241i
\(333\) 4.82225 + 1.03973i 0.264258 + 0.0569770i
\(334\) −3.38156 + 5.85704i −0.185031 + 0.320483i
\(335\) −14.1779 5.16034i −0.774622 0.281939i
\(336\) 5.12280 4.93259i 0.279472 0.269095i
\(337\) −0.439360 0.368667i −0.0239335 0.0200826i 0.630742 0.775992i \(-0.282750\pi\)
−0.654676 + 0.755910i \(0.727195\pi\)
\(338\) −12.7237 10.6764i −0.692077 0.580722i
\(339\) −18.3013 5.27675i −0.993990 0.286594i
\(340\) 0.554209 + 0.201715i 0.0300562 + 0.0109396i
\(341\) 5.22629 9.05220i 0.283020 0.490204i
\(342\) 1.34344 35.4979i 0.0726451 1.91951i
\(343\) −0.500000 0.866025i −0.0269975 0.0467610i
\(344\) 0.937708 + 5.31800i 0.0505578 + 0.286728i
\(345\) −8.29911 + 16.9528i −0.446809 + 0.912709i
\(346\) 21.6148 7.86713i 1.16202 0.422939i
\(347\) −3.17206 + 17.9897i −0.170285 + 0.965736i 0.773161 + 0.634210i \(0.218674\pi\)
−0.943446 + 0.331526i \(0.892437\pi\)
\(348\) −0.00880932 + 0.0826536i −0.000472229 + 0.00443070i
\(349\) 4.18603 3.51250i 0.224073 0.188020i −0.523839 0.851817i \(-0.675501\pi\)
0.747912 + 0.663797i \(0.231056\pi\)
\(350\) 4.19636 0.224305
\(351\) 21.9103 13.5580i 1.16949 0.723671i
\(352\) −0.456385 −0.0243254
\(353\) −1.09500 + 0.918811i −0.0582808 + 0.0489034i −0.671463 0.741038i \(-0.734334\pi\)
0.613182 + 0.789942i \(0.289889\pi\)
\(354\) −14.6274 + 6.48696i −0.777439 + 0.344778i
\(355\) −0.919785 + 5.21636i −0.0488171 + 0.276855i
\(356\) 0.161465 0.0587685i 0.00855763 0.00311472i
\(357\) 7.27925 + 10.8260i 0.385259 + 0.572973i
\(358\) 0.0538180 + 0.305217i 0.00284437 + 0.0161312i
\(359\) −15.0953 26.1458i −0.796700 1.37992i −0.921754 0.387774i \(-0.873244\pi\)
0.125055 0.992150i \(-0.460089\pi\)
\(360\) 4.54405 11.1530i 0.239493 0.587816i
\(361\) −24.6249 + 42.6515i −1.29605 + 2.24482i
\(362\) 30.4974 + 11.1001i 1.60291 + 0.583410i
\(363\) 3.66533 + 14.7929i 0.192380 + 0.776423i
\(364\) 0.206622 + 0.173376i 0.0108299 + 0.00908737i
\(365\) −7.76258 6.51358i −0.406312 0.340936i
\(366\) −2.72505 10.9980i −0.142440 0.574873i
\(367\) −31.2543 11.3756i −1.63146 0.593803i −0.645944 0.763385i \(-0.723536\pi\)
−0.985516 + 0.169582i \(0.945758\pi\)
\(368\) 15.5410 26.9178i 0.810130 1.40319i
\(369\) −10.6303 + 26.0913i −0.553394 + 1.35826i
\(370\) 1.69641 + 2.93827i 0.0881923 + 0.152753i
\(371\) −0.136857 0.776157i −0.00710528 0.0402961i
\(372\) 0.370377 + 0.550841i 0.0192032 + 0.0285598i
\(373\) 17.1355 6.23682i 0.887243 0.322930i 0.142114 0.989850i \(-0.454610\pi\)
0.745129 + 0.666920i \(0.232388\pi\)
\(374\) 2.78122 15.7731i 0.143814 0.815607i
\(375\) 18.0694 8.01343i 0.933102 0.413812i
\(376\) −1.08299 + 0.908737i −0.0558510 + 0.0468646i
\(377\) 4.37482 0.225314
\(378\) −6.33326 + 3.91898i −0.325748 + 0.201571i
\(379\) −1.95298 −0.100318 −0.0501589 0.998741i \(-0.515973\pi\)
−0.0501589 + 0.998741i \(0.515973\pi\)
\(380\) 0.495548 0.415814i 0.0254211 0.0213308i
\(381\) −0.326668 + 3.06497i −0.0167357 + 0.157023i
\(382\) 1.66612 9.44902i 0.0852459 0.483454i
\(383\) −14.4026 + 5.24210i −0.735936 + 0.267859i −0.682675 0.730722i \(-0.739184\pi\)
−0.0532608 + 0.998581i \(0.516961\pi\)
\(384\) −8.95068 + 18.2838i −0.456762 + 0.933040i
\(385\) 0.370861 + 2.10326i 0.0189008 + 0.107192i
\(386\) 16.1746 + 28.0153i 0.823266 + 1.42594i
\(387\) 0.219699 5.80512i 0.0111679 0.295091i
\(388\) 0.406682 0.704394i 0.0206462 0.0357602i
\(389\) 8.13855 + 2.96219i 0.412641 + 0.150189i 0.539995 0.841668i \(-0.318426\pi\)
−0.127354 + 0.991857i \(0.540648\pi\)
\(390\) 17.0274 + 4.90946i 0.862217 + 0.248600i
\(391\) 43.6785 + 36.6506i 2.20892 + 1.85350i
\(392\) 2.13624 + 1.79252i 0.107897 + 0.0905360i
\(393\) −2.74715 + 2.64515i −0.138576 + 0.133430i
\(394\) 7.57732 + 2.75792i 0.381740 + 0.138942i
\(395\) 3.91234 6.77637i 0.196851 0.340956i
\(396\) 0.236663 + 0.0510272i 0.0118927 + 0.00256421i
\(397\) −1.71981 2.97880i −0.0863149 0.149502i 0.819636 0.572885i \(-0.194176\pi\)
−0.905951 + 0.423383i \(0.860842\pi\)
\(398\) 2.75652 + 15.6330i 0.138172 + 0.783611i
\(399\) 14.2756 0.977301i 0.714676 0.0489262i
\(400\) −11.2958 + 4.11134i −0.564791 + 0.205567i
\(401\) 5.19856 29.4825i 0.259604 1.47229i −0.524369 0.851491i \(-0.675699\pi\)
0.783973 0.620795i \(-0.213190\pi\)
\(402\) −21.0282 15.3248i −1.04879 0.764333i
\(403\) 26.7623 22.4562i 1.33313 1.11863i
\(404\) −0.210563 −0.0104759
\(405\) −7.30744 + 10.6984i −0.363110 + 0.531607i
\(406\) −1.26456 −0.0627589
\(407\) 1.86882 1.56813i 0.0926340 0.0777291i
\(408\) −29.4008 21.4266i −1.45556 1.06078i
\(409\) 6.14874 34.8712i 0.304035 1.72427i −0.323975 0.946066i \(-0.605019\pi\)
0.628010 0.778205i \(-0.283870\pi\)
\(410\) −18.2085 + 6.62736i −0.899255 + 0.327302i
\(411\) −22.1601 + 1.51706i −1.09308 + 0.0748313i
\(412\) −0.00483756 0.0274351i −0.000238329 0.00135163i
\(413\) −3.22272 5.58192i −0.158580 0.274668i
\(414\) −21.8518 + 24.1267i −1.07396 + 1.18577i
\(415\) −2.12488 + 3.68041i −0.104306 + 0.180664i
\(416\) −1.43339 0.521710i −0.0702775 0.0255789i
\(417\) −3.16899 + 3.05132i −0.155186 + 0.149424i
\(418\) −13.4575 11.2922i −0.658227 0.552318i
\(419\) −22.0933 18.5385i −1.07933 0.905665i −0.0834648 0.996511i \(-0.526599\pi\)
−0.995865 + 0.0908455i \(0.971043\pi\)
\(420\) −0.130317 0.0375739i −0.00635882 0.00183342i
\(421\) −26.2262 9.54557i −1.27819 0.465223i −0.388356 0.921510i \(-0.626957\pi\)
−0.889833 + 0.456287i \(0.849179\pi\)
\(422\) −10.1522 + 17.5840i −0.494199 + 0.855978i
\(423\) 1.34494 0.710085i 0.0653932 0.0345255i
\(424\) 1.09892 + 1.90338i 0.0533681 + 0.0924363i
\(425\) −3.82919 21.7164i −0.185743 1.05340i
\(426\) −4.01638 + 8.20437i −0.194594 + 0.397503i
\(427\) 4.28878 1.56099i 0.207549 0.0755415i
\(428\) −0.120467 + 0.683203i −0.00582300 + 0.0330239i
\(429\) 1.35042 12.6704i 0.0651990 0.611731i
\(430\) 3.06069 2.56823i 0.147600 0.123851i
\(431\) −8.85790 −0.426670 −0.213335 0.976979i \(-0.568433\pi\)
−0.213335 + 0.976979i \(0.568433\pi\)
\(432\) 13.2084 16.7541i 0.635489 0.806083i
\(433\) −11.2471 −0.540503 −0.270251 0.962790i \(-0.587107\pi\)
−0.270251 + 0.962790i \(0.587107\pi\)
\(434\) −7.73574 + 6.49106i −0.371328 + 0.311581i
\(435\) −2.01091 + 0.891797i −0.0964156 + 0.0427584i
\(436\) 0.0665439 0.377389i 0.00318688 0.0180737i
\(437\) 58.7684 21.3900i 2.81128 1.02322i
\(438\) −9.75104 14.5022i −0.465923 0.692940i
\(439\) 4.66081 + 26.4328i 0.222448 + 1.26157i 0.867504 + 0.497431i \(0.165723\pi\)
−0.645055 + 0.764136i \(0.723166\pi\)
\(440\) −2.97788 5.15784i −0.141965 0.245891i
\(441\) −1.84007 2.36942i −0.0876224 0.112829i
\(442\) 26.7659 46.3599i 1.27312 2.20511i
\(443\) 25.4041 + 9.24635i 1.20699 + 0.439308i 0.865658 0.500636i \(-0.166901\pi\)
0.341330 + 0.939944i \(0.389123\pi\)
\(444\) 0.0372596 + 0.150375i 0.00176826 + 0.00713650i
\(445\) 3.48347 + 2.92298i 0.165132 + 0.138562i
\(446\) −11.7576 9.86576i −0.556736 0.467157i
\(447\) 0.0920580 + 0.371535i 0.00435420 + 0.0175730i
\(448\) −7.30211 2.65775i −0.344992 0.125567i
\(449\) 16.4286 28.4552i 0.775314 1.34288i −0.159304 0.987230i \(-0.550925\pi\)
0.934618 0.355654i \(-0.115742\pi\)
\(450\) 12.4716 1.71564i 0.587918 0.0808760i
\(451\) 6.96645 + 12.0662i 0.328037 + 0.568177i
\(452\) −0.103870 0.589076i −0.00488564 0.0277078i
\(453\) −11.5150 17.1256i −0.541021 0.804630i
\(454\) −3.48184 + 1.26729i −0.163411 + 0.0594767i
\(455\) −1.23953 + 7.02973i −0.0581101 + 0.329559i
\(456\) −36.4771 + 16.1768i −1.70819 + 0.757550i
\(457\) −19.5956 + 16.4426i −0.916641 + 0.769153i −0.973371 0.229236i \(-0.926377\pi\)
0.0567296 + 0.998390i \(0.481933\pi\)
\(458\) 4.59905 0.214900
\(459\) 26.0601 + 29.1990i 1.21638 + 1.36289i
\(460\) −0.592774 −0.0276382
\(461\) 13.5588 11.3772i 0.631498 0.529890i −0.269896 0.962890i \(-0.586989\pi\)
0.901394 + 0.433000i \(0.142545\pi\)
\(462\) −0.390344 + 3.66241i −0.0181605 + 0.170391i
\(463\) 2.37852 13.4893i 0.110539 0.626900i −0.878323 0.478068i \(-0.841337\pi\)
0.988862 0.148832i \(-0.0475515\pi\)
\(464\) 3.40395 1.23894i 0.158024 0.0575162i
\(465\) −7.72378 + 15.7776i −0.358182 + 0.731668i
\(466\) −0.510025 2.89249i −0.0236264 0.133992i
\(467\) −0.381921 0.661506i −0.0176732 0.0306109i 0.857054 0.515227i \(-0.172293\pi\)
−0.874727 + 0.484616i \(0.838959\pi\)
\(468\) 0.684965 + 0.430800i 0.0316625 + 0.0199138i
\(469\) 5.24050 9.07682i 0.241984 0.419128i
\(470\) 0.982936 + 0.357760i 0.0453395 + 0.0165022i
\(471\) −3.44436 0.993101i −0.158708 0.0457597i
\(472\) 13.7690 + 11.5536i 0.633772 + 0.531797i
\(473\) −2.20076 1.84665i −0.101191 0.0849092i
\(474\) 9.72056 9.35964i 0.446480 0.429903i
\(475\) −22.7283 8.27243i −1.04285 0.379565i
\(476\) −0.204849 + 0.354809i −0.00938924 + 0.0162626i
\(477\) −0.724065 2.25079i −0.0331527 0.103057i
\(478\) 17.0300 + 29.4969i 0.778935 + 1.34916i
\(479\) −3.82213 21.6764i −0.174638 0.990419i −0.938561 0.345112i \(-0.887841\pi\)
0.763924 0.645307i \(-0.223270\pi\)
\(480\) 0.765213 0.0523859i 0.0349270 0.00239108i
\(481\) 7.66206 2.78876i 0.349360 0.127157i
\(482\) 4.95852 28.1212i 0.225854 1.28088i
\(483\) −10.5965 7.72252i −0.482160 0.351387i
\(484\) −0.366641 + 0.307649i −0.0166655 + 0.0139840i
\(485\) 21.5254 0.977416
\(486\) −17.2203 + 14.2365i −0.781128 + 0.645783i
\(487\) 20.7588 0.940673 0.470336 0.882487i \(-0.344133\pi\)
0.470336 + 0.882487i \(0.344133\pi\)
\(488\) −9.74987 + 8.18111i −0.441356 + 0.370341i
\(489\) 9.85036 + 7.17871i 0.445449 + 0.324633i
\(490\) 0.358291 2.03197i 0.0161859 0.0917949i
\(491\) −12.0707 + 4.39339i −0.544745 + 0.198271i −0.599710 0.800217i \(-0.704717\pi\)
0.0549653 + 0.998488i \(0.482495\pi\)
\(492\) −0.882729 + 0.0604310i −0.0397965 + 0.00272444i
\(493\) 1.15391 + 6.54416i 0.0519695 + 0.294734i
\(494\) −29.3580 50.8495i −1.32088 2.28783i
\(495\) 1.96210 + 6.09928i 0.0881897 + 0.274142i
\(496\) 14.4636 25.0517i 0.649436 1.12486i
\(497\) −3.45763 1.25847i −0.155096 0.0564503i
\(498\) −5.27947 + 5.08344i −0.236579 + 0.227795i
\(499\) −26.7426 22.4397i −1.19716 1.00454i −0.999706 0.0242293i \(-0.992287\pi\)
−0.197458 0.980311i \(-0.563269\pi\)
\(500\) 0.475537 + 0.399023i 0.0212666 + 0.0178448i
\(501\) −7.85282 2.26418i −0.350838 0.101156i
\(502\) −7.65237 2.78523i −0.341542 0.124311i
\(503\) −3.60280 + 6.24024i −0.160641 + 0.278238i −0.935099 0.354387i \(-0.884689\pi\)
0.774458 + 0.632626i \(0.218023\pi\)
\(504\) 7.08179 + 4.45401i 0.315448 + 0.198397i
\(505\) −2.78623 4.82590i −0.123986 0.214750i
\(506\) 2.79536 + 15.8533i 0.124269 + 0.704764i
\(507\) 8.82506 18.0272i 0.391935 0.800615i
\(508\) −0.0909625 + 0.0331076i −0.00403581 + 0.00146891i
\(509\) −1.41678 + 8.03497i −0.0627978 + 0.356144i 0.937176 + 0.348858i \(0.113430\pi\)
−0.999973 + 0.00728607i \(0.997681\pi\)
\(510\) −2.85272 + 26.7657i −0.126321 + 1.18521i
\(511\) 5.39241 4.52477i 0.238546 0.200164i
\(512\) 21.6366 0.956210
\(513\) 42.0278 8.74100i 1.85557 0.385925i
\(514\) −21.6018 −0.952816
\(515\) 0.564775 0.473902i 0.0248869 0.0208826i
\(516\) 0.166775 0.0739614i 0.00734186 0.00325597i
\(517\) 0.130606 0.740701i 0.00574403 0.0325760i
\(518\) −2.21475 + 0.806101i −0.0973103 + 0.0354181i
\(519\) 15.5097 + 23.0667i 0.680800 + 1.01251i
\(520\) −3.45664 19.6036i −0.151584 0.859673i
\(521\) 11.3373 + 19.6368i 0.496696 + 0.860302i 0.999993 0.00381122i \(-0.00121315\pi\)
−0.503297 + 0.864114i \(0.667880\pi\)
\(522\) −3.75827 + 0.517001i −0.164495 + 0.0226285i
\(523\) −10.5417 + 18.2588i −0.460957 + 0.798401i −0.999009 0.0445110i \(-0.985827\pi\)
0.538052 + 0.842912i \(0.319160\pi\)
\(524\) −0.112543 0.0409625i −0.00491648 0.00178945i
\(525\) 1.21959 + 4.92213i 0.0532274 + 0.214819i
\(526\) −6.54197 5.48936i −0.285243 0.239348i
\(527\) 40.6505 + 34.1098i 1.77076 + 1.48585i
\(528\) −2.53748 10.2410i −0.110430 0.445681i
\(529\) −32.2390 11.7340i −1.40170 0.510176i
\(530\) 0.813080 1.40830i 0.0353179 0.0611725i
\(531\) −11.8601 15.2720i −0.514684 0.662746i
\(532\) 0.224687 + 0.389170i 0.00974143 + 0.0168727i
\(533\) 8.08645 + 45.8605i 0.350263 + 1.98644i
\(534\) 4.37580 + 6.50787i 0.189359 + 0.281623i
\(535\) −17.2524 + 6.27936i −0.745886 + 0.271480i
\(536\) −5.07539 + 28.7840i −0.219224 + 1.24328i
\(537\) −0.342364 + 0.151831i −0.0147741 + 0.00655201i
\(538\) −24.4054 + 20.4786i −1.05219 + 0.882893i
\(539\) −1.48360 −0.0639033
\(540\) −0.402665 0.0583912i −0.0173280 0.00251276i
\(541\) −21.3757 −0.919015 −0.459507 0.888174i \(-0.651974\pi\)
−0.459507 + 0.888174i \(0.651974\pi\)
\(542\) −18.9058 + 15.8638i −0.812073 + 0.681410i
\(543\) −4.15645 + 38.9980i −0.178370 + 1.67356i
\(544\) 0.402337 2.28177i 0.0172501 0.0978299i
\(545\) 9.52992 3.46861i 0.408217 0.148579i
\(546\) −5.41260 + 11.0565i −0.231638 + 0.473173i
\(547\) 3.23085 + 18.3231i 0.138141 + 0.783438i 0.972621 + 0.232399i \(0.0746575\pi\)
−0.834479 + 0.551039i \(0.814231\pi\)
\(548\) −0.348782 0.604109i −0.0148992 0.0258062i
\(549\) 12.1081 6.39270i 0.516762 0.272834i
\(550\) 3.11287 5.39164i 0.132733 0.229900i
\(551\) 6.84908 + 2.49286i 0.291781 + 0.106200i
\(552\) 35.1337 + 10.1300i 1.49539 + 0.431161i
\(553\) 4.16387 + 3.49390i 0.177066 + 0.148576i
\(554\) 4.90159 + 4.11292i 0.208249 + 0.174741i
\(555\) −2.95342 + 2.84376i −0.125366 + 0.120711i
\(556\) −0.129825 0.0472524i −0.00550580 0.00200395i
\(557\) −13.3675 + 23.1531i −0.566397 + 0.981029i 0.430521 + 0.902581i \(0.358330\pi\)
−0.996918 + 0.0784483i \(0.975003\pi\)
\(558\) −20.3369 + 22.4542i −0.860930 + 0.950561i
\(559\) −4.80103 8.31562i −0.203062 0.351713i
\(560\) 1.02635 + 5.82071i 0.0433711 + 0.245970i
\(561\) 19.3094 1.32191i 0.815244 0.0558110i
\(562\) 10.8092 3.93422i 0.455957 0.165955i
\(563\) −1.31478 + 7.45649i −0.0554114 + 0.314253i −0.999898 0.0142970i \(-0.995449\pi\)
0.944486 + 0.328550i \(0.106560\pi\)
\(564\) 0.0386001 + 0.0281309i 0.00162536 + 0.00118452i
\(565\) 12.1266 10.1754i 0.510170 0.428084i
\(566\) −22.5664 −0.948535
\(567\) −6.43742 6.28964i −0.270346 0.264140i
\(568\) 10.2610 0.430542
\(569\) 25.2580 21.1940i 1.05887 0.888499i 0.0648731 0.997894i \(-0.479336\pi\)
0.993998 + 0.109395i \(0.0348913\pi\)
\(570\) 23.8601 + 17.3887i 0.999390 + 0.728332i
\(571\) −1.64448 + 9.32632i −0.0688194 + 0.390294i 0.930869 + 0.365352i \(0.119051\pi\)
−0.999689 + 0.0249425i \(0.992060\pi\)
\(572\) 0.376032 0.136865i 0.0157227 0.00572259i
\(573\) 11.5675 0.791901i 0.483238 0.0330821i
\(574\) −2.33742 13.2561i −0.0975619 0.553301i
\(575\) 11.0818 + 19.1942i 0.462141 + 0.800452i
\(576\) −22.7886 4.91347i −0.949523 0.204728i
\(577\) −2.42560 + 4.20126i −0.100979 + 0.174901i −0.912088 0.409994i \(-0.865531\pi\)
0.811109 + 0.584895i \(0.198864\pi\)
\(578\) 53.5113 + 19.4765i 2.22578 + 0.810116i
\(579\) −28.1597 + 27.1142i −1.17028 + 1.12683i
\(580\) −0.0529214 0.0444063i −0.00219744 0.00184387i
\(581\) −2.26150 1.89762i −0.0938227 0.0787266i
\(582\) 35.6688 + 10.2843i 1.47852 + 0.426297i
\(583\) −1.09876 0.399915i −0.0455058 0.0165628i
\(584\) −9.81512 + 17.0003i −0.406152 + 0.703477i
\(585\) −0.809867 + 21.3992i −0.0334839 + 0.884748i
\(586\) −5.45861 9.45459i −0.225493 0.390565i
\(587\) −2.60905 14.7967i −0.107687 0.610723i −0.990113 0.140272i \(-0.955202\pi\)
0.882426 0.470451i \(-0.155909\pi\)
\(588\) 0.0414246 0.0846192i 0.00170832 0.00348964i
\(589\) 54.6943 19.9071i 2.25364 0.820258i
\(590\) 2.30934 13.0969i 0.0950742 0.539192i
\(591\) −1.03270 + 9.68938i −0.0424798 + 0.398568i
\(592\) 5.17191 4.33975i 0.212564 0.178363i
\(593\) 8.63936 0.354776 0.177388 0.984141i \(-0.443235\pi\)
0.177388 + 0.984141i \(0.443235\pi\)
\(594\) 0.337233 + 11.0443i 0.0138368 + 0.453154i
\(595\) −10.8425 −0.444499
\(596\) −0.00920852 + 0.00772687i −0.000377196 + 0.000316505i
\(597\) −17.5356 + 7.77670i −0.717685 + 0.318279i
\(598\) −9.34294 + 52.9864i −0.382061 + 2.16678i
\(599\) 18.2871 6.65597i 0.747192 0.271956i 0.0597683 0.998212i \(-0.480964\pi\)
0.687424 + 0.726257i \(0.258742\pi\)
\(600\) −7.89056 11.7352i −0.322131 0.479086i
\(601\) 1.37897 + 7.82051i 0.0562492 + 0.319005i 0.999930 0.0118529i \(-0.00377297\pi\)
−0.943681 + 0.330858i \(0.892662\pi\)
\(602\) 1.38775 + 2.40366i 0.0565606 + 0.0979659i
\(603\) 11.8639 29.1189i 0.483134 1.18581i
\(604\) 0.324049 0.561270i 0.0131854 0.0228378i
\(605\) −11.9025 4.33216i −0.483906 0.176127i
\(606\) −2.31127 9.32800i −0.0938888 0.378924i
\(607\) −27.9802 23.4782i −1.13568 0.952951i −0.136393 0.990655i \(-0.543551\pi\)
−0.999289 + 0.0377041i \(0.987996\pi\)
\(608\) −1.94679 1.63355i −0.0789526 0.0662491i
\(609\) −0.367519 1.48326i −0.0148926 0.0601049i
\(610\) 8.84910 + 3.22081i 0.358290 + 0.130407i
\(611\) 1.25692 2.17705i 0.0508496 0.0880740i
\(612\) −0.463754 + 1.13825i −0.0187461 + 0.0460109i
\(613\) 5.69934 + 9.87154i 0.230194 + 0.398708i 0.957865 0.287218i \(-0.0927306\pi\)
−0.727671 + 0.685926i \(0.759397\pi\)
\(614\) 3.34231 + 18.9552i 0.134884 + 0.764968i
\(615\) −13.0655 19.4316i −0.526854 0.783559i
\(616\) 3.88776 1.41503i 0.156643 0.0570132i
\(617\) 1.72819 9.80104i 0.0695742 0.394575i −0.930057 0.367416i \(-0.880243\pi\)
0.999631 0.0271595i \(-0.00864619\pi\)
\(618\) 1.16228 0.515450i 0.0467539 0.0207344i
\(619\) −15.9558 + 13.3885i −0.641317 + 0.538129i −0.904422 0.426638i \(-0.859698\pi\)
0.263105 + 0.964767i \(0.415253\pi\)
\(620\) −0.551680 −0.0221560
\(621\) −34.6503 18.6191i −1.39047 0.747159i
\(622\) −7.82034 −0.313567
\(623\) −2.41985 + 2.03050i −0.0969493 + 0.0813501i
\(624\) 3.73726 35.0649i 0.149610 1.40372i
\(625\) −0.310789 + 1.76257i −0.0124316 + 0.0705028i
\(626\) −19.4958 + 7.09589i −0.779209 + 0.283609i
\(627\) 9.33402 19.0668i 0.372765 0.761456i
\(628\) −0.0195486 0.110866i −0.000780076 0.00442403i
\(629\) 6.19259 + 10.7259i 0.246915 + 0.427669i
\(630\) 0.234095 6.18551i 0.00932657 0.246437i
\(631\) −23.1937 + 40.1726i −0.923326 + 1.59925i −0.129095 + 0.991632i \(0.541207\pi\)
−0.794231 + 0.607616i \(0.792126\pi\)
\(632\) −14.2438 5.18432i −0.566588 0.206221i
\(633\) −23.5758 6.79753i −0.937053 0.270177i
\(634\) −36.9556 31.0095i −1.46770 1.23154i
\(635\) −1.96244 1.64668i −0.0778770 0.0653465i
\(636\) 0.0534887 0.0515027i 0.00212097 0.00204222i
\(637\) −4.65961 1.69596i −0.184620 0.0671963i
\(638\) −0.938049 + 1.62475i −0.0371377 + 0.0643244i
\(639\) −10.7906 2.32658i −0.426871 0.0920382i
\(640\) −8.45957 14.6524i −0.334394 0.579187i
\(641\) −1.43109 8.11609i −0.0565245 0.320566i 0.943414 0.331616i \(-0.107594\pi\)
−0.999939 + 0.0110496i \(0.996483\pi\)
\(642\) −31.5884 + 2.16252i −1.24669 + 0.0853478i
\(643\) −41.0643 + 14.9462i −1.61942 + 0.589420i −0.983271 0.182147i \(-0.941695\pi\)
−0.636148 + 0.771567i \(0.719473\pi\)
\(644\) 0.0715049 0.405525i 0.00281769 0.0159799i
\(645\) 3.90194 + 2.84364i 0.153639 + 0.111968i
\(646\) 68.3207 57.3279i 2.68804 2.25554i
\(647\) 2.81016 0.110479 0.0552393 0.998473i \(-0.482408\pi\)
0.0552393 + 0.998473i \(0.482408\pi\)
\(648\) 22.8681 + 10.3421i 0.898345 + 0.406274i
\(649\) −9.56248 −0.375360
\(650\) 15.9401 13.3753i 0.625221 0.524623i
\(651\) −9.86195 7.18716i −0.386520 0.281687i
\(652\) −0.0664697 + 0.376968i −0.00260315 + 0.0147632i
\(653\) −20.5632 + 7.48440i −0.804701 + 0.292887i −0.711433 0.702754i \(-0.751954\pi\)
−0.0932680 + 0.995641i \(0.529731\pi\)
\(654\) 17.4489 1.19454i 0.682305 0.0467101i
\(655\) −0.550389 3.12141i −0.0215055 0.121964i
\(656\) 19.2795 + 33.3930i 0.752737 + 1.30378i
\(657\) 14.1764 15.6523i 0.553074 0.610654i
\(658\) −0.363317 + 0.629284i −0.0141636 + 0.0245321i
\(659\) −21.5335 7.83757i −0.838828 0.305308i −0.113351 0.993555i \(-0.536159\pi\)
−0.725477 + 0.688247i \(0.758381\pi\)
\(660\) −0.144946 + 0.139564i −0.00564200 + 0.00543252i
\(661\) −7.18971 6.03288i −0.279647 0.234652i 0.492166 0.870501i \(-0.336205\pi\)
−0.771813 + 0.635850i \(0.780650\pi\)
\(662\) −10.3574 8.69087i −0.402551 0.337780i
\(663\) 62.1569 + 17.9215i 2.41398 + 0.696013i
\(664\) 7.73614 + 2.81573i 0.300220 + 0.109271i
\(665\) −5.94626 + 10.2992i −0.230586 + 0.399387i
\(666\) −6.25268 + 3.30122i −0.242287 + 0.127920i
\(667\) −3.33944 5.78408i −0.129304 0.223961i
\(668\) −0.0445691 0.252764i −0.00172443 0.00977973i
\(669\) 8.15496 16.6583i 0.315289 0.644049i
\(670\) 20.3214 7.39639i 0.785085 0.285748i
\(671\) 1.17581 6.66833i 0.0453915 0.257428i
\(672\) −0.0564679 + 0.529812i −0.00217830 + 0.0204379i
\(673\) 29.0767 24.3982i 1.12082 0.940483i 0.122178 0.992508i \(-0.461012\pi\)
0.998646 + 0.0520254i \(0.0165677\pi\)
\(674\) 0.822070 0.0316649
\(675\) 5.63700 + 14.1300i 0.216968 + 0.543864i
\(676\) 0.630340 0.0242439
\(677\) −26.9680 + 22.6288i −1.03646 + 0.869697i −0.991606 0.129297i \(-0.958728\pi\)
−0.0448583 + 0.998993i \(0.514284\pi\)
\(678\) 24.9561 11.0675i 0.958433 0.425046i
\(679\) −2.59655 + 14.7258i −0.0996466 + 0.565124i
\(680\) 28.4127 10.3414i 1.08958 0.396573i
\(681\) −2.49840 3.71572i −0.0957388 0.142387i
\(682\) 2.60157 + 14.7542i 0.0996193 + 0.564969i
\(683\) −18.7253 32.4332i −0.716505 1.24102i −0.962376 0.271721i \(-0.912407\pi\)
0.245871 0.969303i \(-0.420926\pi\)
\(684\) 0.826881 + 1.06476i 0.0316166 + 0.0407120i
\(685\) 9.23038 15.9875i 0.352675 0.610851i
\(686\) 1.34688 + 0.490223i 0.0514240 + 0.0187168i
\(687\) 1.33663 + 5.39447i 0.0509955 + 0.205812i
\(688\) −6.09054 5.11057i −0.232200 0.194839i
\(689\) −2.99375 2.51206i −0.114053 0.0957017i
\(690\) −6.50664 26.2600i −0.247704 0.999703i
\(691\) −5.46710 1.98986i −0.207978 0.0756979i 0.235930 0.971770i \(-0.424186\pi\)
−0.443909 + 0.896072i \(0.646409\pi\)
\(692\) −0.436466 + 0.755982i −0.0165920 + 0.0287381i
\(693\) −4.40928 + 0.606555i −0.167495 + 0.0230411i
\(694\) −13.0913 22.6748i −0.496940 0.860725i
\(695\) −0.634903 3.60071i −0.0240832 0.136583i
\(696\) 2.37779 + 3.53635i 0.0901298 + 0.134045i
\(697\) −66.4685 + 24.1925i −2.51767 + 0.916358i
\(698\) −1.36007 + 7.71334i −0.0514794 + 0.291954i
\(699\) 3.24453 1.43888i 0.122719 0.0544236i
\(700\) −0.121995 + 0.102366i −0.00461099 + 0.00386908i
\(701\) 22.1208 0.835491 0.417745 0.908564i \(-0.362820\pi\)
0.417745 + 0.908564i \(0.362820\pi\)
\(702\) −11.5660 + 35.0728i −0.436530 + 1.32374i
\(703\) 13.5846 0.512353
\(704\) −8.83149 + 7.41050i −0.332849 + 0.279294i
\(705\) −0.133963 + 1.25691i −0.00504535 + 0.0473381i
\(706\) 0.355771 2.01768i 0.0133896 0.0759363i
\(707\) 3.63756 1.32396i 0.136805 0.0497928i
\(708\) 0.267000 0.545409i 0.0100345 0.0204977i
\(709\) −0.388495 2.20326i −0.0145902 0.0827453i 0.976643 0.214868i \(-0.0689320\pi\)
−0.991233 + 0.132122i \(0.957821\pi\)
\(710\) −3.79601 6.57489i −0.142462 0.246751i
\(711\) 13.8035 + 8.68156i 0.517672 + 0.325584i
\(712\) 4.40455 7.62890i 0.165067 0.285905i
\(713\) −50.1187 18.2417i −1.87696 0.683157i
\(714\) −17.9667 5.18027i −0.672386 0.193867i
\(715\) 8.11257 + 6.80725i 0.303393 + 0.254577i
\(716\) −0.00901005 0.00756033i −0.000336721 0.000282543i
\(717\) −29.6490 + 28.5481i −1.10726 + 1.06615i
\(718\) 40.6630 + 14.8001i 1.51753 + 0.552336i
\(719\) 23.7982 41.2196i 0.887521 1.53723i 0.0447252 0.998999i \(-0.485759\pi\)
0.842796 0.538233i \(-0.180908\pi\)
\(720\) 5.43005 + 16.8796i 0.202366 + 0.629065i
\(721\) 0.256075 + 0.443536i 0.00953675 + 0.0165181i
\(722\) −12.2579 69.5180i −0.456192 2.58719i
\(723\) 34.4259 2.35677i 1.28031 0.0876493i
\(724\) −1.15739 + 0.421254i −0.0430139 + 0.0156558i
\(725\) −0.448536 + 2.54377i −0.0166582 + 0.0944734i
\(726\) −17.6534 12.8654i −0.655179 0.477479i
\(727\) −9.42952 + 7.91231i −0.349722 + 0.293451i −0.800678 0.599095i \(-0.795527\pi\)
0.450957 + 0.892546i \(0.351083\pi\)
\(728\) 13.8280 0.512501
\(729\) −21.7035 16.0610i −0.803835 0.594852i
\(730\) 14.5243 0.537567
\(731\) 11.1728 9.37506i 0.413240 0.346749i
\(732\) 0.347506 + 0.253254i 0.0128442 + 0.00936055i
\(733\) 0.162990 0.924363i 0.00602018 0.0341421i −0.981650 0.190693i \(-0.938926\pi\)
0.987670 + 0.156551i \(0.0500376\pi\)
\(734\) 44.7973 16.3049i 1.65350 0.601824i
\(735\) 2.48753 0.170295i 0.0917540 0.00628141i
\(736\) 0.404382 + 2.29336i 0.0149057 + 0.0845345i
\(737\) −7.77482 13.4664i −0.286389 0.496041i
\(738\) −12.3665 38.4418i −0.455216 1.41506i
\(739\) −8.48654 + 14.6991i −0.312182 + 0.540716i −0.978835 0.204653i \(-0.934393\pi\)
0.666652 + 0.745369i \(0.267727\pi\)
\(740\) −0.120994 0.0440382i −0.00444782 0.00161887i
\(741\) 51.1117 49.2139i 1.87764 1.80792i
\(742\) 0.865354 + 0.726119i 0.0317682 + 0.0266566i
\(743\) 12.2005 + 10.2374i 0.447592 + 0.375574i 0.838541 0.544838i \(-0.183409\pi\)
−0.390949 + 0.920412i \(0.627853\pi\)
\(744\) 32.6981 + 9.42774i 1.19877 + 0.345638i
\(745\) −0.298942 0.108806i −0.0109524 0.00398634i
\(746\) −13.0684 + 22.6352i −0.478469 + 0.828733i
\(747\) −7.49701 4.71516i −0.274301 0.172519i
\(748\) 0.303915 + 0.526396i 0.0111122 + 0.0192469i
\(749\) −2.21468 12.5601i −0.0809226 0.458935i
\(750\) −12.4570 + 25.4463i −0.454867 + 0.929168i
\(751\) 37.1086 13.5064i 1.35411 0.492857i 0.439884 0.898055i \(-0.355020\pi\)
0.914229 + 0.405198i \(0.132797\pi\)
\(752\) 0.361448 2.04987i 0.0131806 0.0747511i
\(753\) 1.04293 9.78534i 0.0380066 0.356597i
\(754\) −4.80348 + 4.03060i −0.174932 + 0.146786i
\(755\) 17.1517 0.624213
\(756\) 0.0885188 0.268425i 0.00321940 0.00976253i
\(757\) 26.4653 0.961898 0.480949 0.876749i \(-0.340292\pi\)
0.480949 + 0.876749i \(0.340292\pi\)
\(758\) 2.14434 1.79932i 0.0778860 0.0653541i
\(759\) −17.7827 + 7.88627i −0.645471 + 0.286254i
\(760\) 5.75892 32.6604i 0.208898 1.18472i
\(761\) −21.8532 + 7.95393i −0.792180 + 0.288330i −0.706242 0.707971i \(-0.749611\pi\)
−0.0859378 + 0.996301i \(0.527389\pi\)
\(762\) −2.46514 3.66625i −0.0893025 0.132814i
\(763\) 1.22335 + 6.93796i 0.0442882 + 0.251171i
\(764\) 0.182063 + 0.315342i 0.00658680 + 0.0114087i
\(765\) −32.2240 + 4.43284i −1.16506 + 0.160270i
\(766\) 10.9841 19.0251i 0.396873 0.687404i
\(767\) −30.0333 10.9312i