Properties

Label 189.2.v.a.22.1
Level $189$
Weight $2$
Character 189.22
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 22.1
Character \(\chi\) \(=\) 189.22
Dual form 189.2.v.a.43.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88664 + 1.58308i) q^{2} +(0.279041 - 1.70943i) q^{3} +(0.705975 - 4.00378i) q^{4} +(-1.28676 + 0.468343i) q^{5} +(2.17970 + 3.66681i) q^{6} +(0.173648 + 0.984808i) q^{7} +(2.54355 + 4.40555i) q^{8} +(-2.84427 - 0.954001i) q^{9} +O(q^{10})\) \(q+(-1.88664 + 1.58308i) q^{2} +(0.279041 - 1.70943i) q^{3} +(0.705975 - 4.00378i) q^{4} +(-1.28676 + 0.468343i) q^{5} +(2.17970 + 3.66681i) q^{6} +(0.173648 + 0.984808i) q^{7} +(2.54355 + 4.40555i) q^{8} +(-2.84427 - 0.954001i) q^{9} +(1.68623 - 2.92064i) q^{10} +(-3.59139 - 1.30716i) q^{11} +(-6.64717 - 2.32403i) q^{12} +(-3.54356 - 2.97340i) q^{13} +(-1.88664 - 1.58308i) q^{14} +(0.441537 + 2.33031i) q^{15} +(-4.13236 - 1.50406i) q^{16} +(-1.43245 + 2.48108i) q^{17} +(6.87637 - 2.70285i) q^{18} +(-2.13911 - 3.70505i) q^{19} +(0.966721 + 5.48255i) q^{20} +(1.73191 - 0.0220365i) q^{21} +(8.84499 - 3.21931i) q^{22} +(1.00499 - 5.69960i) q^{23} +(8.24072 - 3.11867i) q^{24} +(-2.39381 + 2.00865i) q^{25} +11.3926 q^{26} +(-2.42446 + 4.59587i) q^{27} +4.06555 q^{28} +(5.29520 - 4.44320i) q^{29} +(-4.52208 - 3.69746i) q^{30} +(-0.0783192 + 0.444170i) q^{31} +(0.616711 - 0.224464i) q^{32} +(-3.23664 + 5.77446i) q^{33} +(-1.22522 - 6.94858i) q^{34} +(-0.684671 - 1.18589i) q^{35} +(-5.82759 + 10.7143i) q^{36} +(-3.07675 + 5.32908i) q^{37} +(9.90112 + 3.60371i) q^{38} +(-6.07161 + 5.22775i) q^{39} +(-5.33624 - 4.47764i) q^{40} +(-8.69548 - 7.29638i) q^{41} +(-3.23261 + 2.78333i) q^{42} +(5.96967 + 2.17278i) q^{43} +(-7.76900 + 13.4563i) q^{44} +(4.10670 - 0.104522i) q^{45} +(7.12685 + 12.3441i) q^{46} +(0.807676 + 4.58056i) q^{47} +(-3.72417 + 6.64427i) q^{48} +(-0.939693 + 0.342020i) q^{49} +(1.33642 - 7.57919i) q^{50} +(3.84151 + 3.14099i) q^{51} +(-14.4065 + 12.0885i) q^{52} +4.88750 q^{53} +(-2.70153 - 12.5089i) q^{54} +5.23345 q^{55} +(-3.89694 + 3.26992i) q^{56} +(-6.93041 + 2.62279i) q^{57} +(-2.95620 + 16.7654i) q^{58} +(5.52603 - 2.01131i) q^{59} +(9.64176 - 0.122680i) q^{60} +(-1.68726 - 9.56895i) q^{61} +(-0.555396 - 0.961975i) q^{62} +(0.445605 - 2.96672i) q^{63} +(3.58940 - 6.21703i) q^{64} +(5.95229 + 2.16646i) q^{65} +(-3.03506 - 16.0182i) q^{66} +(9.08244 + 7.62107i) q^{67} +(8.92242 + 7.48680i) q^{68} +(-9.46260 - 3.30838i) q^{69} +(3.16908 + 1.15345i) q^{70} +(-7.24460 + 12.5480i) q^{71} +(-3.03164 - 14.9571i) q^{72} +(-0.219751 - 0.380619i) q^{73} +(-2.63164 - 14.9248i) q^{74} +(2.76566 + 4.65254i) q^{75} +(-16.3444 + 5.94887i) q^{76} +(0.663662 - 3.76381i) q^{77} +(3.17900 - 19.4747i) q^{78} +(2.88406 - 2.42002i) q^{79} +6.02178 q^{80} +(7.17976 + 5.42688i) q^{81} +27.9560 q^{82} +(6.86836 - 5.76324i) q^{83} +(1.13446 - 6.94975i) q^{84} +(0.681227 - 3.86343i) q^{85} +(-14.7023 + 5.35120i) q^{86} +(-6.11775 - 10.2916i) q^{87} +(-3.37611 - 19.1469i) q^{88} +(-1.23885 - 2.14575i) q^{89} +(-7.58239 + 6.69842i) q^{90} +(2.31290 - 4.00605i) q^{91} +(-22.1104 - 8.04754i) q^{92} +(0.737422 + 0.257823i) q^{93} +(-8.77518 - 7.36325i) q^{94} +(4.48776 + 3.76568i) q^{95} +(-0.211617 - 1.11686i) q^{96} +(8.34707 + 3.03809i) q^{97} +(1.23142 - 2.13288i) q^{98} +(8.96785 + 7.14410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88664 + 1.58308i −1.33406 + 1.11941i −0.350944 + 0.936396i \(0.614139\pi\)
−0.983111 + 0.183009i \(0.941416\pi\)
\(3\) 0.279041 1.70943i 0.161105 0.986937i
\(4\) 0.705975 4.00378i 0.352987 2.00189i
\(5\) −1.28676 + 0.468343i −0.575457 + 0.209449i −0.613321 0.789834i \(-0.710167\pi\)
0.0378642 + 0.999283i \(0.487945\pi\)
\(6\) 2.17970 + 3.66681i 0.889860 + 1.49697i
\(7\) 0.173648 + 0.984808i 0.0656328 + 0.372222i
\(8\) 2.54355 + 4.40555i 0.899279 + 1.55760i
\(9\) −2.84427 0.954001i −0.948091 0.318000i
\(10\) 1.68623 2.92064i 0.533233 0.923586i
\(11\) −3.59139 1.30716i −1.08284 0.394123i −0.261879 0.965101i \(-0.584342\pi\)
−0.820965 + 0.570978i \(0.806564\pi\)
\(12\) −6.64717 2.32403i −1.91887 0.670890i
\(13\) −3.54356 2.97340i −0.982808 0.824673i 0.00170302 0.999999i \(-0.499458\pi\)
−0.984511 + 0.175325i \(0.943902\pi\)
\(14\) −1.88664 1.58308i −0.504226 0.423096i
\(15\) 0.441537 + 2.33031i 0.114004 + 0.601683i
\(16\) −4.13236 1.50406i −1.03309 0.376014i
\(17\) −1.43245 + 2.48108i −0.347420 + 0.601750i −0.985790 0.167980i \(-0.946276\pi\)
0.638370 + 0.769730i \(0.279609\pi\)
\(18\) 6.87637 2.70285i 1.62078 0.637068i
\(19\) −2.13911 3.70505i −0.490746 0.849997i 0.509197 0.860650i \(-0.329942\pi\)
−0.999943 + 0.0106528i \(0.996609\pi\)
\(20\) 0.966721 + 5.48255i 0.216165 + 1.22593i
\(21\) 1.73191 0.0220365i 0.377934 0.00480875i
\(22\) 8.84499 3.21931i 1.88576 0.686360i
\(23\) 1.00499 5.69960i 0.209555 1.18845i −0.680553 0.732699i \(-0.738260\pi\)
0.890108 0.455749i \(-0.150629\pi\)
\(24\) 8.24072 3.11867i 1.68213 0.636596i
\(25\) −2.39381 + 2.00865i −0.478763 + 0.401730i
\(26\) 11.3926 2.23426
\(27\) −2.42446 + 4.59587i −0.466588 + 0.884475i
\(28\) 4.06555 0.768316
\(29\) 5.29520 4.44320i 0.983295 0.825082i −0.00128845 0.999999i \(-0.500410\pi\)
0.984583 + 0.174917i \(0.0559657\pi\)
\(30\) −4.52208 3.69746i −0.825616 0.675061i
\(31\) −0.0783192 + 0.444170i −0.0140665 + 0.0797753i −0.991033 0.133618i \(-0.957340\pi\)
0.976966 + 0.213393i \(0.0684516\pi\)
\(32\) 0.616711 0.224464i 0.109020 0.0396801i
\(33\) −3.23664 + 5.77446i −0.563426 + 1.00520i
\(34\) −1.22522 6.94858i −0.210124 1.19167i
\(35\) −0.684671 1.18589i −0.115731 0.200451i
\(36\) −5.82759 + 10.7143i −0.971266 + 1.78572i
\(37\) −3.07675 + 5.32908i −0.505814 + 0.876096i 0.494163 + 0.869369i \(0.335475\pi\)
−0.999977 + 0.00672691i \(0.997859\pi\)
\(38\) 9.90112 + 3.60371i 1.60617 + 0.584599i
\(39\) −6.07161 + 5.22775i −0.972236 + 0.837111i
\(40\) −5.33624 4.47764i −0.843734 0.707977i
\(41\) −8.69548 7.29638i −1.35801 1.13950i −0.976592 0.215098i \(-0.930993\pi\)
−0.381414 0.924404i \(-0.624563\pi\)
\(42\) −3.23261 + 2.78333i −0.498802 + 0.429476i
\(43\) 5.96967 + 2.17278i 0.910367 + 0.331346i 0.754399 0.656416i \(-0.227928\pi\)
0.155968 + 0.987762i \(0.450150\pi\)
\(44\) −7.76900 + 13.4563i −1.17122 + 2.02861i
\(45\) 4.10670 0.104522i 0.612190 0.0155813i
\(46\) 7.12685 + 12.3441i 1.05080 + 1.82003i
\(47\) 0.807676 + 4.58056i 0.117812 + 0.668143i 0.985320 + 0.170720i \(0.0546093\pi\)
−0.867508 + 0.497423i \(0.834280\pi\)
\(48\) −3.72417 + 6.64427i −0.537538 + 0.959018i
\(49\) −0.939693 + 0.342020i −0.134242 + 0.0488600i
\(50\) 1.33642 7.57919i 0.188998 1.07186i
\(51\) 3.84151 + 3.14099i 0.537918 + 0.439827i
\(52\) −14.4065 + 12.0885i −1.99782 + 1.67637i
\(53\) 4.88750 0.671350 0.335675 0.941978i \(-0.391036\pi\)
0.335675 + 0.941978i \(0.391036\pi\)
\(54\) −2.70153 12.5089i −0.367631 1.70224i
\(55\) 5.23345 0.705679
\(56\) −3.89694 + 3.26992i −0.520750 + 0.436961i
\(57\) −6.93041 + 2.62279i −0.917955 + 0.347397i
\(58\) −2.95620 + 16.7654i −0.388168 + 2.20141i
\(59\) 5.52603 2.01131i 0.719427 0.261850i 0.0437447 0.999043i \(-0.486071\pi\)
0.675683 + 0.737193i \(0.263849\pi\)
\(60\) 9.64176 0.122680i 1.24475 0.0158379i
\(61\) −1.68726 9.56895i −0.216032 1.22518i −0.879107 0.476625i \(-0.841860\pi\)
0.663075 0.748553i \(-0.269251\pi\)
\(62\) −0.555396 0.961975i −0.0705354 0.122171i
\(63\) 0.445605 2.96672i 0.0561410 0.373772i
\(64\) 3.58940 6.21703i 0.448675 0.777128i
\(65\) 5.95229 + 2.16646i 0.738291 + 0.268716i
\(66\) −3.03506 16.0182i −0.373590 1.97170i
\(67\) 9.08244 + 7.62107i 1.10960 + 0.931062i 0.998033 0.0626951i \(-0.0199696\pi\)
0.111564 + 0.993757i \(0.464414\pi\)
\(68\) 8.92242 + 7.48680i 1.08200 + 0.907908i
\(69\) −9.46260 3.30838i −1.13916 0.398283i
\(70\) 3.16908 + 1.15345i 0.378777 + 0.137864i
\(71\) −7.24460 + 12.5480i −0.859776 + 1.48918i 0.0123657 + 0.999924i \(0.496064\pi\)
−0.872142 + 0.489253i \(0.837270\pi\)
\(72\) −3.03164 14.9571i −0.357282 1.76271i
\(73\) −0.219751 0.380619i −0.0257199 0.0445481i 0.852879 0.522109i \(-0.174854\pi\)
−0.878599 + 0.477561i \(0.841521\pi\)
\(74\) −2.63164 14.9248i −0.305922 1.73497i
\(75\) 2.76566 + 4.65254i 0.319351 + 0.537229i
\(76\) −16.3444 + 5.94887i −1.87483 + 0.682382i
\(77\) 0.663662 3.76381i 0.0756313 0.428926i
\(78\) 3.17900 19.4747i 0.359950 2.20508i
\(79\) 2.88406 2.42002i 0.324483 0.272273i −0.465965 0.884803i \(-0.654293\pi\)
0.790447 + 0.612530i \(0.209848\pi\)
\(80\) 6.02178 0.673255
\(81\) 7.17976 + 5.42688i 0.797751 + 0.602986i
\(82\) 27.9560 3.08722
\(83\) 6.86836 5.76324i 0.753900 0.632597i −0.182631 0.983182i \(-0.558461\pi\)
0.936531 + 0.350584i \(0.114017\pi\)
\(84\) 1.13446 6.94975i 0.123779 0.758280i
\(85\) 0.681227 3.86343i 0.0738895 0.419048i
\(86\) −14.7023 + 5.35120i −1.58539 + 0.577035i
\(87\) −6.11775 10.2916i −0.655891 1.10337i
\(88\) −3.37611 19.1469i −0.359894 2.04106i
\(89\) −1.23885 2.14575i −0.131318 0.227449i 0.792867 0.609395i \(-0.208588\pi\)
−0.924185 + 0.381946i \(0.875254\pi\)
\(90\) −7.58239 + 6.69842i −0.799254 + 0.706075i
\(91\) 2.31290 4.00605i 0.242457 0.419949i
\(92\) −22.1104 8.04754i −2.30517 0.839014i
\(93\) 0.737422 + 0.257823i 0.0764671 + 0.0267350i
\(94\) −8.77518 7.36325i −0.905090 0.759461i
\(95\) 4.48776 + 3.76568i 0.460434 + 0.386350i
\(96\) −0.211617 1.11686i −0.0215981 0.113989i
\(97\) 8.34707 + 3.03809i 0.847517 + 0.308471i 0.729027 0.684484i \(-0.239973\pi\)
0.118489 + 0.992955i \(0.462195\pi\)
\(98\) 1.23142 2.13288i 0.124392 0.215453i
\(99\) 8.96785 + 7.14410i 0.901303 + 0.718009i
\(100\) 6.35222 + 11.0024i 0.635222 + 1.10024i
\(101\) −3.16209 17.9331i −0.314640 1.78441i −0.574233 0.818692i \(-0.694699\pi\)
0.259593 0.965718i \(-0.416412\pi\)
\(102\) −12.2200 + 0.155484i −1.20996 + 0.0153952i
\(103\) −11.6572 + 4.24286i −1.14861 + 0.418061i −0.845017 0.534739i \(-0.820410\pi\)
−0.303597 + 0.952801i \(0.598188\pi\)
\(104\) 4.08626 23.1743i 0.400691 2.27243i
\(105\) −2.21823 + 0.839483i −0.216477 + 0.0819252i
\(106\) −9.22096 + 7.73730i −0.895619 + 0.751513i
\(107\) 3.63247 0.351164 0.175582 0.984465i \(-0.443819\pi\)
0.175582 + 0.984465i \(0.443819\pi\)
\(108\) 16.6892 + 12.9516i 1.60592 + 1.24627i
\(109\) −2.56583 −0.245762 −0.122881 0.992421i \(-0.539213\pi\)
−0.122881 + 0.992421i \(0.539213\pi\)
\(110\) −9.87364 + 8.28497i −0.941415 + 0.789941i
\(111\) 8.25113 + 6.74651i 0.783163 + 0.640350i
\(112\) 0.763630 4.33076i 0.0721562 0.409218i
\(113\) −2.69994 + 0.982698i −0.253989 + 0.0924445i −0.465877 0.884850i \(-0.654261\pi\)
0.211888 + 0.977294i \(0.432039\pi\)
\(114\) 8.92310 15.9196i 0.835725 1.49101i
\(115\) 1.37618 + 7.80470i 0.128329 + 0.727792i
\(116\) −14.0513 24.3376i −1.30463 2.25969i
\(117\) 7.24223 + 11.8377i 0.669544 + 1.09440i
\(118\) −7.24156 + 12.5427i −0.666640 + 1.15465i
\(119\) −2.69213 0.979854i −0.246787 0.0898231i
\(120\) −9.14322 + 7.87246i −0.834658 + 0.718654i
\(121\) 2.76291 + 2.31836i 0.251174 + 0.210760i
\(122\) 18.3317 + 15.3821i 1.65967 + 1.39263i
\(123\) −14.8990 + 12.8283i −1.34340 + 1.15669i
\(124\) 1.72307 + 0.627146i 0.154736 + 0.0563194i
\(125\) 5.56289 9.63520i 0.497560 0.861799i
\(126\) 3.85586 + 6.30256i 0.343507 + 0.561477i
\(127\) −10.6990 18.5312i −0.949383 1.64438i −0.746727 0.665130i \(-0.768376\pi\)
−0.202656 0.979250i \(-0.564957\pi\)
\(128\) 3.29806 + 18.7042i 0.291510 + 1.65324i
\(129\) 5.38000 9.59842i 0.473683 0.845094i
\(130\) −14.6595 + 5.33562i −1.28572 + 0.467965i
\(131\) −1.40558 + 7.97146i −0.122806 + 0.696469i 0.859780 + 0.510664i \(0.170600\pi\)
−0.982587 + 0.185805i \(0.940511\pi\)
\(132\) 20.8347 + 17.0354i 1.81343 + 1.48274i
\(133\) 3.27731 2.74999i 0.284179 0.238454i
\(134\) −29.2000 −2.52250
\(135\) 0.967265 7.04926i 0.0832490 0.606704i
\(136\) −14.5740 −1.24971
\(137\) 4.65744 3.90806i 0.397912 0.333888i −0.421774 0.906701i \(-0.638592\pi\)
0.819686 + 0.572813i \(0.194148\pi\)
\(138\) 23.0899 8.73831i 1.96555 0.743855i
\(139\) 0.266865 1.51347i 0.0226352 0.128371i −0.971396 0.237464i \(-0.923684\pi\)
0.994031 + 0.109094i \(0.0347948\pi\)
\(140\) −5.23138 + 1.90407i −0.442133 + 0.160923i
\(141\) 8.05550 0.102496i 0.678395 0.00863176i
\(142\) −6.19655 35.1424i −0.520003 2.94908i
\(143\) 8.83960 + 15.3106i 0.739205 + 1.28034i
\(144\) 10.3187 + 8.22023i 0.859891 + 0.685019i
\(145\) −4.73272 + 8.19731i −0.393031 + 0.680750i
\(146\) 1.01714 + 0.370209i 0.0841791 + 0.0306387i
\(147\) 0.322445 + 1.70177i 0.0265948 + 0.140360i
\(148\) 19.1644 + 16.0808i 1.57530 + 1.32184i
\(149\) −5.45790 4.57972i −0.447128 0.375185i 0.391241 0.920288i \(-0.372046\pi\)
−0.838369 + 0.545103i \(0.816490\pi\)
\(150\) −12.5831 4.39941i −1.02741 0.359210i
\(151\) 1.13066 + 0.411527i 0.0920118 + 0.0334896i 0.387616 0.921821i \(-0.373299\pi\)
−0.295604 + 0.955311i \(0.595521\pi\)
\(152\) 10.8819 18.8479i 0.882636 1.52877i
\(153\) 6.44123 5.69030i 0.520743 0.460034i
\(154\) 4.70632 + 8.15158i 0.379246 + 0.656873i
\(155\) −0.107246 0.608221i −0.00861419 0.0488535i
\(156\) 16.6444 + 28.0001i 1.33262 + 2.24180i
\(157\) −8.23835 + 2.99851i −0.657492 + 0.239307i −0.649153 0.760658i \(-0.724876\pi\)
−0.00833856 + 0.999965i \(0.502654\pi\)
\(158\) −1.61011 + 9.13140i −0.128094 + 0.726455i
\(159\) 1.36382 8.35482i 0.108158 0.662581i
\(160\) −0.688433 + 0.577664i −0.0544254 + 0.0456683i
\(161\) 5.78752 0.456121
\(162\) −22.1368 + 1.12757i −1.73923 + 0.0885901i
\(163\) −24.5688 −1.92437 −0.962187 0.272391i \(-0.912185\pi\)
−0.962187 + 0.272391i \(0.912185\pi\)
\(164\) −35.3519 + 29.6637i −2.76052 + 2.31635i
\(165\) 1.46035 8.94620i 0.113688 0.696461i
\(166\) −3.83446 + 21.7463i −0.297612 + 1.68784i
\(167\) −0.912045 + 0.331957i −0.0705762 + 0.0256876i −0.377067 0.926186i \(-0.623067\pi\)
0.306491 + 0.951874i \(0.400845\pi\)
\(168\) 4.50228 + 7.57397i 0.347358 + 0.584345i
\(169\) 1.45829 + 8.27038i 0.112176 + 0.636183i
\(170\) 4.83089 + 8.36734i 0.370512 + 0.641746i
\(171\) 2.54959 + 12.5789i 0.194972 + 0.961932i
\(172\) 12.9138 22.3673i 0.984667 1.70549i
\(173\) −16.1753 5.88732i −1.22978 0.447604i −0.356260 0.934387i \(-0.615948\pi\)
−0.873523 + 0.486783i \(0.838170\pi\)
\(174\) 27.8344 + 9.73166i 2.11012 + 0.737755i
\(175\) −2.39381 2.00865i −0.180955 0.151840i
\(176\) 12.8749 + 10.8033i 0.970480 + 0.814330i
\(177\) −1.89619 10.0076i −0.142527 0.752215i
\(178\) 5.73415 + 2.08706i 0.429793 + 0.156432i
\(179\) −4.24234 + 7.34794i −0.317087 + 0.549211i −0.979879 0.199593i \(-0.936038\pi\)
0.662792 + 0.748804i \(0.269371\pi\)
\(180\) 2.48074 16.5161i 0.184903 1.23104i
\(181\) −11.6691 20.2115i −0.867360 1.50231i −0.864685 0.502315i \(-0.832482\pi\)
−0.00267544 0.999996i \(-0.500852\pi\)
\(182\) 1.97830 + 11.2195i 0.146641 + 0.831643i
\(183\) −16.8282 + 0.214119i −1.24398 + 0.0158281i
\(184\) 27.6661 10.0696i 2.03957 0.742344i
\(185\) 1.46320 8.29823i 0.107577 0.610098i
\(186\) −1.79940 + 0.680978i −0.131939 + 0.0499317i
\(187\) 8.38765 7.03807i 0.613366 0.514675i
\(188\) 18.9098 1.37914
\(189\) −4.94705 1.58957i −0.359845 0.115624i
\(190\) −14.4281 −1.04673
\(191\) 6.57686 5.51864i 0.475885 0.399315i −0.373051 0.927811i \(-0.621688\pi\)
0.848936 + 0.528496i \(0.177244\pi\)
\(192\) −9.62595 7.87062i −0.694693 0.568013i
\(193\) 1.47696 8.37626i 0.106314 0.602937i −0.884373 0.466780i \(-0.845414\pi\)
0.990687 0.136156i \(-0.0434750\pi\)
\(194\) −20.5574 + 7.48230i −1.47594 + 0.537198i
\(195\) 5.36433 9.57046i 0.384148 0.685355i
\(196\) 0.705975 + 4.00378i 0.0504268 + 0.285984i
\(197\) 1.84979 + 3.20393i 0.131792 + 0.228270i 0.924367 0.381503i \(-0.124594\pi\)
−0.792575 + 0.609774i \(0.791260\pi\)
\(198\) −28.2288 + 0.718470i −2.00613 + 0.0510594i
\(199\) 0.387670 0.671464i 0.0274812 0.0475988i −0.851958 0.523611i \(-0.824585\pi\)
0.879439 + 0.476012i \(0.157918\pi\)
\(200\) −14.9380 5.43698i −1.05627 0.384453i
\(201\) 15.5620 13.3992i 1.09766 0.945104i
\(202\) 34.3552 + 28.8275i 2.41723 + 2.02829i
\(203\) 5.29520 + 4.44320i 0.371650 + 0.311852i
\(204\) 15.2879 13.1631i 1.07036 0.921600i
\(205\) 14.6062 + 5.31623i 1.02014 + 0.371301i
\(206\) 15.2761 26.4589i 1.06433 1.84348i
\(207\) −8.29589 + 15.2524i −0.576604 + 1.06012i
\(208\) 10.1711 + 17.6169i 0.705240 + 1.22151i
\(209\) 2.83929 + 16.1024i 0.196398 + 1.11383i
\(210\) 2.85604 5.09544i 0.197085 0.351619i
\(211\) 21.9480 7.98843i 1.51096 0.549946i 0.552092 0.833784i \(-0.313830\pi\)
0.958872 + 0.283838i \(0.0916077\pi\)
\(212\) 3.45045 19.5685i 0.236978 1.34397i
\(213\) 19.4284 + 15.8855i 1.33121 + 1.08846i
\(214\) −6.85315 + 5.75048i −0.468472 + 0.393095i
\(215\) −8.69915 −0.593277
\(216\) −26.4141 + 1.00870i −1.79725 + 0.0686330i
\(217\) −0.451022 −0.0306174
\(218\) 4.84080 4.06191i 0.327860 0.275107i
\(219\) −0.711959 + 0.269439i −0.0481098 + 0.0182070i
\(220\) 3.69469 20.9536i 0.249096 1.41269i
\(221\) 12.4532 4.53260i 0.837695 0.304896i
\(222\) −26.2472 + 0.333963i −1.76159 + 0.0224141i
\(223\) −2.63175 14.9254i −0.176235 0.999480i −0.936708 0.350111i \(-0.886144\pi\)
0.760473 0.649370i \(-0.224967\pi\)
\(224\) 0.328145 + 0.568364i 0.0219251 + 0.0379754i
\(225\) 8.72491 3.42944i 0.581661 0.228629i
\(226\) 3.53813 6.12822i 0.235353 0.407643i
\(227\) 1.89235 + 0.688760i 0.125600 + 0.0457146i 0.404055 0.914735i \(-0.367600\pi\)
−0.278456 + 0.960449i \(0.589823\pi\)
\(228\) 5.60838 + 29.5995i 0.371424 + 1.96027i
\(229\) −12.0380 10.1011i −0.795493 0.667498i 0.151605 0.988441i \(-0.451556\pi\)
−0.947099 + 0.320943i \(0.896000\pi\)
\(230\) −14.9518 12.5461i −0.985893 0.827262i
\(231\) −6.24877 2.18474i −0.411139 0.143745i
\(232\) 33.0434 + 12.0268i 2.16940 + 0.789598i
\(233\) −3.22116 + 5.57922i −0.211026 + 0.365507i −0.952036 0.305987i \(-0.901014\pi\)
0.741010 + 0.671494i \(0.234347\pi\)
\(234\) −32.4035 10.8685i −2.11828 0.710497i
\(235\) −3.18456 5.51581i −0.207738 0.359812i
\(236\) −4.15161 23.5449i −0.270247 1.53264i
\(237\) −3.33207 5.60538i −0.216441 0.364108i
\(238\) 6.63026 2.41322i 0.429776 0.156426i
\(239\) −1.13091 + 6.41370i −0.0731524 + 0.414868i 0.926137 + 0.377186i \(0.123108\pi\)
−0.999290 + 0.0376816i \(0.988003\pi\)
\(240\) 1.68033 10.2938i 0.108465 0.664460i
\(241\) −13.5854 + 11.3995i −0.875110 + 0.734305i −0.965168 0.261632i \(-0.915739\pi\)
0.0900573 + 0.995937i \(0.471295\pi\)
\(242\) −8.88276 −0.571005
\(243\) 11.2803 10.7589i 0.723631 0.690187i
\(244\) −39.5031 −2.52893
\(245\) 1.04898 0.880196i 0.0670167 0.0562337i
\(246\) 7.80088 47.7887i 0.497366 3.04689i
\(247\) −3.43653 + 19.4895i −0.218661 + 1.24009i
\(248\) −2.15602 + 0.784729i −0.136908 + 0.0498303i
\(249\) −7.93527 13.3491i −0.502877 0.845967i
\(250\) 4.75812 + 26.9846i 0.300930 + 1.70666i
\(251\) 9.77717 + 16.9345i 0.617129 + 1.06890i 0.990007 + 0.141019i \(0.0450378\pi\)
−0.372878 + 0.927881i \(0.621629\pi\)
\(252\) −11.5635 3.87854i −0.728433 0.244325i
\(253\) −11.0596 + 19.1558i −0.695311 + 1.20431i
\(254\) 49.5215 + 18.0244i 3.10726 + 1.13095i
\(255\) −6.41416 2.24257i −0.401670 0.140435i
\(256\) −24.8340 20.8382i −1.55212 1.30238i
\(257\) −1.70748 1.43275i −0.106510 0.0893723i 0.587978 0.808877i \(-0.299924\pi\)
−0.694487 + 0.719505i \(0.744369\pi\)
\(258\) 5.04493 + 26.6257i 0.314084 + 1.65764i
\(259\) −5.78240 2.10462i −0.359301 0.130775i
\(260\) 12.8762 22.3022i 0.798547 1.38312i
\(261\) −19.2998 + 7.58605i −1.19463 + 0.469565i
\(262\) −9.96761 17.2644i −0.615801 1.06660i
\(263\) 3.65865 + 20.7492i 0.225602 + 1.27945i 0.861531 + 0.507705i \(0.169506\pi\)
−0.635929 + 0.771748i \(0.719383\pi\)
\(264\) −33.6722 + 0.428438i −2.07238 + 0.0263685i
\(265\) −6.28905 + 2.28903i −0.386333 + 0.140614i
\(266\) −1.82965 + 10.3765i −0.112183 + 0.636223i
\(267\) −4.01369 + 1.51897i −0.245634 + 0.0929593i
\(268\) 36.9251 30.9838i 2.25556 1.89264i
\(269\) 3.29751 0.201053 0.100526 0.994934i \(-0.467947\pi\)
0.100526 + 0.994934i \(0.467947\pi\)
\(270\) 9.33465 + 14.8307i 0.568089 + 0.902566i
\(271\) 10.3400 0.628108 0.314054 0.949405i \(-0.398313\pi\)
0.314054 + 0.949405i \(0.398313\pi\)
\(272\) 9.65109 8.09823i 0.585183 0.491027i
\(273\) −6.20266 5.07158i −0.375402 0.306946i
\(274\) −2.60015 + 14.7462i −0.157081 + 0.890850i
\(275\) 11.2227 4.08474i 0.676756 0.246319i
\(276\) −19.9264 + 35.5505i −1.19943 + 2.13989i
\(277\) 4.49758 + 25.5070i 0.270233 + 1.53257i 0.753707 + 0.657211i \(0.228264\pi\)
−0.483474 + 0.875359i \(0.660625\pi\)
\(278\) 1.89246 + 3.27784i 0.113502 + 0.196592i
\(279\) 0.646500 1.18862i 0.0387050 0.0711611i
\(280\) 3.48299 6.03271i 0.208148 0.360523i
\(281\) 6.23984 + 2.27112i 0.372238 + 0.135483i 0.521363 0.853335i \(-0.325424\pi\)
−0.149126 + 0.988818i \(0.547646\pi\)
\(282\) −15.0356 + 12.9459i −0.895355 + 0.770915i
\(283\) −7.12938 5.98226i −0.423798 0.355608i 0.405808 0.913958i \(-0.366990\pi\)
−0.829606 + 0.558350i \(0.811435\pi\)
\(284\) 45.1250 + 37.8644i 2.67768 + 2.24684i
\(285\) 7.68942 6.62071i 0.455482 0.392177i
\(286\) −40.9151 14.8919i −2.41936 0.880575i
\(287\) 5.67557 9.83038i 0.335019 0.580269i
\(288\) −1.96823 + 0.0500948i −0.115979 + 0.00295187i
\(289\) 4.39617 + 7.61438i 0.258598 + 0.447905i
\(290\) −4.04805 22.9576i −0.237710 1.34812i
\(291\) 7.52256 13.4209i 0.440980 0.786750i
\(292\) −1.67905 + 0.611125i −0.0982592 + 0.0357634i
\(293\) 0.734552 4.16585i 0.0429130 0.243372i −0.955804 0.294003i \(-0.905012\pi\)
0.998717 + 0.0506316i \(0.0161234\pi\)
\(294\) −3.30238 2.70018i −0.192598 0.157477i
\(295\) −6.16869 + 5.17615i −0.359155 + 0.301367i
\(296\) −31.3034 −1.81947
\(297\) 14.7147 13.3364i 0.853834 0.773855i
\(298\) 17.5471 1.01648
\(299\) −20.5084 + 17.2086i −1.18603 + 0.995201i
\(300\) 20.5802 7.78853i 1.18820 0.449671i
\(301\) −1.10315 + 6.25628i −0.0635846 + 0.360606i
\(302\) −2.78463 + 1.01352i −0.160237 + 0.0583216i
\(303\) −31.5377 + 0.401278i −1.81179 + 0.0230528i
\(304\) 3.26698 + 18.5280i 0.187374 + 1.06265i
\(305\) 6.65265 + 11.5227i 0.380930 + 0.659789i
\(306\) −3.14409 + 20.9325i −0.179736 + 1.19663i
\(307\) −3.73798 + 6.47438i −0.213338 + 0.369512i −0.952757 0.303733i \(-0.901767\pi\)
0.739419 + 0.673245i \(0.235100\pi\)
\(308\) −14.6009 5.31431i −0.831966 0.302811i
\(309\) 4.00002 + 21.1110i 0.227553 + 1.20096i
\(310\) 1.16520 + 0.977716i 0.0661787 + 0.0555305i
\(311\) −0.0174911 0.0146768i −0.000991828 0.000832242i 0.642292 0.766460i \(-0.277984\pi\)
−0.643283 + 0.765628i \(0.722428\pi\)
\(312\) −38.4746 13.4518i −2.17819 0.761556i
\(313\) 10.8870 + 3.96254i 0.615369 + 0.223976i 0.630851 0.775904i \(-0.282706\pi\)
−0.0154817 + 0.999880i \(0.504928\pi\)
\(314\) 10.7959 18.6991i 0.609248 1.05525i
\(315\) 0.816055 + 4.02616i 0.0459795 + 0.226848i
\(316\) −7.65314 13.2556i −0.430523 0.745687i
\(317\) −3.79166 21.5036i −0.212961 1.20776i −0.884410 0.466711i \(-0.845439\pi\)
0.671449 0.741051i \(-0.265672\pi\)
\(318\) 10.6533 + 17.9216i 0.597408 + 1.00499i
\(319\) −24.8251 + 9.03560i −1.38994 + 0.505896i
\(320\) −1.70700 + 9.68090i −0.0954244 + 0.541179i
\(321\) 1.01361 6.20943i 0.0565741 0.346577i
\(322\) −10.9190 + 9.16210i −0.608490 + 0.510584i
\(323\) 12.2567 0.681981
\(324\) 26.7968 24.9150i 1.48871 1.38416i
\(325\) 14.4552 0.801827
\(326\) 46.3524 38.8943i 2.56722 2.15415i
\(327\) −0.715973 + 4.38610i −0.0395934 + 0.242552i
\(328\) 10.0272 56.8671i 0.553659 3.13996i
\(329\) −4.37072 + 1.59081i −0.240965 + 0.0877043i
\(330\) 11.4074 + 19.1901i 0.627956 + 1.05638i
\(331\) −0.722134 4.09543i −0.0396921 0.225105i 0.958509 0.285063i \(-0.0920145\pi\)
−0.998201 + 0.0599578i \(0.980903\pi\)
\(332\) −18.2258 31.5681i −1.00027 1.73252i
\(333\) 13.8351 12.2221i 0.758157 0.669769i
\(334\) 1.19519 2.07012i 0.0653977 0.113272i
\(335\) −15.2562 5.55280i −0.833535 0.303382i
\(336\) −7.19003 2.51383i −0.392248 0.137141i
\(337\) −17.4364 14.6309i −0.949824 0.796997i 0.0294442 0.999566i \(-0.490626\pi\)
−0.979268 + 0.202570i \(0.935071\pi\)
\(338\) −15.8439 13.2946i −0.861796 0.723133i
\(339\) 0.926454 + 4.88956i 0.0503181 + 0.265565i
\(340\) −14.9874 5.45497i −0.812806 0.295837i
\(341\) 0.861875 1.49281i 0.0466732 0.0808403i
\(342\) −24.7235 19.6956i −1.33690 1.06502i
\(343\) −0.500000 0.866025i −0.0269975 0.0467610i
\(344\) 5.61183 + 31.8263i 0.302570 + 1.71596i
\(345\) 13.7256 0.174641i 0.738959 0.00940236i
\(346\) 39.8370 14.4995i 2.14165 0.779497i
\(347\) 2.67435 15.1670i 0.143566 0.814205i −0.824941 0.565219i \(-0.808792\pi\)
0.968507 0.248986i \(-0.0800973\pi\)
\(348\) −45.5243 + 17.2285i −2.44036 + 0.923545i
\(349\) 9.24132 7.75439i 0.494677 0.415083i −0.361022 0.932557i \(-0.617572\pi\)
0.855699 + 0.517474i \(0.173128\pi\)
\(350\) 7.69611 0.411374
\(351\) 22.2566 9.07683i 1.18797 0.484485i
\(352\) −2.50826 −0.133691
\(353\) −12.4158 + 10.4181i −0.660829 + 0.554501i −0.910335 0.413872i \(-0.864176\pi\)
0.249506 + 0.968373i \(0.419732\pi\)
\(354\) 19.4202 + 15.8789i 1.03217 + 0.843952i
\(355\) 3.44530 19.5393i 0.182857 1.03704i
\(356\) −9.46571 + 3.44524i −0.501682 + 0.182597i
\(357\) −2.42620 + 4.32857i −0.128408 + 0.229092i
\(358\) −3.62861 20.5789i −0.191778 1.08763i
\(359\) −3.17922 5.50657i −0.167793 0.290626i 0.769851 0.638224i \(-0.220331\pi\)
−0.937644 + 0.347598i \(0.886997\pi\)
\(360\) 10.9061 + 17.8264i 0.574799 + 0.939534i
\(361\) 0.348395 0.603438i 0.0183366 0.0317599i
\(362\) 54.0119 + 19.6587i 2.83880 + 1.03324i
\(363\) 4.73403 4.07607i 0.248472 0.213938i
\(364\) −14.4065 12.0885i −0.755107 0.633610i
\(365\) 0.461026 + 0.386847i 0.0241312 + 0.0202485i
\(366\) 31.4098 27.0444i 1.64182 1.41363i
\(367\) 13.4234 + 4.88572i 0.700696 + 0.255032i 0.667708 0.744423i \(-0.267275\pi\)
0.0329880 + 0.999456i \(0.489498\pi\)
\(368\) −12.7255 + 22.0412i −0.663363 + 1.14898i
\(369\) 17.7716 + 29.0484i 0.925151 + 1.51220i
\(370\) 10.3762 + 17.9721i 0.539434 + 0.934327i
\(371\) 0.848706 + 4.81325i 0.0440626 + 0.249892i
\(372\) 1.55287 2.77046i 0.0805124 0.143642i
\(373\) 15.5058 5.64364i 0.802858 0.292217i 0.0921879 0.995742i \(-0.470614\pi\)
0.710670 + 0.703525i \(0.248392\pi\)
\(374\) −4.68265 + 26.5566i −0.242134 + 1.37321i
\(375\) −14.9184 12.1980i −0.770382 0.629900i
\(376\) −18.1255 + 15.2091i −0.934753 + 0.784351i
\(377\) −31.9753 −1.64681
\(378\) 11.8497 4.83262i 0.609483 0.248563i
\(379\) 36.9064 1.89575 0.947877 0.318637i \(-0.103225\pi\)
0.947877 + 0.318637i \(0.103225\pi\)
\(380\) 18.2452 15.3095i 0.935958 0.785362i
\(381\) −34.6632 + 13.1182i −1.77585 + 0.672065i
\(382\) −3.67172 + 20.8234i −0.187862 + 1.06542i
\(383\) −6.94600 + 2.52814i −0.354924 + 0.129182i −0.513328 0.858193i \(-0.671587\pi\)
0.158404 + 0.987374i \(0.449365\pi\)
\(384\) 32.8938 0.418533i 1.67860 0.0213582i
\(385\) 0.908780 + 5.15395i 0.0463157 + 0.262669i
\(386\) 10.4738 + 18.1411i 0.533102 + 0.923359i
\(387\) −14.9065 11.8751i −0.757742 0.603643i
\(388\) 18.0567 31.2750i 0.916688 1.58775i
\(389\) 6.34401 + 2.30903i 0.321654 + 0.117073i 0.497801 0.867291i \(-0.334141\pi\)
−0.176147 + 0.984364i \(0.556363\pi\)
\(390\) 5.03024 + 26.5482i 0.254716 + 1.34432i
\(391\) 12.7015 + 10.6579i 0.642345 + 0.538991i
\(392\) −3.89694 3.26992i −0.196825 0.165156i
\(393\) 13.2344 + 4.62711i 0.667587 + 0.233407i
\(394\) −8.56195 3.11630i −0.431345 0.156997i
\(395\) −2.57770 + 4.46471i −0.129698 + 0.224644i
\(396\) 34.9345 30.8618i 1.75552 1.55086i
\(397\) −15.0941 26.1438i −0.757552 1.31212i −0.944095 0.329672i \(-0.893062\pi\)
0.186543 0.982447i \(-0.440272\pi\)
\(398\) 0.331587 + 1.88052i 0.0166209 + 0.0942620i
\(399\) −3.78640 6.36968i −0.189557 0.318883i
\(400\) 12.9132 4.70003i 0.645661 0.235002i
\(401\) −1.45414 + 8.24685i −0.0726164 + 0.411828i 0.926732 + 0.375724i \(0.122606\pi\)
−0.999348 + 0.0361040i \(0.988505\pi\)
\(402\) −8.14802 + 49.9153i −0.406386 + 2.48955i
\(403\) 1.59823 1.34107i 0.0796133 0.0668035i
\(404\) −74.0326 −3.68326
\(405\) −11.7803 3.62050i −0.585367 0.179904i
\(406\) −17.0241 −0.844891
\(407\) 18.0158 15.1170i 0.893008 0.749322i
\(408\) −4.06676 + 24.9132i −0.201334 + 1.23339i
\(409\) −0.787516 + 4.46622i −0.0389401 + 0.220840i −0.998068 0.0621330i \(-0.980210\pi\)
0.959128 + 0.282973i \(0.0913208\pi\)
\(410\) −35.9727 + 13.0930i −1.77656 + 0.646616i
\(411\) −5.38091 9.05206i −0.265421 0.446505i
\(412\) 8.75782 + 49.6681i 0.431467 + 2.44697i
\(413\) 2.94034 + 5.09281i 0.144685 + 0.250601i
\(414\) −8.49444 41.9089i −0.417479 2.05971i
\(415\) −6.13876 + 10.6327i −0.301340 + 0.521936i
\(416\) −2.85278 1.03833i −0.139869 0.0509081i
\(417\) −2.51269 0.878506i −0.123047 0.0430206i
\(418\) −30.8481 25.8847i −1.50883 1.26606i
\(419\) 25.2422 + 21.1807i 1.23316 + 1.03474i 0.998027 + 0.0627817i \(0.0199972\pi\)
0.235133 + 0.971963i \(0.424447\pi\)
\(420\) 1.79509 + 9.47398i 0.0875914 + 0.462283i
\(421\) −29.8558 10.8666i −1.45508 0.529608i −0.511078 0.859534i \(-0.670754\pi\)
−0.944007 + 0.329927i \(0.892976\pi\)
\(422\) −28.7617 + 49.8167i −1.40010 + 2.42504i
\(423\) 2.07261 13.7989i 0.100774 0.670924i
\(424\) 12.4316 + 21.5322i 0.603732 + 1.04569i
\(425\) −1.55459 8.81653i −0.0754088 0.427665i
\(426\) −61.8024 + 0.786360i −2.99433 + 0.0380993i
\(427\) 9.13058 3.32326i 0.441860 0.160824i
\(428\) 2.56443 14.5436i 0.123956 0.702991i
\(429\) 28.6390 10.8383i 1.38270 0.523280i
\(430\) 16.4122 13.7714i 0.791465 0.664118i
\(431\) −8.24222 −0.397014 −0.198507 0.980100i \(-0.563609\pi\)
−0.198507 + 0.980100i \(0.563609\pi\)
\(432\) 16.9312 15.3452i 0.814603 0.738299i
\(433\) −25.7918 −1.23947 −0.619736 0.784810i \(-0.712760\pi\)
−0.619736 + 0.784810i \(0.712760\pi\)
\(434\) 0.850917 0.714004i 0.0408453 0.0342733i
\(435\) 12.6921 + 10.3776i 0.608538 + 0.497569i
\(436\) −1.81141 + 10.2730i −0.0867509 + 0.491989i
\(437\) −23.2671 + 8.46853i −1.11302 + 0.405105i
\(438\) 0.916668 1.63542i 0.0438001 0.0781434i
\(439\) −2.61106 14.8080i −0.124619 0.706749i −0.981533 0.191290i \(-0.938733\pi\)
0.856915 0.515458i \(-0.172378\pi\)
\(440\) 13.3115 + 23.0563i 0.634602 + 1.09916i
\(441\) 2.99903 0.0763303i 0.142811 0.00363478i
\(442\) −16.3193 + 28.2658i −0.776229 + 1.34447i
\(443\) −12.7996 4.65868i −0.608128 0.221340i 0.0195561 0.999809i \(-0.493775\pi\)
−0.627684 + 0.778468i \(0.715997\pi\)
\(444\) 32.8366 28.2729i 1.55836 1.34177i
\(445\) 2.59905 + 2.18086i 0.123207 + 0.103383i
\(446\) 28.5933 + 23.9926i 1.35393 + 1.13608i
\(447\) −9.35167 + 8.05194i −0.442319 + 0.380844i
\(448\) 6.74587 + 2.45530i 0.318712 + 0.116002i
\(449\) −15.9353 + 27.6007i −0.752032 + 1.30256i 0.194804 + 0.980842i \(0.437593\pi\)
−0.946836 + 0.321716i \(0.895740\pi\)
\(450\) −11.0317 + 20.2823i −0.520039 + 0.956118i
\(451\) 21.6913 + 37.5705i 1.02140 + 1.76912i
\(452\) 2.02842 + 11.5037i 0.0954088 + 0.541090i
\(453\) 1.01898 1.81795i 0.0478756 0.0854146i
\(454\) −4.66055 + 1.69630i −0.218730 + 0.0796113i
\(455\) −1.09994 + 6.23806i −0.0515659 + 0.292445i
\(456\) −29.1827 23.8611i −1.36660 1.11740i
\(457\) 1.00782 0.845660i 0.0471438 0.0395583i −0.618911 0.785461i \(-0.712426\pi\)
0.666055 + 0.745903i \(0.267982\pi\)
\(458\) 38.7022 1.80843
\(459\) −7.92978 12.5986i −0.370130 0.588054i
\(460\) 32.2198 1.50226
\(461\) 2.72790 2.28898i 0.127051 0.106609i −0.577048 0.816710i \(-0.695795\pi\)
0.704099 + 0.710102i \(0.251351\pi\)
\(462\) 15.2478 5.77047i 0.709391 0.268467i
\(463\) 3.33596 18.9192i 0.155035 0.879248i −0.803719 0.595010i \(-0.797148\pi\)
0.958754 0.284238i \(-0.0917407\pi\)
\(464\) −28.5645 + 10.3966i −1.32608 + 0.482652i
\(465\) −1.06963 + 0.0136098i −0.0496031 + 0.000631139i
\(466\) −2.75517 15.6253i −0.127631 0.723830i
\(467\) −0.428466 0.742125i −0.0198270 0.0343414i 0.855942 0.517072i \(-0.172978\pi\)
−0.875769 + 0.482731i \(0.839645\pi\)
\(468\) 52.5085 20.6392i 2.42721 0.954045i
\(469\) −5.92814 + 10.2678i −0.273736 + 0.474125i
\(470\) 14.7401 + 5.36495i 0.679909 + 0.247467i
\(471\) 2.82689 + 14.9195i 0.130256 + 0.687456i
\(472\) 22.9166 + 19.2293i 1.05482 + 0.885102i
\(473\) −18.5992 15.6066i −0.855194 0.717593i
\(474\) 15.1602 + 5.30040i 0.696329 + 0.243456i
\(475\) 12.5628 + 4.57248i 0.576420 + 0.209800i
\(476\) −5.82370 + 10.0869i −0.266929 + 0.462334i
\(477\) −13.9014 4.66268i −0.636501 0.213490i
\(478\) −8.01978 13.8907i −0.366816 0.635344i
\(479\) −3.91199 22.1860i −0.178743 1.01370i −0.933734 0.357968i \(-0.883470\pi\)
0.754991 0.655736i \(-0.227641\pi\)
\(480\) 0.795372 + 1.33802i 0.0363036 + 0.0610718i
\(481\) 26.7482 9.73554i 1.21961 0.443902i
\(482\) 7.58442 43.0134i 0.345461 1.95921i
\(483\) 1.61496 9.89334i 0.0734832 0.450162i
\(484\) 11.2327 9.42539i 0.510579 0.428427i
\(485\) −12.1636 −0.552318
\(486\) −4.24959 + 38.1558i −0.192765 + 1.73078i
\(487\) 17.3832 0.787710 0.393855 0.919173i \(-0.371141\pi\)
0.393855 + 0.919173i \(0.371141\pi\)
\(488\) 37.8649 31.7724i 1.71406 1.43827i
\(489\) −6.85570 + 41.9985i −0.310025 + 1.89924i
\(490\) −0.585622 + 3.32123i −0.0264557 + 0.150038i
\(491\) −18.3644 + 6.68409i −0.828773 + 0.301649i −0.721355 0.692565i \(-0.756480\pi\)
−0.107418 + 0.994214i \(0.534258\pi\)
\(492\) 40.8433 + 68.7088i 1.84136 + 3.09763i
\(493\) 3.43882 + 19.5025i 0.154876 + 0.878348i
\(494\) −24.3700 42.2100i −1.09646 1.89912i
\(495\) −14.8854 4.99272i −0.669047 0.224406i
\(496\) 0.991701 1.71768i 0.0445287 0.0771259i
\(497\) −13.6154 4.95560i −0.610734 0.222289i
\(498\) 36.1037 + 12.6228i 1.61785 + 0.565643i
\(499\) 16.0627 + 13.4782i 0.719064 + 0.603366i 0.927126 0.374749i \(-0.122271\pi\)
−0.208062 + 0.978116i \(0.566716\pi\)
\(500\) −34.6500 29.0748i −1.54959 1.30026i
\(501\) 0.312958 + 1.65170i 0.0139819 + 0.0737927i
\(502\) −45.2547 16.4714i −2.01982 0.735153i
\(503\) −7.77597 + 13.4684i −0.346713 + 0.600525i −0.985664 0.168723i \(-0.946036\pi\)
0.638950 + 0.769248i \(0.279369\pi\)
\(504\) 14.2035 5.58286i 0.632672 0.248680i
\(505\) 12.4677 + 21.5947i 0.554805 + 0.960950i
\(506\) −9.45963 53.6482i −0.420532 2.38495i
\(507\) 14.5445 0.185061i 0.645945 0.00821886i
\(508\) −81.7482 + 29.7539i −3.62699 + 1.32012i
\(509\) 0.721162 4.08991i 0.0319649 0.181282i −0.964645 0.263552i \(-0.915106\pi\)
0.996610 + 0.0822701i \(0.0262170\pi\)
\(510\) 15.6514 5.92321i 0.693054 0.262284i
\(511\) 0.336677 0.282506i 0.0148937 0.0124973i
\(512\) 41.8556 1.84977
\(513\) 22.2141 0.848309i 0.980777 0.0374538i
\(514\) 5.48955 0.242134
\(515\) 13.0129 10.9191i 0.573415 0.481152i
\(516\) −34.6318 28.3166i −1.52458 1.24657i
\(517\) 3.08684 17.5063i 0.135759 0.769927i
\(518\) 14.2411 5.18333i 0.625717 0.227742i
\(519\) −14.5775 + 26.0076i −0.639881 + 1.14161i
\(520\) 5.59549 + 31.7336i 0.245378 + 1.39161i
\(521\) −19.5989 33.9464i −0.858645 1.48722i −0.873222 0.487323i \(-0.837973\pi\)
0.0145768 0.999894i \(-0.495360\pi\)
\(522\) 24.4025 44.8653i 1.06807 1.96370i
\(523\) 9.23288 15.9918i 0.403726 0.699273i −0.590447 0.807077i \(-0.701048\pi\)
0.994172 + 0.107803i \(0.0343817\pi\)
\(524\) 30.9237 + 11.2553i 1.35091 + 0.491690i
\(525\) −4.10161 + 3.53155i −0.179009 + 0.154130i
\(526\) −39.7502 33.3544i −1.73319 1.45432i
\(527\) −0.989833 0.830569i −0.0431178 0.0361801i
\(528\) 22.0601 18.9941i 0.960041 0.826611i
\(529\) −9.86246 3.58964i −0.428803 0.156071i
\(530\) 8.24146 14.2746i 0.357986 0.620050i
\(531\) −17.6363 + 0.448874i −0.765351 + 0.0194795i
\(532\) −8.69666 15.0631i −0.377048 0.653066i
\(533\) 9.11793 + 51.7103i 0.394941 + 2.23982i
\(534\) 5.16774 9.21973i 0.223630 0.398977i
\(535\) −4.67411 + 1.70124i −0.202080 + 0.0735509i
\(536\) −10.4734 + 59.3977i −0.452383 + 2.56559i
\(537\) 11.3770 + 9.30234i 0.490952 + 0.401425i
\(538\) −6.22122 + 5.22022i −0.268216 + 0.225060i
\(539\) 3.82187 0.164620
\(540\) −27.5408 8.84932i −1.18517 0.380814i
\(541\) 9.65339 0.415031 0.207516 0.978232i \(-0.433462\pi\)
0.207516 + 0.978232i \(0.433462\pi\)
\(542\) −19.5078 + 16.3690i −0.837931 + 0.703107i
\(543\) −37.8063 + 14.3077i −1.62242 + 0.614001i
\(544\) −0.326494 + 1.85164i −0.0139983 + 0.0793885i
\(545\) 3.30161 1.20169i 0.141426 0.0514747i
\(546\) 19.7309 0.251052i 0.844404 0.0107440i
\(547\) 0.251399 + 1.42575i 0.0107490 + 0.0609609i 0.989710 0.143085i \(-0.0457021\pi\)
−0.978961 + 0.204045i \(0.934591\pi\)
\(548\) −12.3590 21.4064i −0.527949 0.914434i
\(549\) −4.32975 + 28.8263i −0.184789 + 1.23028i
\(550\) −14.7068 + 25.4729i −0.627099 + 1.08617i
\(551\) −27.7893 10.1145i −1.18387 0.430892i
\(552\) −9.49331 50.1030i −0.404062 2.13253i
\(553\) 2.88406 + 2.42002i 0.122643 + 0.102910i
\(554\) −48.8650 41.0026i −2.07607 1.74203i
\(555\) −13.7769 4.81678i −0.584797 0.204461i
\(556\) −5.87119 2.13694i −0.248994 0.0906264i
\(557\) 14.9421 25.8804i 0.633116 1.09659i −0.353795 0.935323i \(-0.615109\pi\)
0.986911 0.161266i \(-0.0515577\pi\)
\(558\) 0.661973 + 3.26597i 0.0280236 + 0.138259i
\(559\) −14.6934 25.4496i −0.621463 1.07641i
\(560\) 1.04567 + 5.93029i 0.0441876 + 0.250601i
\(561\) −9.69056 16.3020i −0.409136 0.688270i
\(562\) −15.3677 + 5.59338i −0.648246 + 0.235942i
\(563\) 7.33953 41.6245i 0.309324 1.75427i −0.293093 0.956084i \(-0.594684\pi\)
0.602417 0.798182i \(-0.294204\pi\)
\(564\) 5.27660 32.3248i 0.222185 1.36112i
\(565\) 3.01394 2.52900i 0.126797 0.106396i
\(566\) 22.9210 0.963440
\(567\) −4.09768 + 8.01305i −0.172086 + 0.336517i
\(568\) −73.7079 −3.09272
\(569\) −12.4306 + 10.4305i −0.521116 + 0.437269i −0.865021 0.501736i \(-0.832695\pi\)
0.343904 + 0.939005i \(0.388250\pi\)
\(570\) −4.02605 + 24.6638i −0.168633 + 1.03305i
\(571\) 5.02078 28.4742i 0.210113 1.19161i −0.679075 0.734068i \(-0.737619\pi\)
0.889188 0.457541i \(-0.151270\pi\)
\(572\) 67.5410 24.5829i 2.82403 1.02786i
\(573\) −7.59849 12.7826i −0.317432 0.534000i
\(574\) 4.85450 + 27.5313i 0.202623 + 1.14913i
\(575\) 9.04272 + 15.6624i 0.377107 + 0.653169i
\(576\) −16.1403 + 14.2586i −0.672512 + 0.594109i
\(577\) −17.0869 + 29.5954i −0.711337 + 1.23207i 0.253019 + 0.967461i \(0.418577\pi\)
−0.964355 + 0.264610i \(0.914757\pi\)
\(578\) −20.3481 7.40612i −0.846371 0.308054i
\(579\) −13.9065 4.86208i −0.577933 0.202061i
\(580\) 29.4791 + 24.7359i 1.22405 + 1.02710i
\(581\) 6.86836 + 5.76324i 0.284947 + 0.239099i
\(582\) 7.05405 + 37.2293i 0.292400 + 1.54320i
\(583\) −17.5529 6.38874i −0.726968 0.264595i
\(584\) 1.11789 1.93624i 0.0462587 0.0801224i
\(585\) −14.8631 11.8405i −0.614515 0.489544i
\(586\) 5.20904 + 9.02232i 0.215183 + 0.372709i
\(587\) −0.0510472 0.289503i −0.00210694 0.0119491i 0.983736 0.179620i \(-0.0574867\pi\)
−0.985843 + 0.167670i \(0.946376\pi\)
\(588\) 7.04116 0.0895902i 0.290373 0.00369464i
\(589\) 1.81321 0.659954i 0.0747119 0.0271929i
\(590\) 3.44385 19.5310i 0.141781 0.804080i
\(591\) 5.99304 2.26805i 0.246521 0.0932950i
\(592\) 20.7295 17.3941i 0.851977 0.714893i
\(593\) 24.0123 0.986068 0.493034 0.870010i \(-0.335888\pi\)
0.493034 + 0.870010i \(0.335888\pi\)
\(594\) −6.64883 + 48.4555i −0.272805 + 1.98815i
\(595\) 3.92303 0.160829
\(596\) −22.1893 + 18.6191i −0.908910 + 0.762666i
\(597\) −1.03964 0.850059i −0.0425497 0.0347906i
\(598\) 11.4494 64.9330i 0.468202 2.65531i
\(599\) 17.5532 6.38885i 0.717205 0.261041i 0.0424660 0.999098i \(-0.486479\pi\)
0.674739 + 0.738057i \(0.264256\pi\)
\(600\) −13.4624 + 24.0182i −0.549601 + 0.980540i
\(601\) 6.05423 + 34.3353i 0.246957 + 1.40056i 0.815903 + 0.578189i \(0.196240\pi\)
−0.568946 + 0.822375i \(0.692648\pi\)
\(602\) −7.82294 13.5497i −0.318839 0.552245i
\(603\) −18.5624 30.3411i −0.755920 1.23558i
\(604\) 2.44588 4.23639i 0.0995214 0.172376i
\(605\) −4.64099 1.68918i −0.188683 0.0686750i
\(606\) 58.8649 50.6837i 2.39122 2.05888i
\(607\) 25.1510 + 21.1042i 1.02085 + 0.856594i 0.989734 0.142922i \(-0.0456498\pi\)
0.0311149 + 0.999516i \(0.490094\pi\)
\(608\) −2.15087 1.80479i −0.0872291 0.0731939i
\(609\) 9.07291 7.81192i 0.367653 0.316555i
\(610\) −30.7925 11.2076i −1.24675 0.453781i
\(611\) 10.7578 18.6330i 0.435214 0.753812i
\(612\) −18.2354 29.8065i −0.737121 1.20486i
\(613\) 14.9476 + 25.8900i 0.603728 + 1.04569i 0.992251 + 0.124248i \(0.0396519\pi\)
−0.388523 + 0.921439i \(0.627015\pi\)
\(614\) −3.19722 18.1323i −0.129029 0.731761i
\(615\) 13.1634 23.4848i 0.530801 0.946998i
\(616\) 18.2697 6.64963i 0.736108 0.267921i
\(617\) 3.70866 21.0329i 0.149305 0.846752i −0.814504 0.580158i \(-0.802991\pi\)
0.963809 0.266594i \(-0.0858982\pi\)
\(618\) −40.9669 33.4965i −1.64793 1.34743i
\(619\) −13.6531 + 11.4563i −0.548764 + 0.460468i −0.874522 0.484985i \(-0.838825\pi\)
0.325758 + 0.945453i \(0.394380\pi\)
\(620\) −2.51090 −0.100840
\(621\) 23.7580 + 18.4373i 0.953376 + 0.739862i
\(622\) 0.0562338 0.00225477
\(623\) 1.89803 1.59263i 0.0760429 0.0638076i
\(624\) 32.9529 12.4709i 1.31917 0.499237i
\(625\) 0.0676400 0.383605i 0.00270560 0.0153442i
\(626\) −26.8128 + 9.75908i −1.07166 + 0.390051i
\(627\) 28.3182 0.360315i 1.13092 0.0143896i
\(628\) 6.18932 + 35.1014i 0.246981 + 1.40070i
\(629\) −8.81459 15.2673i −0.351461 0.608747i
\(630\) −7.91332 6.30403i −0.315274 0.251158i
\(631\) 11.4052 19.7544i 0.454034 0.786410i −0.544598 0.838697i \(-0.683318\pi\)
0.998632 + 0.0522872i \(0.0166511\pi\)
\(632\) 17.9973 + 6.55047i 0.715892 + 0.260564i
\(633\) −7.53121 39.7476i −0.299339 1.57983i
\(634\) 41.1954 + 34.5670i 1.63608 + 1.37283i
\(635\) 22.4460 + 18.8345i 0.890743 + 0.747422i
\(636\) −32.4881 11.3587i −1.28824 0.450402i
\(637\) 4.34682 + 1.58211i 0.172227 + 0.0626857i
\(638\) 32.5320 56.3470i 1.28795 2.23080i
\(639\) 32.5765 28.7786i 1.28870 1.13846i
\(640\) −13.0038 22.5232i −0.514020 0.890310i
\(641\) −0.628602 3.56498i −0.0248283 0.140808i 0.969874 0.243608i \(-0.0783310\pi\)
−0.994702 + 0.102800i \(0.967220\pi\)
\(642\) 7.91770 + 13.3196i 0.312487 + 0.525682i
\(643\) −4.68571 + 1.70546i −0.184786 + 0.0672567i −0.432756 0.901511i \(-0.642459\pi\)
0.247970 + 0.968768i \(0.420237\pi\)
\(644\) 4.08584 23.1720i 0.161005 0.913103i
\(645\) −2.42742 + 14.8706i −0.0955797 + 0.585527i
\(646\) −23.1240 + 19.4033i −0.909800 + 0.763413i
\(647\) −9.33320 −0.366926 −0.183463 0.983027i \(-0.558731\pi\)
−0.183463 + 0.983027i \(0.558731\pi\)
\(648\) −5.64633 + 45.4343i −0.221809 + 1.78483i
\(649\) −22.4752 −0.882229
\(650\) −27.2717 + 22.8836i −1.06968 + 0.897570i
\(651\) −0.125854 + 0.770989i −0.00493260 + 0.0302174i
\(652\) −17.3449 + 98.3679i −0.679279 + 3.85238i
\(653\) 19.5400 7.11198i 0.764659 0.278313i 0.0698983 0.997554i \(-0.477733\pi\)
0.694761 + 0.719241i \(0.255510\pi\)
\(654\) −5.59275 9.40843i −0.218694 0.367899i
\(655\) −1.92472 10.9157i −0.0752052 0.426510i
\(656\) 24.9587 + 43.2298i 0.974474 + 1.68784i
\(657\) 0.261919 + 1.29223i 0.0102184 + 0.0504145i
\(658\) 5.72759 9.92048i 0.223285 0.386740i
\(659\) −16.6300 6.05282i −0.647812 0.235784i −0.00284675 0.999996i \(-0.500906\pi\)
−0.644966 + 0.764211i \(0.723128\pi\)
\(660\) −34.7877 12.1627i −1.35411 0.473433i
\(661\) 9.97739 + 8.37202i 0.388075 + 0.325634i 0.815863 0.578245i \(-0.196262\pi\)
−0.427787 + 0.903879i \(0.640707\pi\)
\(662\) 7.84579 + 6.58340i 0.304935 + 0.255871i
\(663\) −4.27318 22.5526i −0.165957 0.875872i
\(664\) 42.8602 + 15.5998i 1.66330 + 0.605391i
\(665\) −2.92918 + 5.07348i −0.113589 + 0.196741i
\(666\) −6.75316 + 44.9608i −0.261680 + 1.74219i
\(667\) −20.0028 34.6459i −0.774513 1.34150i
\(668\) 0.685204 + 3.88598i 0.0265113 + 0.150353i
\(669\) −26.2483 + 0.333977i −1.01482 + 0.0129123i
\(670\) 37.5735 13.6756i 1.45159 0.528335i
\(671\) −6.44851 + 36.5713i −0.248942 + 1.41182i
\(672\) 1.06314 0.402342i 0.0410116 0.0155207i
\(673\) 6.58339 5.52412i 0.253771 0.212939i −0.507023 0.861932i \(-0.669254\pi\)
0.760794 + 0.648993i \(0.224810\pi\)
\(674\) 56.0582 2.15928
\(675\) −3.42776 15.8715i −0.131935 0.610896i
\(676\) 34.1423 1.31317
\(677\) −5.45644 + 4.57849i −0.209708 + 0.175966i −0.741592 0.670852i \(-0.765929\pi\)
0.531884 + 0.846817i \(0.321484\pi\)
\(678\) −9.48845 7.75819i −0.364402 0.297952i
\(679\) −1.54248 + 8.74782i −0.0591948 + 0.335711i
\(680\) 18.7533 6.82564i 0.719156 0.261751i
\(681\) 1.70543 3.04264i 0.0653521 0.116594i
\(682\) 0.737190 + 4.18081i 0.0282285 + 0.160092i
\(683\) 4.77541 + 8.27126i 0.182726 + 0.316491i 0.942808 0.333336i \(-0.108174\pi\)
−0.760082 + 0.649827i \(0.774841\pi\)
\(684\) 52.1631 1.32764i 1.99450 0.0507635i
\(685\) −4.16270 + 7.21001i −0.159049 + 0.275480i
\(686\) 2.31431 + 0.842338i 0.0883606 + 0.0321606i
\(687\) −20.6261 + 17.7594i −0.786937 + 0.677565i
\(688\) −21.4009 17.9575i −0.815901 0.684622i
\(689\) −17.3192 14.5325i −0.659808 0.553645i
\(690\) −25.6187 + 22.0581i −0.975288 + 0.839738i
\(691\) −0.576176 0.209711i −0.0219188 0.00797778i 0.331037 0.943618i \(-0.392601\pi\)
−0.352956 + 0.935640i \(0.614824\pi\)
\(692\) −34.9909 + 60.6059i −1.33015 + 2.30389i
\(693\) −5.47831 + 10.0722i −0.208104 + 0.382610i
\(694\) 18.9650 + 32.8483i 0.719900 + 1.24690i
\(695\) 0.365430 + 2.07245i 0.0138615 + 0.0786127i
\(696\) 29.7794 53.1292i 1.12878 2.01386i
\(697\) 30.5587 11.1225i 1.15749 0.421294i
\(698\) −5.15924 + 29.2595i −0.195280 + 1.10749i
\(699\) 8.63842 + 7.06318i 0.326735 + 0.267154i
\(700\) −9.73216 + 8.16625i −0.367841 + 0.308655i
\(701\) 15.3451 0.579578 0.289789 0.957091i \(-0.406415\pi\)
0.289789 + 0.957091i \(0.406415\pi\)
\(702\) −27.6208 + 52.3586i −1.04248 + 1.97615i
\(703\) 26.3260 0.992906
\(704\) −21.0176 + 17.6358i −0.792129 + 0.664676i
\(705\) −10.3175 + 3.90462i −0.388579 + 0.147057i
\(706\) 6.93150 39.3105i 0.260871 1.47947i
\(707\) 17.1116 6.22810i 0.643547 0.234232i
\(708\) −41.4068 + 0.526851i −1.55616 + 0.0198003i
\(709\) 7.56421 + 42.8987i 0.284080 + 1.61110i 0.708554 + 0.705656i \(0.249348\pi\)
−0.424475 + 0.905440i \(0.639541\pi\)
\(710\) 24.4321 + 42.3177i 0.916922 + 1.58816i
\(711\) −10.5118 + 4.13178i −0.394222 + 0.154954i
\(712\) 6.30214 10.9156i 0.236183 0.409081i
\(713\) 2.45288 + 0.892776i 0.0918611 + 0.0334347i
\(714\) −2.27510 12.0073i −0.0851434 0.449363i
\(715\) −18.5451 15.5612i −0.693546 0.581955i
\(716\) 26.4246 + 22.1728i 0.987532 + 0.828638i
\(717\) 10.6482 + 3.72289i 0.397664 + 0.139034i
\(718\) 14.7154 + 5.35596i 0.549173 + 0.199883i
\(719\) 3.30457 5.72368i 0.123240 0.213457i −0.797804 0.602917i \(-0.794005\pi\)
0.921043 + 0.389460i \(0.127338\pi\)
\(720\) −17.1276 5.74478i −0.638307 0.214095i
\(721\) −6.20264 10.7433i −0.230999 0.400101i
\(722\) 0.297994 + 1.69001i 0.0110902 + 0.0628956i
\(723\) 15.6957 + 26.4041i 0.583728 + 0.981979i
\(724\) −89.1607 + 32.4518i −3.31363 + 1.20606i
\(725\) −3.75090 + 21.2724i −0.139305 + 0.790037i
\(726\) −2.47866 + 15.1844i −0.0919916 + 0.563546i
\(727\) 17.3521 14.5602i 0.643555 0.540006i −0.261553 0.965189i \(-0.584235\pi\)
0.905108 + 0.425183i \(0.139790\pi\)
\(728\) 23.5318 0.872148
\(729\) −15.2440 22.2850i −0.564591 0.825371i
\(730\) −1.48220 −0.0548587
\(731\) −13.9421 + 11.6988i −0.515668 + 0.432697i
\(732\) −11.0230 + 67.5277i −0.407422 + 2.49589i
\(733\) −7.31406 + 41.4801i −0.270151 + 1.53210i 0.483805 + 0.875176i \(0.339254\pi\)
−0.753956 + 0.656925i \(0.771857\pi\)
\(734\) −33.0596 + 12.0327i −1.22025 + 0.444135i
\(735\) −1.21192 2.03876i −0.0447024 0.0752008i
\(736\) −0.659567 3.74059i −0.0243119 0.137880i
\(737\) −22.6566 39.2424i −0.834567 1.44551i
\(738\) −79.5144 26.6700i −2.92697 0.981738i
\(739\) −4.85846 + 8.41509i −0.178721 + 0.309554i −0.941443 0.337173i \(-0.890529\pi\)
0.762722 + 0.646727i \(0.223863\pi\)
\(740\) −32.1913 11.7167i −1.18338 0.430714i
\(741\) 32.3570 + 11.3129i 1.18866 + 0.415589i
\(742\) −9.22096 7.73730i −0.338512 0.284045i
\(743\) −23.0774 19.3642i −0.846627 0.710405i 0.112417 0.993661i \(-0.464141\pi\)
−0.959044 + 0.283256i \(0.908585\pi\)
\(744\) 0.739815 + 3.90453i 0.0271229 + 0.143147i
\(745\) 9.16789 + 3.33684i 0.335885 + 0.122252i
\(746\) −20.3195 + 35.1944i −0.743949 + 1.28856i
\(747\) −25.0336 + 9.83979i −0.915932 + 0.360019i
\(748\) −22.2574 38.5510i −0.813812 1.40956i
\(749\) 0.630771 + 3.57728i 0.0230479 + 0.130711i
\(750\) 47.4559 0.603819i 1.73285 0.0220484i
\(751\) 43.2704 15.7491i 1.57896 0.574695i 0.603983 0.796997i \(-0.293580\pi\)
0.974978 + 0.222303i \(0.0713574\pi\)
\(752\) 3.55181 20.1433i 0.129521 0.734551i
\(753\) 31.6766 11.9879i 1.15436 0.436863i
\(754\) 60.3259 50.6194i 2.19694 1.84345i
\(755\) −1.64762 −0.0599632
\(756\) −9.85677 + 18.6847i −0.358487 + 0.679556i
\(757\) 1.71039 0.0621652 0.0310826 0.999517i \(-0.490105\pi\)
0.0310826 + 0.999517i \(0.490105\pi\)
\(758\) −69.6290 + 58.4257i −2.52904 + 2.12212i
\(759\) 29.6593 + 24.2508i 1.07656 + 0.880248i
\(760\) −5.17506 + 29.3492i −0.187719 + 1.06461i
\(761\) 16.1527 5.87910i 0.585535 0.213117i −0.0322297 0.999480i \(-0.510261\pi\)
0.617764 + 0.786363i \(0.288039\pi\)
\(762\) 44.6299 79.6239i 1.61677 2.88447i
\(763\) −0.445552 2.52685i −0.0161301 0.0914781i
\(764\) −17.4523 30.2283i −0.631403 1.09362i
\(765\) −5.62331 + 10.3388i −0.203311 + 0.373799i
\(766\) 9.10236 15.7658i 0.328882 0.569640i
\(767\) −25.5623 9.30390i −0.923000 0.335944i
\(768\) −42.5510 + 36.6371i