Properties

Label 189.2.v.a.169.2
Level $189$
Weight $2$
Character 189.169
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 169.2
Character \(\chi\) \(=\) 189.169
Dual form 189.2.v.a.85.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.17921 + 0.793168i) q^{2} +(-1.72903 + 0.102202i) q^{3} +(2.58775 - 2.17138i) q^{4} +(0.443161 + 2.51329i) q^{5} +(3.68686 - 1.59413i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-1.59792 + 2.76768i) q^{8} +(2.97911 - 0.353421i) q^{9} +O(q^{10})\) \(q+(-2.17921 + 0.793168i) q^{2} +(-1.72903 + 0.102202i) q^{3} +(2.58775 - 2.17138i) q^{4} +(0.443161 + 2.51329i) q^{5} +(3.68686 - 1.59413i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-1.59792 + 2.76768i) q^{8} +(2.97911 - 0.353421i) q^{9} +(-2.95920 - 5.12549i) q^{10} +(-0.776717 + 4.40498i) q^{11} +(-4.25239 + 4.01887i) q^{12} +(-3.79638 - 1.38177i) q^{13} +(-2.17921 - 0.793168i) q^{14} +(-1.02310 - 4.30027i) q^{15} +(0.113780 - 0.645277i) q^{16} +(-3.83523 - 6.64281i) q^{17} +(-6.21178 + 3.13311i) q^{18} +(-1.85220 + 3.20810i) q^{19} +(6.60411 + 5.54151i) q^{20} +(-1.39021 - 1.03311i) q^{21} +(-1.80126 - 10.2154i) q^{22} +(-2.63630 + 2.21211i) q^{23} +(2.48000 - 4.94872i) q^{24} +(-1.42178 + 0.517485i) q^{25} +9.36908 q^{26} +(-5.11486 + 0.915548i) q^{27} +3.37807 q^{28} +(-4.86584 + 1.77102i) q^{29} +(5.64039 + 8.55970i) q^{30} +(1.10711 - 0.928979i) q^{31} +(-0.846042 - 4.79814i) q^{32} +(0.892771 - 7.69574i) q^{33} +(13.6266 + 11.4341i) q^{34} +(-1.27603 + 2.21015i) q^{35} +(6.94179 - 7.38336i) q^{36} +(0.0540049 + 0.0935393i) q^{37} +(1.49177 - 8.46023i) q^{38} +(6.70528 + 2.00112i) q^{39} +(-7.66413 - 2.78951i) q^{40} +(-0.384547 - 0.139964i) q^{41} +(3.84899 + 1.14869i) q^{42} +(-1.74698 + 9.90762i) q^{43} +(7.55495 + 13.0856i) q^{44} +(2.20848 + 7.33075i) q^{45} +(3.99046 - 6.91169i) q^{46} +(5.45009 + 4.57317i) q^{47} +(-0.130780 + 1.12733i) q^{48} +(0.173648 + 0.984808i) q^{49} +(2.68790 - 2.25542i) q^{50} +(7.31015 + 11.0937i) q^{51} +(-12.8244 + 4.66771i) q^{52} +0.954837 q^{53} +(10.4202 - 6.05211i) q^{54} -11.4152 q^{55} +(-3.00311 + 1.09304i) q^{56} +(2.87464 - 5.73621i) q^{57} +(9.19898 - 7.71886i) q^{58} +(-1.41087 - 8.00142i) q^{59} +(-11.9851 - 8.90649i) q^{60} +(-7.67594 - 6.44088i) q^{61} +(-1.67580 + 2.90257i) q^{62} +(2.50931 + 1.64420i) q^{63} +(6.30467 + 10.9200i) q^{64} +(1.79038 - 10.1537i) q^{65} +(4.15847 + 17.4787i) q^{66} +(5.16475 + 1.87982i) q^{67} +(-24.3487 - 8.86221i) q^{68} +(4.33216 - 4.09425i) q^{69} +(1.02772 - 5.82849i) q^{70} +(-3.33968 - 5.78450i) q^{71} +(-3.78223 + 8.80997i) q^{72} +(-4.45967 + 7.72438i) q^{73} +(-0.191880 - 0.161007i) q^{74} +(2.40541 - 1.04006i) q^{75} +(2.17298 + 12.3236i) q^{76} +(-3.42647 + 2.87515i) q^{77} +(-16.1994 + 0.957539i) q^{78} +(-1.65874 + 0.603732i) q^{79} +1.67219 q^{80} +(8.75019 - 2.10576i) q^{81} +0.949023 q^{82} +(-2.72698 + 0.992539i) q^{83} +(-5.84080 + 0.345246i) q^{84} +(14.9957 - 12.5829i) q^{85} +(-4.05137 - 22.9764i) q^{86} +(8.23220 - 3.55945i) q^{87} +(-10.9504 - 9.18852i) q^{88} +(0.103017 - 0.178431i) q^{89} +(-10.6272 - 14.2235i) q^{90} +(-2.02001 - 3.49876i) q^{91} +(-2.01874 + 11.4488i) q^{92} +(-1.81929 + 1.71938i) q^{93} +(-15.5042 - 5.64307i) q^{94} +(-8.88371 - 3.23341i) q^{95} +(1.95321 + 8.20968i) q^{96} +(-0.561099 + 3.18215i) q^{97} +(-1.15953 - 2.00837i) q^{98} +(-0.757110 + 13.3974i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17921 + 0.793168i −1.54093 + 0.560854i −0.966269 0.257534i \(-0.917090\pi\)
−0.574665 + 0.818389i \(0.694868\pi\)
\(3\) −1.72903 + 0.102202i −0.998258 + 0.0590064i
\(4\) 2.58775 2.17138i 1.29388 1.08569i
\(5\) 0.443161 + 2.51329i 0.198188 + 1.12398i 0.907806 + 0.419391i \(0.137756\pi\)
−0.709618 + 0.704587i \(0.751132\pi\)
\(6\) 3.68686 1.59413i 1.50516 0.650802i
\(7\) 0.766044 + 0.642788i 0.289538 + 0.242951i
\(8\) −1.59792 + 2.76768i −0.564951 + 0.978523i
\(9\) 2.97911 0.353421i 0.993036 0.117807i
\(10\) −2.95920 5.12549i −0.935782 1.62082i
\(11\) −0.776717 + 4.40498i −0.234189 + 1.32815i 0.610126 + 0.792304i \(0.291119\pi\)
−0.844315 + 0.535847i \(0.819992\pi\)
\(12\) −4.25239 + 4.01887i −1.22756 + 1.16015i
\(13\) −3.79638 1.38177i −1.05293 0.383233i −0.243159 0.969986i \(-0.578184\pi\)
−0.809766 + 0.586753i \(0.800406\pi\)
\(14\) −2.17921 0.793168i −0.582418 0.211983i
\(15\) −1.02310 4.30027i −0.264164 1.11033i
\(16\) 0.113780 0.645277i 0.0284449 0.161319i
\(17\) −3.83523 6.64281i −0.930180 1.61112i −0.783011 0.622008i \(-0.786317\pi\)
−0.147169 0.989111i \(-0.547016\pi\)
\(18\) −6.21178 + 3.13311i −1.46413 + 0.738482i
\(19\) −1.85220 + 3.20810i −0.424923 + 0.735989i −0.996413 0.0846203i \(-0.973032\pi\)
0.571490 + 0.820609i \(0.306366\pi\)
\(20\) 6.60411 + 5.54151i 1.47672 + 1.23912i
\(21\) −1.39021 1.03311i −0.303369 0.225443i
\(22\) −1.80126 10.2154i −0.384030 2.17794i
\(23\) −2.63630 + 2.21211i −0.549706 + 0.461258i −0.874841 0.484410i \(-0.839034\pi\)
0.325136 + 0.945667i \(0.394590\pi\)
\(24\) 2.48000 4.94872i 0.506227 1.01015i
\(25\) −1.42178 + 0.517485i −0.284356 + 0.103497i
\(26\) 9.36908 1.83743
\(27\) −5.11486 + 0.915548i −0.984355 + 0.176197i
\(28\) 3.37807 0.638396
\(29\) −4.86584 + 1.77102i −0.903565 + 0.328871i −0.751680 0.659528i \(-0.770756\pi\)
−0.151884 + 0.988398i \(0.548534\pi\)
\(30\) 5.64039 + 8.55970i 1.02979 + 1.56278i
\(31\) 1.10711 0.928979i 0.198844 0.166850i −0.537929 0.842990i \(-0.680793\pi\)
0.736773 + 0.676140i \(0.236349\pi\)
\(32\) −0.846042 4.79814i −0.149561 0.848200i
\(33\) 0.892771 7.69574i 0.155411 1.33966i
\(34\) 13.6266 + 11.4341i 2.33695 + 1.96093i
\(35\) −1.27603 + 2.21015i −0.215689 + 0.373584i
\(36\) 6.94179 7.38336i 1.15696 1.23056i
\(37\) 0.0540049 + 0.0935393i 0.00887836 + 0.0153778i 0.870430 0.492291i \(-0.163841\pi\)
−0.861552 + 0.507669i \(0.830507\pi\)
\(38\) 1.49177 8.46023i 0.241997 1.37243i
\(39\) 6.70528 + 2.00112i 1.07370 + 0.320436i
\(40\) −7.66413 2.78951i −1.21181 0.441061i
\(41\) −0.384547 0.139964i −0.0600561 0.0218586i 0.311817 0.950142i \(-0.399062\pi\)
−0.371874 + 0.928283i \(0.621285\pi\)
\(42\) 3.84899 + 1.14869i 0.593912 + 0.177247i
\(43\) −1.74698 + 9.90762i −0.266412 + 1.51090i 0.498571 + 0.866849i \(0.333858\pi\)
−0.764983 + 0.644050i \(0.777253\pi\)
\(44\) 7.55495 + 13.0856i 1.13895 + 1.97272i
\(45\) 2.20848 + 7.33075i 0.329220 + 1.09280i
\(46\) 3.99046 6.91169i 0.588362 1.01907i
\(47\) 5.45009 + 4.57317i 0.794978 + 0.667066i 0.946972 0.321316i \(-0.104125\pi\)
−0.151994 + 0.988381i \(0.548570\pi\)
\(48\) −0.130780 + 1.12733i −0.0188765 + 0.162716i
\(49\) 0.173648 + 0.984808i 0.0248069 + 0.140687i
\(50\) 2.68790 2.25542i 0.380127 0.318964i
\(51\) 7.31015 + 11.0937i 1.02363 + 1.55343i
\(52\) −12.8244 + 4.66771i −1.77843 + 0.647295i
\(53\) 0.954837 0.131157 0.0655785 0.997847i \(-0.479111\pi\)
0.0655785 + 0.997847i \(0.479111\pi\)
\(54\) 10.4202 6.05211i 1.41801 0.823588i
\(55\) −11.4152 −1.53923
\(56\) −3.00311 + 1.09304i −0.401308 + 0.146064i
\(57\) 2.87464 5.73621i 0.380755 0.759780i
\(58\) 9.19898 7.71886i 1.20789 1.01354i
\(59\) −1.41087 8.00142i −0.183679 1.04170i −0.927641 0.373474i \(-0.878167\pi\)
0.743962 0.668222i \(-0.232944\pi\)
\(60\) −11.9851 8.90649i −1.54727 1.14982i
\(61\) −7.67594 6.44088i −0.982804 0.824670i 0.00170609 0.999999i \(-0.499457\pi\)
−0.984510 + 0.175328i \(0.943901\pi\)
\(62\) −1.67580 + 2.90257i −0.212827 + 0.368627i
\(63\) 2.50931 + 1.64420i 0.316143 + 0.207150i
\(64\) 6.30467 + 10.9200i 0.788083 + 1.36500i
\(65\) 1.79038 10.1537i 0.222069 1.25942i
\(66\) 4.15847 + 17.4787i 0.511873 + 2.15148i
\(67\) 5.16475 + 1.87982i 0.630975 + 0.229656i 0.637656 0.770322i \(-0.279904\pi\)
−0.00668053 + 0.999978i \(0.502126\pi\)
\(68\) −24.3487 8.86221i −2.95272 1.07470i
\(69\) 4.33216 4.09425i 0.521531 0.492890i
\(70\) 1.02772 5.82849i 0.122836 0.696638i
\(71\) −3.33968 5.78450i −0.396347 0.686494i 0.596925 0.802297i \(-0.296389\pi\)
−0.993272 + 0.115803i \(0.963056\pi\)
\(72\) −3.78223 + 8.80997i −0.445740 + 1.03826i
\(73\) −4.45967 + 7.72438i −0.521965 + 0.904070i 0.477709 + 0.878518i \(0.341467\pi\)
−0.999674 + 0.0255514i \(0.991866\pi\)
\(74\) −0.191880 0.161007i −0.0223057 0.0187167i
\(75\) 2.40541 1.04006i 0.277753 0.120095i
\(76\) 2.17298 + 12.3236i 0.249258 + 1.41361i
\(77\) −3.42647 + 2.87515i −0.390482 + 0.327653i
\(78\) −16.1994 + 0.957539i −1.83423 + 0.108420i
\(79\) −1.65874 + 0.603732i −0.186623 + 0.0679252i −0.433641 0.901086i \(-0.642771\pi\)
0.247018 + 0.969011i \(0.420549\pi\)
\(80\) 1.67219 0.186957
\(81\) 8.75019 2.10576i 0.972243 0.233974i
\(82\) 0.949023 0.104802
\(83\) −2.72698 + 0.992539i −0.299325 + 0.108945i −0.487317 0.873225i \(-0.662024\pi\)
0.187992 + 0.982171i \(0.439802\pi\)
\(84\) −5.84080 + 0.345246i −0.637283 + 0.0376694i
\(85\) 14.9957 12.5829i 1.62651 1.36481i
\(86\) −4.05137 22.9764i −0.436870 2.47761i
\(87\) 8.23220 3.55945i 0.882585 0.381614i
\(88\) −10.9504 9.18852i −1.16732 0.979499i
\(89\) 0.103017 0.178431i 0.0109198 0.0189137i −0.860514 0.509427i \(-0.829857\pi\)
0.871434 + 0.490513i \(0.163191\pi\)
\(90\) −10.6272 14.2235i −1.12021 1.49929i
\(91\) −2.02001 3.49876i −0.211755 0.366770i
\(92\) −2.01874 + 11.4488i −0.210468 + 1.19362i
\(93\) −1.81929 + 1.71938i −0.188652 + 0.178292i
\(94\) −15.5042 5.64307i −1.59914 0.582038i
\(95\) −8.88371 3.23341i −0.911450 0.331741i
\(96\) 1.95321 + 8.20968i 0.199349 + 0.837897i
\(97\) −0.561099 + 3.18215i −0.0569709 + 0.323098i −0.999952 0.00974674i \(-0.996897\pi\)
0.942982 + 0.332845i \(0.108009\pi\)
\(98\) −1.15953 2.00837i −0.117131 0.202876i
\(99\) −0.757110 + 13.3974i −0.0760924 + 1.34649i
\(100\) −2.55555 + 4.42635i −0.255555 + 0.442635i
\(101\) 8.26959 + 6.93901i 0.822855 + 0.690457i 0.953639 0.300953i \(-0.0973049\pi\)
−0.130784 + 0.991411i \(0.541749\pi\)
\(102\) −24.7295 18.3773i −2.44859 1.81962i
\(103\) 1.84847 + 10.4832i 0.182135 + 1.03294i 0.929582 + 0.368617i \(0.120168\pi\)
−0.747447 + 0.664322i \(0.768720\pi\)
\(104\) 9.89061 8.29920i 0.969854 0.813804i
\(105\) 1.98042 3.95184i 0.193269 0.385660i
\(106\) −2.08079 + 0.757346i −0.202104 + 0.0735599i
\(107\) 8.61734 0.833070 0.416535 0.909120i \(-0.363244\pi\)
0.416535 + 0.909120i \(0.363244\pi\)
\(108\) −11.2480 + 13.4755i −1.08234 + 1.29668i
\(109\) 11.3161 1.08389 0.541944 0.840415i \(-0.317688\pi\)
0.541944 + 0.840415i \(0.317688\pi\)
\(110\) 24.8761 9.05417i 2.37185 0.863282i
\(111\) −0.102936 0.156213i −0.00977027 0.0148271i
\(112\) 0.501936 0.421174i 0.0474285 0.0397972i
\(113\) 3.38701 + 19.2087i 0.318623 + 1.80700i 0.551146 + 0.834409i \(0.314191\pi\)
−0.232523 + 0.972591i \(0.574698\pi\)
\(114\) −1.71466 + 14.7805i −0.160593 + 1.38432i
\(115\) −6.72799 5.64546i −0.627388 0.526441i
\(116\) −8.74604 + 15.1486i −0.812049 + 1.40651i
\(117\) −11.7982 2.77472i −1.09074 0.256523i
\(118\) 9.42104 + 16.3177i 0.867277 + 1.50217i
\(119\) 1.33196 7.55393i 0.122101 0.692468i
\(120\) 13.5366 + 4.03987i 1.23572 + 0.368788i
\(121\) −8.46393 3.08062i −0.769449 0.280056i
\(122\) 21.8362 + 7.94773i 1.97696 + 0.719553i
\(123\) 0.679199 + 0.202700i 0.0612413 + 0.0182769i
\(124\) 0.847769 4.80794i 0.0761319 0.431766i
\(125\) 4.44949 + 7.70674i 0.397974 + 0.689312i
\(126\) −6.77243 1.59275i −0.603336 0.141894i
\(127\) 1.25303 2.17031i 0.111188 0.192584i −0.805061 0.593192i \(-0.797868\pi\)
0.916250 + 0.400608i \(0.131201\pi\)
\(128\) −14.9360 12.5328i −1.32017 1.10775i
\(129\) 2.00801 17.3092i 0.176795 1.52399i
\(130\) 4.15201 + 23.5472i 0.364155 + 2.06523i
\(131\) −14.8692 + 12.4768i −1.29913 + 1.09010i −0.308837 + 0.951115i \(0.599940\pi\)
−0.990294 + 0.138985i \(0.955616\pi\)
\(132\) −14.4001 21.8532i −1.25337 1.90208i
\(133\) −3.48099 + 1.26698i −0.301840 + 0.109861i
\(134\) −12.7461 −1.10109
\(135\) −4.56775 12.4494i −0.393129 1.07147i
\(136\) 24.5136 2.10202
\(137\) 17.7488 6.46002i 1.51638 0.551917i 0.556138 0.831090i \(-0.312283\pi\)
0.960241 + 0.279173i \(0.0900605\pi\)
\(138\) −6.19326 + 12.3584i −0.527205 + 1.05201i
\(139\) 3.61802 3.03588i 0.306876 0.257500i −0.476323 0.879270i \(-0.658031\pi\)
0.783199 + 0.621771i \(0.213586\pi\)
\(140\) 1.49703 + 8.49008i 0.126522 + 0.717543i
\(141\) −9.89078 7.35015i −0.832954 0.618995i
\(142\) 11.8659 + 9.95671i 0.995768 + 0.835549i
\(143\) 9.03537 15.6497i 0.755575 1.30869i
\(144\) 0.110908 1.96256i 0.00924230 0.163547i
\(145\) −6.60745 11.4444i −0.548719 0.950409i
\(146\) 3.59183 20.3703i 0.297262 1.68586i
\(147\) −0.400893 1.68502i −0.0330651 0.138978i
\(148\) 0.342861 + 0.124791i 0.0281830 + 0.0102578i
\(149\) 20.9033 + 7.60817i 1.71246 + 0.623286i 0.997145 0.0755134i \(-0.0240596\pi\)
0.715318 + 0.698799i \(0.246282\pi\)
\(150\) −4.41696 + 4.17440i −0.360644 + 0.340838i
\(151\) −1.28602 + 7.29337i −0.104655 + 0.593526i 0.886703 + 0.462339i \(0.152990\pi\)
−0.991358 + 0.131186i \(0.958121\pi\)
\(152\) −5.91933 10.2526i −0.480121 0.831595i
\(153\) −13.7733 18.4342i −1.11350 1.49032i
\(154\) 5.18652 8.98331i 0.417941 0.723896i
\(155\) 2.82542 + 2.37081i 0.226944 + 0.190428i
\(156\) 21.6968 9.38131i 1.73714 0.751106i
\(157\) 1.01642 + 5.76442i 0.0811193 + 0.460051i 0.998127 + 0.0611804i \(0.0194865\pi\)
−0.917007 + 0.398870i \(0.869402\pi\)
\(158\) 3.13588 2.63132i 0.249478 0.209337i
\(159\) −1.65094 + 0.0975863i −0.130928 + 0.00773910i
\(160\) 11.6842 4.25270i 0.923717 0.336206i
\(161\) −3.44144 −0.271223
\(162\) −17.3983 + 11.5293i −1.36694 + 0.905825i
\(163\) −18.9586 −1.48495 −0.742477 0.669872i \(-0.766349\pi\)
−0.742477 + 0.669872i \(0.766349\pi\)
\(164\) −1.29903 + 0.472807i −0.101437 + 0.0369201i
\(165\) 19.7373 1.16666i 1.53654 0.0908242i
\(166\) 5.15541 4.32590i 0.400138 0.335755i
\(167\) 0.619706 + 3.51453i 0.0479543 + 0.271962i 0.999352 0.0360037i \(-0.0114628\pi\)
−0.951397 + 0.307966i \(0.900352\pi\)
\(168\) 5.08077 2.19683i 0.391990 0.169489i
\(169\) 2.54461 + 2.13518i 0.195739 + 0.164245i
\(170\) −22.6984 + 39.3149i −1.74089 + 3.01531i
\(171\) −4.38409 + 10.2119i −0.335260 + 0.780923i
\(172\) 16.9925 + 29.4319i 1.29567 + 2.24416i
\(173\) 0.116959 0.663309i 0.00889225 0.0504304i −0.980039 0.198806i \(-0.936293\pi\)
0.988931 + 0.148376i \(0.0474046\pi\)
\(174\) −15.1165 + 14.2863i −1.14598 + 1.08304i
\(175\) −1.42178 0.517485i −0.107476 0.0391182i
\(176\) 2.75406 + 1.00239i 0.207595 + 0.0755583i
\(177\) 3.25719 + 13.6905i 0.244826 + 1.02904i
\(178\) −0.0829705 + 0.470549i −0.00621890 + 0.0352691i
\(179\) 1.30268 + 2.25631i 0.0973671 + 0.168645i 0.910594 0.413302i \(-0.135625\pi\)
−0.813227 + 0.581947i \(0.802291\pi\)
\(180\) 21.6329 + 14.1747i 1.61242 + 1.05652i
\(181\) 9.91529 17.1738i 0.736998 1.27652i −0.216844 0.976206i \(-0.569576\pi\)
0.953841 0.300311i \(-0.0970905\pi\)
\(182\) 7.17713 + 6.02233i 0.532004 + 0.446404i
\(183\) 13.9302 + 10.3520i 1.02975 + 0.765242i
\(184\) −1.90984 10.8312i −0.140795 0.798488i
\(185\) −0.211159 + 0.177183i −0.0155247 + 0.0130268i
\(186\) 2.60086 5.18991i 0.190704 0.380542i
\(187\) 32.2403 11.7345i 2.35765 0.858113i
\(188\) 24.0336 1.75283
\(189\) −4.50671 2.58642i −0.327815 0.188134i
\(190\) 21.9241 1.59054
\(191\) −7.91518 + 2.88089i −0.572722 + 0.208454i −0.612113 0.790770i \(-0.709680\pi\)
0.0393910 + 0.999224i \(0.487458\pi\)
\(192\) −12.0170 18.2367i −0.867254 1.31612i
\(193\) −2.52070 + 2.11512i −0.181444 + 0.152249i −0.728986 0.684529i \(-0.760008\pi\)
0.547542 + 0.836778i \(0.315564\pi\)
\(194\) −1.30123 7.37962i −0.0934225 0.529826i
\(195\) −2.05789 + 17.7391i −0.147369 + 1.27033i
\(196\) 2.58775 + 2.17138i 0.184840 + 0.155099i
\(197\) −1.61451 + 2.79642i −0.115029 + 0.199236i −0.917791 0.397063i \(-0.870029\pi\)
0.802762 + 0.596299i \(0.203363\pi\)
\(198\) −8.97650 29.7963i −0.637932 2.11753i
\(199\) 4.33292 + 7.50484i 0.307153 + 0.532004i 0.977738 0.209828i \(-0.0672904\pi\)
−0.670586 + 0.741832i \(0.733957\pi\)
\(200\) 0.839657 4.76193i 0.0593727 0.336719i
\(201\) −9.12215 2.72242i −0.643427 0.192024i
\(202\) −23.5250 8.56239i −1.65521 0.602448i
\(203\) −4.86584 1.77102i −0.341515 0.124301i
\(204\) 43.0055 + 12.8346i 3.01099 + 0.898599i
\(205\) 0.181353 1.02850i 0.0126663 0.0718339i
\(206\) −12.3431 21.3789i −0.859986 1.48954i
\(207\) −7.07200 + 7.52185i −0.491538 + 0.522805i
\(208\) −1.32357 + 2.29250i −0.0917733 + 0.158956i
\(209\) −12.6930 10.6507i −0.877992 0.736723i
\(210\) −1.18128 + 10.1827i −0.0815160 + 0.702672i
\(211\) −4.40235 24.9670i −0.303070 1.71880i −0.632452 0.774599i \(-0.717952\pi\)
0.329382 0.944197i \(-0.393160\pi\)
\(212\) 2.47088 2.07332i 0.169701 0.142396i
\(213\) 6.36561 + 9.66027i 0.436164 + 0.661911i
\(214\) −18.7790 + 6.83500i −1.28371 + 0.467231i
\(215\) −25.6749 −1.75102
\(216\) 5.63920 15.6193i 0.383699 1.06276i
\(217\) 1.44523 0.0981089
\(218\) −24.6602 + 8.97559i −1.67020 + 0.607903i
\(219\) 6.92147 13.8115i 0.467710 0.933294i
\(220\) −29.5397 + 24.7868i −1.99157 + 1.67113i
\(221\) 5.38115 + 30.5180i 0.361975 + 2.05286i
\(222\) 0.348223 + 0.258776i 0.0233712 + 0.0173679i
\(223\) −8.39665 7.04563i −0.562281 0.471810i 0.316793 0.948495i \(-0.397394\pi\)
−0.879074 + 0.476685i \(0.841838\pi\)
\(224\) 2.43608 4.21942i 0.162768 0.281922i
\(225\) −4.05274 + 2.04413i −0.270183 + 0.136275i
\(226\) −22.6167 39.1733i −1.50444 2.60577i
\(227\) −2.56670 + 14.5565i −0.170358 + 0.966147i 0.773009 + 0.634395i \(0.218751\pi\)
−0.943367 + 0.331752i \(0.892360\pi\)
\(228\) −5.01666 21.0858i −0.332236 1.39644i
\(229\) −0.935267 0.340409i −0.0618042 0.0224949i 0.310933 0.950432i \(-0.399359\pi\)
−0.372737 + 0.927937i \(0.621581\pi\)
\(230\) 19.1395 + 6.96621i 1.26202 + 0.459338i
\(231\) 5.63063 5.32141i 0.370468 0.350123i
\(232\) 2.87361 16.2971i 0.188662 1.06995i
\(233\) −9.97465 17.2766i −0.653461 1.13183i −0.982277 0.187434i \(-0.939983\pi\)
0.328816 0.944394i \(-0.393350\pi\)
\(234\) 27.9115 3.31123i 1.82463 0.216462i
\(235\) −9.07844 + 15.7243i −0.592212 + 1.02574i
\(236\) −21.0251 17.6422i −1.36862 1.14841i
\(237\) 2.80632 1.21340i 0.182290 0.0788188i
\(238\) 3.08891 + 17.5181i 0.200224 + 1.13553i
\(239\) 16.4915 13.8380i 1.06674 0.895104i 0.0719903 0.997405i \(-0.477065\pi\)
0.994753 + 0.102301i \(0.0326205\pi\)
\(240\) −2.89127 + 0.170901i −0.186631 + 0.0110316i
\(241\) −21.4579 + 7.81004i −1.38222 + 0.503089i −0.922852 0.385155i \(-0.874148\pi\)
−0.459373 + 0.888244i \(0.651926\pi\)
\(242\) 20.8881 1.34274
\(243\) −14.9141 + 4.53522i −0.956743 + 0.290934i
\(244\) −33.8491 −2.16697
\(245\) −2.39815 + 0.872857i −0.153212 + 0.0557648i
\(246\) −1.64089 + 0.0969921i −0.104619 + 0.00618399i
\(247\) 11.4645 9.61985i 0.729468 0.612096i
\(248\) 0.802037 + 4.54858i 0.0509294 + 0.288835i
\(249\) 4.61360 1.99484i 0.292375 0.126418i
\(250\) −15.8091 13.2654i −0.999856 0.838979i
\(251\) −4.59388 + 7.95683i −0.289963 + 0.502231i −0.973801 0.227403i \(-0.926976\pi\)
0.683838 + 0.729634i \(0.260310\pi\)
\(252\) 10.0636 1.19388i 0.633950 0.0752076i
\(253\) −7.69666 13.3310i −0.483885 0.838114i
\(254\) −1.00919 + 5.72342i −0.0633225 + 0.359120i
\(255\) −24.6421 + 23.2888i −1.54315 + 1.45840i
\(256\) 18.7915 + 6.83955i 1.17447 + 0.427472i
\(257\) 14.8450 + 5.40312i 0.926003 + 0.337037i 0.760624 0.649193i \(-0.224893\pi\)
0.165379 + 0.986230i \(0.447115\pi\)
\(258\) 9.35319 + 39.3130i 0.582304 + 2.44752i
\(259\) −0.0187557 + 0.106369i −0.00116542 + 0.00660945i
\(260\) −17.4146 30.1630i −1.08001 1.87063i
\(261\) −13.8700 + 6.99576i −0.858529 + 0.433027i
\(262\) 22.5070 38.9833i 1.39049 2.40840i
\(263\) −8.81529 7.39690i −0.543574 0.456113i 0.329184 0.944266i \(-0.393226\pi\)
−0.872758 + 0.488153i \(0.837671\pi\)
\(264\) 19.8728 + 14.7681i 1.22308 + 0.908913i
\(265\) 0.423147 + 2.39978i 0.0259937 + 0.147418i
\(266\) 6.58089 5.52202i 0.403500 0.338577i
\(267\) −0.159884 + 0.319042i −0.00978475 + 0.0195250i
\(268\) 17.4469 6.35016i 1.06574 0.387898i
\(269\) 4.19766 0.255936 0.127968 0.991778i \(-0.459155\pi\)
0.127968 + 0.991778i \(0.459155\pi\)
\(270\) 19.8285 + 23.5069i 1.20673 + 1.43058i
\(271\) 30.8629 1.87479 0.937394 0.348270i \(-0.113231\pi\)
0.937394 + 0.348270i \(0.113231\pi\)
\(272\) −4.72282 + 1.71897i −0.286363 + 0.104228i
\(273\) 3.85024 + 5.84302i 0.233027 + 0.353636i
\(274\) −33.5544 + 28.1555i −2.02710 + 1.70093i
\(275\) −1.17519 6.66484i −0.0708667 0.401905i
\(276\) 2.32037 20.0017i 0.139670 1.20396i
\(277\) −13.7131 11.5066i −0.823938 0.691366i 0.129953 0.991520i \(-0.458517\pi\)
−0.953891 + 0.300154i \(0.902962\pi\)
\(278\) −5.47646 + 9.48551i −0.328456 + 0.568903i
\(279\) 2.96989 3.15881i 0.177803 0.189113i
\(280\) −4.07800 7.06330i −0.243707 0.422113i
\(281\) −4.34306 + 24.6307i −0.259085 + 1.46934i 0.526280 + 0.850311i \(0.323586\pi\)
−0.785365 + 0.619033i \(0.787525\pi\)
\(282\) 27.3840 + 8.17249i 1.63069 + 0.486664i
\(283\) 25.7998 + 9.39035i 1.53364 + 0.558198i 0.964509 0.264051i \(-0.0850587\pi\)
0.569128 + 0.822249i \(0.307281\pi\)
\(284\) −21.2026 7.71713i −1.25815 0.457928i
\(285\) 15.6907 + 4.68273i 0.929436 + 0.277381i
\(286\) −7.27712 + 41.2706i −0.430305 + 2.44038i
\(287\) −0.204613 0.354400i −0.0120779 0.0209196i
\(288\) −4.21622 13.9952i −0.248443 0.824674i
\(289\) −20.9180 + 36.2310i −1.23047 + 2.13124i
\(290\) 23.4764 + 19.6990i 1.37858 + 1.15677i
\(291\) 0.644936 5.55938i 0.0378068 0.325897i
\(292\) 5.23205 + 29.6724i 0.306183 + 1.73645i
\(293\) 3.90322 3.27519i 0.228028 0.191339i −0.521614 0.853182i \(-0.674670\pi\)
0.749642 + 0.661843i \(0.230225\pi\)
\(294\) 2.21013 + 3.35403i 0.128897 + 0.195611i
\(295\) 19.4847 7.09183i 1.13444 0.412903i
\(296\) −0.345183 −0.0200633
\(297\) −0.0601753 23.2420i −0.00349173 1.34864i
\(298\) −51.5872 −2.98837
\(299\) 13.0650 4.75527i 0.755568 0.275004i
\(300\) 3.96626 7.91449i 0.228992 0.456943i
\(301\) −7.70676 + 6.46674i −0.444210 + 0.372737i
\(302\) −2.98236 16.9138i −0.171616 0.973280i
\(303\) −15.0076 11.1526i −0.862163 0.640701i
\(304\) 1.85937 + 1.56020i 0.106642 + 0.0894834i
\(305\) 12.7861 22.1462i 0.732132 1.26809i
\(306\) 44.6363 + 29.2475i 2.55169 + 1.67197i
\(307\) 3.00594 + 5.20644i 0.171558 + 0.297147i 0.938965 0.344014i \(-0.111787\pi\)
−0.767407 + 0.641161i \(0.778453\pi\)
\(308\) −2.62381 + 14.8803i −0.149505 + 0.847886i
\(309\) −4.26746 17.9368i −0.242768 1.02039i
\(310\) −8.03765 2.92546i −0.456508 0.166155i
\(311\) 8.07554 + 2.93926i 0.457922 + 0.166670i 0.560673 0.828037i \(-0.310542\pi\)
−0.102751 + 0.994707i \(0.532765\pi\)
\(312\) −16.2530 + 15.3604i −0.920144 + 0.869613i
\(313\) −0.794075 + 4.50343i −0.0448838 + 0.254549i −0.998991 0.0449176i \(-0.985697\pi\)
0.954107 + 0.299466i \(0.0968086\pi\)
\(314\) −6.78715 11.7557i −0.383021 0.663412i
\(315\) −3.02032 + 7.03526i −0.170176 + 0.396392i
\(316\) −2.98148 + 5.16407i −0.167721 + 0.290502i
\(317\) −16.7432 14.0492i −0.940391 0.789082i 0.0372624 0.999306i \(-0.488136\pi\)
−0.977653 + 0.210224i \(0.932581\pi\)
\(318\) 3.52035 1.52214i 0.197412 0.0853572i
\(319\) −4.02193 22.8095i −0.225185 1.27709i
\(320\) −24.6512 + 20.6848i −1.37804 + 1.15631i
\(321\) −14.8997 + 0.880710i −0.831619 + 0.0491564i
\(322\) 7.49962 2.72964i 0.417938 0.152117i
\(323\) 28.4144 1.58102
\(324\) 18.0709 24.4492i 1.00394 1.35829i
\(325\) 6.11265 0.339069
\(326\) 41.3148 15.0374i 2.28822 0.832842i
\(327\) −19.5660 + 1.15653i −1.08200 + 0.0639563i
\(328\) 1.00185 0.840653i 0.0553180 0.0464173i
\(329\) 1.23544 + 7.00651i 0.0681118 + 0.386281i
\(330\) −42.0863 + 18.1974i −2.31677 + 1.00173i
\(331\) 7.34042 + 6.15935i 0.403466 + 0.338548i 0.821832 0.569730i \(-0.192952\pi\)
−0.418365 + 0.908279i \(0.637397\pi\)
\(332\) −4.90157 + 8.48977i −0.269009 + 0.465936i
\(333\) 0.193945 + 0.259577i 0.0106281 + 0.0142247i
\(334\) −4.13808 7.16736i −0.226426 0.392181i
\(335\) −2.43571 + 13.8136i −0.133077 + 0.754717i
\(336\) −0.824819 + 0.779523i −0.0449976 + 0.0425265i
\(337\) −4.39754 1.60058i −0.239550 0.0871889i 0.219456 0.975622i \(-0.429572\pi\)
−0.459005 + 0.888434i \(0.651794\pi\)
\(338\) −7.23880 2.63471i −0.393739 0.143309i
\(339\) −7.81941 32.8663i −0.424692 1.78505i
\(340\) 11.4829 65.1228i 0.622748 3.53178i
\(341\) 3.23222 + 5.59837i 0.175034 + 0.303169i
\(342\) 1.45411 25.7312i 0.0786293 1.39138i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) −24.6296 20.6667i −1.32794 1.11427i
\(345\) 12.2099 + 9.07356i 0.657359 + 0.488504i
\(346\) 0.271236 + 1.53826i 0.0145818 + 0.0826973i
\(347\) 4.27014 3.58307i 0.229233 0.192349i −0.520935 0.853596i \(-0.674417\pi\)
0.750169 + 0.661247i \(0.229972\pi\)
\(348\) 13.5740 27.0863i 0.727641 1.45198i
\(349\) −5.14343 + 1.87206i −0.275321 + 0.100209i −0.475991 0.879450i \(-0.657911\pi\)
0.200669 + 0.979659i \(0.435688\pi\)
\(350\) 3.50881 0.187554
\(351\) 20.6830 + 3.59178i 1.10398 + 0.191715i
\(352\) 21.7929 1.16156
\(353\) −5.94574 + 2.16407i −0.316460 + 0.115182i −0.495366 0.868684i \(-0.664966\pi\)
0.178907 + 0.983866i \(0.442744\pi\)
\(354\) −17.9570 27.2510i −0.954403 1.44838i
\(355\) 13.0581 10.9571i 0.693053 0.581540i
\(356\) −0.120859 0.685426i −0.00640552 0.0363275i
\(357\) −1.53098 + 13.1971i −0.0810280 + 0.698466i
\(358\) −4.62846 3.88374i −0.244621 0.205262i
\(359\) −5.74065 + 9.94309i −0.302980 + 0.524776i −0.976809 0.214110i \(-0.931315\pi\)
0.673830 + 0.738887i \(0.264648\pi\)
\(360\) −23.8182 5.60160i −1.25533 0.295230i
\(361\) 2.63873 + 4.57041i 0.138880 + 0.240548i
\(362\) −7.98581 + 45.2898i −0.419725 + 2.38038i
\(363\) 14.9493 + 4.46146i 0.784633 + 0.234166i
\(364\) −12.8244 4.66771i −0.672183 0.244655i
\(365\) −21.3900 7.78531i −1.11960 0.407502i
\(366\) −38.5678 11.5102i −2.01597 0.601647i
\(367\) 0.0383426 0.217452i 0.00200147 0.0113509i −0.983791 0.179321i \(-0.942610\pi\)
0.985792 + 0.167970i \(0.0537211\pi\)
\(368\) 1.12747 + 1.95283i 0.0587734 + 0.101798i
\(369\) −1.19507 0.281060i −0.0622130 0.0146314i
\(370\) 0.319623 0.553604i 0.0166164 0.0287805i
\(371\) 0.731448 + 0.613758i 0.0379749 + 0.0318647i
\(372\) −0.974440 + 8.39973i −0.0505224 + 0.435506i
\(373\) −0.280325 1.58980i −0.0145147 0.0823168i 0.976690 0.214655i \(-0.0688627\pi\)
−0.991205 + 0.132338i \(0.957752\pi\)
\(374\) −60.9510 + 51.1440i −3.15170 + 2.64459i
\(375\) −8.48096 12.8705i −0.437955 0.664628i
\(376\) −21.3659 + 7.77656i −1.10186 + 0.401045i
\(377\) 20.9197 1.07742
\(378\) 11.8725 + 2.06177i 0.610657 + 0.106046i
\(379\) −19.3433 −0.993597 −0.496799 0.867866i \(-0.665491\pi\)
−0.496799 + 0.867866i \(0.665491\pi\)
\(380\) −30.0098 + 10.9227i −1.53947 + 0.560322i
\(381\) −1.94472 + 3.88060i −0.0996309 + 0.198809i
\(382\) 14.9638 12.5561i 0.765615 0.642428i
\(383\) 2.14661 + 12.1740i 0.109687 + 0.622063i 0.989244 + 0.146271i \(0.0467273\pi\)
−0.879558 + 0.475792i \(0.842162\pi\)
\(384\) 27.1057 + 20.1431i 1.38323 + 1.02792i
\(385\) −8.74456 7.33755i −0.445664 0.373956i
\(386\) 3.81549 6.60862i 0.194203 0.336370i
\(387\) −1.70288 + 30.1333i −0.0865624 + 1.53176i
\(388\) 5.45768 + 9.45298i 0.277072 + 0.479902i
\(389\) 2.30403 13.0668i 0.116819 0.662514i −0.869014 0.494787i \(-0.835246\pi\)
0.985833 0.167727i \(-0.0536427\pi\)
\(390\) −9.58553 40.2896i −0.485382 2.04014i
\(391\) 24.8055 + 9.02845i 1.25447 + 0.456588i
\(392\) −3.00311 1.09304i −0.151680 0.0552070i
\(393\) 24.4342 23.0924i 1.23254 1.16486i
\(394\) 1.30033 7.37456i 0.0655099 0.371525i
\(395\) −2.25244 3.90135i −0.113333 0.196298i
\(396\) 27.1317 + 36.3132i 1.36342 + 1.82481i
\(397\) −0.821433 + 1.42276i −0.0412265 + 0.0714065i −0.885902 0.463872i \(-0.846460\pi\)
0.844676 + 0.535278i \(0.179793\pi\)
\(398\) −15.3950 12.9179i −0.771679 0.647516i
\(399\) 5.88926 2.54641i 0.294832 0.127480i
\(400\) 0.172152 + 0.976320i 0.00860758 + 0.0488160i
\(401\) 21.7787 18.2745i 1.08757 0.912584i 0.0910473 0.995847i \(-0.470979\pi\)
0.996528 + 0.0832629i \(0.0265341\pi\)
\(402\) 22.0384 1.30268i 1.09918 0.0649716i
\(403\) −5.48665 + 1.99698i −0.273310 + 0.0994766i
\(404\) 36.4669 1.81430
\(405\) 9.17014 + 21.0586i 0.455668 + 1.04641i
\(406\) 12.0084 0.595968
\(407\) −0.453985 + 0.165237i −0.0225032 + 0.00819050i
\(408\) −42.3848 + 2.50534i −2.09836 + 0.124033i
\(409\) 10.9716 9.20626i 0.542510 0.455220i −0.329885 0.944021i \(-0.607010\pi\)
0.872395 + 0.488801i \(0.162566\pi\)
\(410\) 0.420570 + 2.38517i 0.0207705 + 0.117795i
\(411\) −30.0280 + 12.9835i −1.48117 + 0.640431i
\(412\) 27.5464 + 23.1142i 1.35711 + 1.13875i
\(413\) 4.06243 7.03633i 0.199899 0.346235i
\(414\) 9.44529 22.0010i 0.464211 1.08129i
\(415\) −3.70303 6.41384i −0.181775 0.314843i
\(416\) −3.41803 + 19.3846i −0.167583 + 0.950408i
\(417\) −5.94540 + 5.61890i −0.291147 + 0.275159i
\(418\) 36.1085 + 13.1424i 1.76612 + 0.642816i
\(419\) −11.9677 4.35589i −0.584661 0.212799i 0.0327188 0.999465i \(-0.489583\pi\)
−0.617379 + 0.786666i \(0.711806\pi\)
\(420\) −3.45612 14.5266i −0.168641 0.708827i
\(421\) −2.42609 + 13.7590i −0.118240 + 0.670573i 0.866855 + 0.498561i \(0.166138\pi\)
−0.985095 + 0.172012i \(0.944973\pi\)
\(422\) 29.3966 + 50.9164i 1.43101 + 2.47857i
\(423\) 17.8527 + 11.6978i 0.868027 + 0.568767i
\(424\) −1.52576 + 2.64269i −0.0740972 + 0.128340i
\(425\) 8.89041 + 7.45994i 0.431248 + 0.361860i
\(426\) −21.5342 16.0028i −1.04334 0.775336i
\(427\) −1.74000 9.86800i −0.0842043 0.477546i
\(428\) 22.2996 18.7116i 1.07789 0.904457i
\(429\) −14.0230 + 27.9823i −0.677037 + 1.35100i
\(430\) 55.9511 20.3645i 2.69820 0.982065i
\(431\) −17.6553 −0.850424 −0.425212 0.905094i \(-0.639800\pi\)
−0.425212 + 0.905094i \(0.639800\pi\)
\(432\) 0.00881496 + 3.40467i 0.000424110 + 0.163807i
\(433\) −6.10505 −0.293390 −0.146695 0.989182i \(-0.546864\pi\)
−0.146695 + 0.989182i \(0.546864\pi\)
\(434\) −3.14947 + 1.14631i −0.151179 + 0.0550248i
\(435\) 12.5941 + 19.1125i 0.603843 + 0.916375i
\(436\) 29.2833 24.5716i 1.40242 1.17677i
\(437\) −2.21375 12.5548i −0.105898 0.600576i
\(438\) −4.12851 + 35.5880i −0.197268 + 1.70046i
\(439\) −14.9625 12.5550i −0.714122 0.599220i 0.211630 0.977350i \(-0.432123\pi\)
−0.925753 + 0.378130i \(0.876567\pi\)
\(440\) 18.2406 31.5937i 0.869587 1.50617i
\(441\) 0.865369 + 2.87248i 0.0412080 + 0.136785i
\(442\) −35.9326 62.2370i −1.70914 2.96031i
\(443\) 1.87896 10.6561i 0.0892723 0.506288i −0.907080 0.420957i \(-0.861694\pi\)
0.996353 0.0853308i \(-0.0271947\pi\)
\(444\) −0.605572 0.180727i −0.0287392 0.00857693i
\(445\) 0.494103 + 0.179839i 0.0234227 + 0.00852517i
\(446\) 23.8864 + 8.69395i 1.13106 + 0.411671i
\(447\) −36.9200 11.0184i −1.74626 0.521153i
\(448\) −2.18959 + 12.4178i −0.103448 + 0.586685i
\(449\) 15.3098 + 26.5174i 0.722515 + 1.25143i 0.959989 + 0.280038i \(0.0903472\pi\)
−0.237474 + 0.971394i \(0.576319\pi\)
\(450\) 7.21044 7.66910i 0.339904 0.361525i
\(451\) 0.915221 1.58521i 0.0430961 0.0746446i
\(452\) 50.4741 + 42.3528i 2.37410 + 1.99211i
\(453\) 1.47817 12.7419i 0.0694505 0.598667i
\(454\) −5.95235 33.7574i −0.279358 1.58432i
\(455\) 7.89821 6.62739i 0.370274 0.310697i
\(456\) 11.2826 + 17.1221i 0.528354 + 0.801816i
\(457\) 31.2165 11.3619i 1.46025 0.531487i 0.514815 0.857301i \(-0.327861\pi\)
0.945434 + 0.325815i \(0.105638\pi\)
\(458\) 2.30815 0.107853
\(459\) 25.6985 + 30.4657i 1.19950 + 1.42202i
\(460\) −29.6688 −1.38332
\(461\) −16.1518 + 5.87876i −0.752263 + 0.273801i −0.689557 0.724231i \(-0.742195\pi\)
−0.0627050 + 0.998032i \(0.519973\pi\)
\(462\) −8.04954 + 16.0625i −0.374499 + 0.747296i
\(463\) −0.0191481 + 0.0160672i −0.000889888 + 0.000746705i −0.643232 0.765671i \(-0.722407\pi\)
0.642343 + 0.766418i \(0.277963\pi\)
\(464\) 0.589165 + 3.34132i 0.0273513 + 0.155117i
\(465\) −5.12755 3.81045i −0.237785 0.176705i
\(466\) 35.4401 + 29.7378i 1.64173 + 1.37758i
\(467\) −3.34044 + 5.78582i −0.154577 + 0.267736i −0.932905 0.360122i \(-0.882735\pi\)
0.778328 + 0.627858i \(0.216068\pi\)
\(468\) −36.5557 + 18.4381i −1.68979 + 0.852299i
\(469\) 2.74811 + 4.75986i 0.126896 + 0.219790i
\(470\) 7.31181 41.4673i 0.337269 1.91275i
\(471\) −2.34656 9.86299i −0.108124 0.454462i
\(472\) 24.3998 + 8.88081i 1.12309 + 0.408773i
\(473\) −42.2860 15.3908i −1.94431 0.707671i
\(474\) −5.15312 + 4.87013i −0.236691 + 0.223693i
\(475\) 0.973271 5.51969i 0.0446567 0.253261i
\(476\) −12.9557 22.4399i −0.593823 1.02853i
\(477\) 2.84456 0.337460i 0.130244 0.0154512i
\(478\) −24.9625 + 43.2364i −1.14176 + 1.97758i
\(479\) −17.7209 14.8696i −0.809690 0.679410i 0.140844 0.990032i \(-0.455018\pi\)
−0.950534 + 0.310621i \(0.899463\pi\)
\(480\) −19.7677 + 8.54721i −0.902269 + 0.390125i
\(481\) −0.0757735 0.429733i −0.00345497 0.0195941i
\(482\) 40.5666 34.0394i 1.84776 1.55045i
\(483\) 5.95036 0.351722i 0.270751 0.0160039i
\(484\) −28.5918 + 10.4066i −1.29963 + 0.473025i
\(485\) −8.24632 −0.374446
\(486\) 28.9039 21.7126i 1.31111 0.984904i
\(487\) −24.4633 −1.10854 −0.554270 0.832337i \(-0.687002\pi\)
−0.554270 + 0.832337i \(0.687002\pi\)
\(488\) 30.0919 10.9525i 1.36220 0.495798i
\(489\) 32.7801 1.93761i 1.48237 0.0876217i
\(490\) 4.53376 3.80428i 0.204814 0.171860i
\(491\) 1.45021 + 8.22453i 0.0654469 + 0.371168i 0.999887 + 0.0150470i \(0.00478980\pi\)
−0.934440 + 0.356121i \(0.884099\pi\)
\(492\) 2.19774 0.950263i 0.0990818 0.0428412i
\(493\) 30.4262 + 25.5306i 1.37033 + 1.14984i
\(494\) −17.3534 + 30.0569i −0.780765 + 1.35233i
\(495\) −34.0072 + 4.03438i −1.52851 + 0.181332i
\(496\) −0.473481 0.820094i −0.0212599 0.0368233i
\(497\) 1.15986 6.57789i 0.0520268 0.295059i
\(498\) −8.47176 + 8.00652i −0.379629 + 0.358781i
\(499\) 27.3506 + 9.95481i 1.22438 + 0.445639i 0.871670 0.490093i \(-0.163037\pi\)
0.352712 + 0.935732i \(0.385260\pi\)
\(500\) 28.2485 + 10.2816i 1.26331 + 0.459807i
\(501\) −1.43068 6.01340i −0.0639182 0.268659i
\(502\) 3.69993 20.9833i 0.165136 0.936532i
\(503\) −14.4215 24.9788i −0.643023 1.11375i −0.984754 0.173951i \(-0.944346\pi\)
0.341731 0.939798i \(-0.388987\pi\)
\(504\) −8.56029 + 4.31766i −0.381306 + 0.192324i
\(505\) −13.7750 + 23.8590i −0.612979 + 1.06171i
\(506\) 27.3464 + 22.9463i 1.21569 + 1.02009i
\(507\) −4.61793 3.43173i −0.205090 0.152409i
\(508\) −1.47004 8.33703i −0.0652227 0.369896i
\(509\) 10.5778 8.87582i 0.468853 0.393414i −0.377523 0.926000i \(-0.623224\pi\)
0.846376 + 0.532586i \(0.178780\pi\)
\(510\) 35.2283 70.2965i 1.55994 3.11278i
\(511\) −8.38144 + 3.05059i −0.370773 + 0.134950i
\(512\) −7.38042 −0.326172
\(513\) 6.53656 18.1048i 0.288596 0.799344i
\(514\) −36.6359 −1.61594
\(515\) −25.5281 + 9.29147i −1.12490 + 0.409431i
\(516\) −32.3886 49.1520i −1.42583 2.16380i
\(517\) −24.3779 + 20.4555i −1.07214 + 0.899632i
\(518\) −0.0434958 0.246677i −0.00191109 0.0108384i
\(519\) −0.134435 + 1.15884i −0.00590104 + 0.0508673i
\(520\) 25.2414 + 21.1801i 1.10691 + 0.928808i
\(521\) 12.8577 22.2703i 0.563308 0.975679i −0.433897 0.900963i \(-0.642862\pi\)
0.997205 0.0747158i \(-0.0238050\pi\)
\(522\) 24.6768 26.2464i 1.08007 1.14878i
\(523\) 16.6189 + 28.7848i 0.726695 + 1.25867i 0.958273 + 0.285856i \(0.0922778\pi\)
−0.231578 + 0.972816i \(0.574389\pi\)
\(524\) −11.3861 + 64.5736i −0.497403 + 2.82091i
\(525\) 2.51119 + 0.749440i 0.109597 + 0.0327082i
\(526\) 25.0773 + 9.12741i 1.09342 + 0.397974i
\(527\) −10.4171 3.79150i −0.453775 0.165161i
\(528\) −4.86430 1.45170i −0.211691 0.0631772i
\(529\) −1.93731 + 10.9870i −0.0842307 + 0.477696i
\(530\) −2.82556 4.89401i −0.122734 0.212582i
\(531\) −7.03100 23.3385i −0.305119 1.01280i
\(532\) −6.25686 + 10.8372i −0.271269 + 0.469852i
\(533\) 1.26649 + 1.06271i 0.0548577 + 0.0460310i
\(534\) 0.0953676 0.822074i 0.00412696 0.0355746i
\(535\) 3.81887 + 21.6579i 0.165104 + 0.936353i
\(536\) −13.4556 + 11.2906i −0.581194 + 0.487679i
\(537\) −2.48298 3.76810i −0.107149 0.162606i
\(538\) −9.14758 + 3.32945i −0.394380 + 0.143543i
\(539\) −4.47293 −0.192663
\(540\) −38.8526 22.2976i −1.67195 0.959538i
\(541\) −2.71988 −0.116937 −0.0584684 0.998289i \(-0.518622\pi\)
−0.0584684 + 0.998289i \(0.518622\pi\)
\(542\) −67.2568 + 24.4795i −2.88893 + 1.05148i
\(543\) −15.3887 + 30.7074i −0.660391 + 1.31778i
\(544\) −28.6284 + 24.0221i −1.22743 + 1.02994i
\(545\) 5.01487 + 28.4407i 0.214813 + 1.21827i
\(546\) −13.0250 9.67928i −0.557418 0.414235i
\(547\) 15.1065 + 12.6758i 0.645906 + 0.541979i 0.905826 0.423651i \(-0.139252\pi\)
−0.259920 + 0.965630i \(0.583696\pi\)
\(548\) 31.9022 55.2563i 1.36280 2.36043i
\(549\) −25.1438 16.4753i −1.07311 0.703147i
\(550\) 7.84733 + 13.5920i 0.334611 + 0.579564i
\(551\) 3.33089 18.8904i 0.141901 0.804758i
\(552\) 4.40914 + 18.5323i 0.187665 + 0.788789i
\(553\) −1.65874 0.603732i −0.0705368 0.0256733i
\(554\) 39.0103 + 14.1986i 1.65739 + 0.603241i
\(555\) 0.346992 0.327936i 0.0147290 0.0139201i
\(556\) 2.77049 15.7122i 0.117495 0.666346i
\(557\) −0.308176 0.533777i −0.0130578 0.0226168i 0.859423 0.511266i \(-0.170823\pi\)
−0.872480 + 0.488649i \(0.837490\pi\)
\(558\) −3.96656 + 9.23933i −0.167918 + 0.391132i
\(559\) 20.3222 35.1991i 0.859539 1.48877i
\(560\) 1.28097 + 1.07486i 0.0541310 + 0.0454213i
\(561\) −54.5453 + 23.5844i −2.30291 + 0.995735i
\(562\) −10.0718 57.1202i −0.424855 2.40947i
\(563\) −4.82027 + 4.04469i −0.203150 + 0.170463i −0.738687 0.674049i \(-0.764554\pi\)
0.535537 + 0.844512i \(0.320109\pi\)
\(564\) −41.5549 + 2.45628i −1.74978 + 0.103428i
\(565\) −46.7760 + 17.0251i −1.96788 + 0.716250i
\(566\) −63.6712 −2.67630
\(567\) 8.05659 + 4.01140i 0.338345 + 0.168463i
\(568\) 21.3462 0.895667
\(569\) −21.0052 + 7.64527i −0.880585 + 0.320507i −0.742446 0.669906i \(-0.766334\pi\)
−0.138139 + 0.990413i \(0.544112\pi\)
\(570\) −37.9075 + 2.24069i −1.58777 + 0.0938521i
\(571\) −32.5855 + 27.3425i −1.36366 + 1.14425i −0.388826 + 0.921311i \(0.627119\pi\)
−0.974833 + 0.222935i \(0.928436\pi\)
\(572\) −10.6002 60.1169i −0.443218 2.51361i
\(573\) 13.3912 5.79010i 0.559424 0.241885i
\(574\) 0.726994 + 0.610020i 0.0303441 + 0.0254618i
\(575\) 2.60349 4.50938i 0.108573 0.188054i
\(576\) 22.6417 + 30.3037i 0.943402 + 1.26265i
\(577\) 9.42057 + 16.3169i 0.392184 + 0.679282i 0.992737 0.120303i \(-0.0383865\pi\)
−0.600554 + 0.799584i \(0.705053\pi\)
\(578\) 16.8474 95.5465i 0.700760 3.97421i
\(579\) 4.14220 3.91472i 0.172144 0.162690i
\(580\) −41.9487 15.2681i −1.74183 0.633973i
\(581\) −2.72698 0.992539i −0.113134 0.0411775i
\(582\) 3.00407 + 12.6266i 0.124523 + 0.523390i
\(583\) −0.741638 + 4.20604i −0.0307155 + 0.174196i
\(584\) −14.2524 24.6859i −0.589769 1.02151i
\(585\) 1.74519 30.8819i 0.0721545 1.27681i
\(586\) −5.90816 + 10.2332i −0.244064 + 0.422731i
\(587\) 3.29450 + 2.76442i 0.135979 + 0.114100i 0.708240 0.705971i \(-0.249489\pi\)
−0.572262 + 0.820071i \(0.693934\pi\)
\(588\) −4.69623 3.48992i −0.193669 0.143922i
\(589\) 0.929664 + 5.27239i 0.0383061 + 0.217245i
\(590\) −36.8361 + 30.9092i −1.51652 + 1.27251i
\(591\) 2.50574 5.00010i 0.103073 0.205677i
\(592\) 0.0665034 0.0242053i 0.00273327 0.000994830i
\(593\) 15.8693 0.651674 0.325837 0.945426i \(-0.394354\pi\)
0.325837 + 0.945426i \(0.394354\pi\)
\(594\) 18.5659 + 50.6014i 0.761769 + 2.07620i
\(595\) 19.5755 0.802517
\(596\) 70.6128 25.7010i 2.89241 1.05275i
\(597\) −8.25878 12.5333i −0.338009 0.512953i
\(598\) −24.6997 + 20.7255i −1.01004 + 0.847527i
\(599\) −8.17509 46.3632i −0.334025 1.89435i −0.436653 0.899630i \(-0.643836\pi\)
0.102629 0.994720i \(-0.467275\pi\)
\(600\) −0.965116 + 8.31935i −0.0394007 + 0.339636i
\(601\) −19.7117 16.5401i −0.804059 0.674685i 0.145123 0.989414i \(-0.453642\pi\)
−0.949182 + 0.314728i \(0.898087\pi\)
\(602\) 11.6654 20.2051i 0.475448 0.823500i
\(603\) 16.0507 + 3.77485i 0.653636 + 0.153724i
\(604\) 12.5088 + 21.6659i 0.508976 + 0.881572i
\(605\) 3.99161 22.6375i 0.162282 0.920347i
\(606\) 41.5506 + 12.4004i 1.68788 + 0.503730i
\(607\) −20.2281 7.36244i −0.821035 0.298832i −0.102861 0.994696i \(-0.532800\pi\)
−0.718174 + 0.695864i \(0.755022\pi\)
\(608\) 16.9600 + 6.17292i 0.687817 + 0.250345i
\(609\) 8.59421 + 2.56486i 0.348255 + 0.103933i
\(610\) −10.2980 + 58.4028i −0.416954 + 2.36466i
\(611\) −14.3715 24.8922i −0.581410 1.00703i
\(612\) −75.6696 17.7961i −3.05876 0.719366i
\(613\) 17.9589 31.1057i 0.725352 1.25635i −0.233477 0.972362i \(-0.575010\pi\)
0.958829 0.283984i \(-0.0916562\pi\)
\(614\) −10.6801 8.96171i −0.431016 0.361665i
\(615\) −0.208450 + 1.79685i −0.00840553 + 0.0724561i
\(616\) −2.48227 14.0776i −0.100013 0.567204i
\(617\) −12.6717 + 10.6328i −0.510142 + 0.428060i −0.861179 0.508301i \(-0.830274\pi\)
0.351037 + 0.936362i \(0.385829\pi\)
\(618\) 23.5266 + 35.7033i 0.946380 + 1.43620i
\(619\) 23.9796 8.72786i 0.963822 0.350802i 0.188292 0.982113i \(-0.439705\pi\)
0.775530 + 0.631311i \(0.217483\pi\)
\(620\) 12.4594 0.500384
\(621\) 11.4590 13.7283i 0.459833 0.550898i
\(622\) −19.9296 −0.799105
\(623\) 0.193609 0.0704679i 0.00775678 0.00282324i
\(624\) 2.05420 4.09907i 0.0822339 0.164094i
\(625\) −23.1927 + 19.4610i −0.927707 + 0.778438i
\(626\) −1.84151 10.4437i −0.0736017 0.417416i
\(627\) 23.0351 + 17.1181i 0.919934 + 0.683632i
\(628\) 15.1470 + 12.7099i 0.604432 + 0.507178i
\(629\) 0.414243 0.717490i 0.0165169 0.0286082i
\(630\) 1.00178 17.7269i 0.0399118 0.706258i
\(631\) −2.50872 4.34523i −0.0998707 0.172981i 0.811760 0.583991i \(-0.198510\pi\)
−0.911631 + 0.411010i \(0.865176\pi\)
\(632\) 0.979600 5.55558i 0.0389664 0.220989i
\(633\) 10.1635 + 42.7188i 0.403962 + 1.69792i
\(634\) 47.6303 + 17.3360i 1.89164 + 0.688501i
\(635\) 6.00991 + 2.18743i 0.238496 + 0.0868055i
\(636\) −4.06034 + 3.83736i −0.161003 + 0.152161i
\(637\) 0.701542 3.97864i 0.0277961 0.157640i
\(638\) 26.8564 + 46.5167i 1.06326 + 1.84161i
\(639\) −11.9936 16.0523i −0.474461 0.635021i
\(640\) 24.8795 43.0926i 0.983449 1.70338i
\(641\) 11.6750 + 9.79652i 0.461136 + 0.386939i 0.843549 0.537052i \(-0.180462\pi\)
−0.382413 + 0.923992i \(0.624907\pi\)
\(642\) 31.7710 13.7372i 1.25390 0.542164i
\(643\) 4.21887 + 23.9264i 0.166376 + 0.943564i 0.947635 + 0.319357i \(0.103467\pi\)
−0.781259 + 0.624207i \(0.785422\pi\)
\(644\) −8.90560 + 7.47268i −0.350930 + 0.294465i
\(645\) 44.3928 2.62403i 1.74797 0.103321i
\(646\) −61.9210 + 22.5374i −2.43625 + 0.886722i
\(647\) 2.80833 0.110407 0.0552035 0.998475i \(-0.482419\pi\)
0.0552035 + 0.998475i \(0.482419\pi\)
\(648\) −8.15404 + 27.5826i −0.320321 + 1.08355i
\(649\) 36.3419 1.42655
\(650\) −13.3208 + 4.84836i −0.522483 + 0.190168i
\(651\) −2.49886 + 0.147706i −0.0979380 + 0.00578905i
\(652\) −49.0602 + 41.1664i −1.92135 + 1.61220i
\(653\) 2.07701 + 11.7793i 0.0812796 + 0.460959i 0.998098 + 0.0616540i \(0.0196375\pi\)
−0.916818 + 0.399305i \(0.869251\pi\)
\(654\) 41.7210 18.0394i 1.63142 0.705397i
\(655\) −37.9472 31.8415i −1.48272 1.24415i
\(656\) −0.134069 + 0.232214i −0.00523451 + 0.00906644i
\(657\) −10.5559 + 24.5879i −0.411824 + 0.959265i
\(658\) −8.24961 14.2887i −0.321603 0.557033i
\(659\) 0.597709 3.38978i 0.0232834 0.132047i −0.970950 0.239281i \(-0.923088\pi\)
0.994234 + 0.107234i \(0.0341994\pi\)
\(660\) 48.5419 45.8762i 1.88949 1.78573i
\(661\) −36.5270 13.2947i −1.42073 0.517105i −0.486474 0.873695i \(-0.661717\pi\)
−0.934261 + 0.356590i \(0.883939\pi\)
\(662\) −20.8817 7.60033i −0.811591 0.295395i
\(663\) −12.4232 52.2167i −0.482477 2.02793i
\(664\) 1.61047 9.13341i 0.0624982 0.354445i
\(665\) −4.72692 8.18727i −0.183302 0.317489i
\(666\) −0.628536 0.411842i −0.0243553 0.0159586i
\(667\) 8.91010 15.4327i 0.345000 0.597558i
\(668\) 9.23503 + 7.74911i 0.357314 + 0.299822i
\(669\) 15.2382 + 11.3240i 0.589142 + 0.437810i
\(670\) −5.64857 32.0347i −0.218223 1.23761i
\(671\) 34.3340 28.8096i 1.32545 1.11218i
\(672\) −3.78083 + 7.54448i −0.145849 + 0.291035i
\(673\) 30.2329 11.0039i 1.16539 0.424168i 0.314372 0.949300i \(-0.398206\pi\)
0.851021 + 0.525132i \(0.175984\pi\)
\(674\) 10.8527 0.418030
\(675\) 6.79841 3.94857i 0.261671 0.151981i
\(676\) 11.2211 0.431582
\(677\) −31.8651 + 11.5980i −1.22468 + 0.445745i −0.871771 0.489914i \(-0.837028\pi\)
−0.352905 + 0.935659i \(0.614806\pi\)
\(678\) 43.1086 + 65.4204i 1.65558 + 2.51246i
\(679\) −2.47527 + 2.07700i −0.0949922 + 0.0797079i
\(680\) 10.8635 + 61.6098i 0.416595 + 2.36263i
\(681\) 2.95021 25.4309i 0.113052 0.974516i
\(682\) −11.4841 9.63633i −0.439750 0.368994i
\(683\) −1.81643 + 3.14615i −0.0695038 + 0.120384i −0.898683 0.438599i \(-0.855475\pi\)
0.829179 + 0.558983i \(0.188808\pi\)
\(684\) 10.8290 + 35.9454i 0.414057 + 1.37441i
\(685\) 24.1015 + 41.7450i 0.920870 + 1.59499i
\(686\) 0.402702 2.28384i 0.0153752 0.0871972i
\(687\) 1.65190 + 0.492993i 0.0630238 + 0.0188089i
\(688\) 6.19439 + 2.25457i 0.236159 + 0.0859548i
\(689\) −3.62492 1.31936i −0.138098 0.0502637i
\(690\) −33.8048 10.0887i −1.28693 0.384071i
\(691\) 3.24911 18.4266i 0.123602 0.700982i −0.858526 0.512770i \(-0.828619\pi\)
0.982128 0.188213i \(-0.0602694\pi\)
\(692\) −1.13764 1.97044i −0.0432464 0.0749050i
\(693\) −9.19168 + 9.77636i −0.349163 + 0.371373i
\(694\) −6.46356 + 11.1952i −0.245353 + 0.424964i
\(695\) 9.23341 + 7.74775i 0.350243 + 0.293889i
\(696\) −3.30298 + 28.4718i −0.125199 + 1.07922i
\(697\) 0.545074 + 3.09127i 0.0206461 + 0.117090i
\(698\) 9.72376 8.15921i 0.368050 0.308830i
\(699\) 19.0122 + 28.8524i 0.719107 + 1.09130i
\(700\) −4.80287 + 1.74810i −0.181531 + 0.0660721i
\(701\) 6.33482 0.239263 0.119631 0.992818i \(-0.461829\pi\)
0.119631 + 0.992818i \(0.461829\pi\)
\(702\) −47.9215 + 8.57784i −1.80868 + 0.323750i
\(703\) −0.400111 −0.0150905
\(704\) −52.9993 + 19.2902i −1.99749 + 0.727026i
\(705\) 14.0899 28.1157i 0.530655 1.05890i
\(706\) 11.2405 9.43193i 0.423043 0.354976i
\(707\) 1.87456 + 10.6312i 0.0705002 + 0.399827i
\(708\) 38.1562 + 28.3551i 1.43400 + 1.06565i
\(709\) −20.6505 17.3278i −0.775545 0.650760i 0.166577 0.986028i \(-0.446728\pi\)
−0.942123 + 0.335269i \(0.891173\pi\)
\(710\) −19.7656 + 34.2350i −0.741790 + 1.28482i
\(711\) −4.72820 + 2.38482i −0.177321 + 0.0894377i
\(712\) 0.329227 + 0.570238i 0.0123383 + 0.0213706i
\(713\) −0.863672 + 4.89813i −0.0323448 + 0.183436i
\(714\) −7.13121 29.9736i −0.266879 1.12173i
\(715\) 43.3364 + 15.7732i 1.62069 + 0.589883i
\(716\) 8.27035 + 3.01016i 0.309077 + 0.112495i
\(717\) −27.1000 + 25.6118i −1.01207 + 0.956489i
\(718\) 4.62354 26.2214i 0.172549 0.978573i
\(719\) −0.400043 0.692895i −0.0149191 0.0258406i 0.858469 0.512865i \(-0.171416\pi\)
−0.873389 + 0.487024i \(0.838082\pi\)
\(720\) 4.98164 0.590988i 0.185655 0.0220248i
\(721\) −5.32245 + 9.21875i −0.198218 + 0.343324i
\(722\) −9.37544 7.86693i −0.348918 0.292777i
\(723\) 36.3032 15.6968i 1.35013 0.583772i
\(724\) −11.6325 65.9714i −0.432320 2.45181i
\(725\) 6.00167 5.03600i 0.222897 0.187032i
\(726\) −36.1163 + 2.13481i −1.34040 + 0.0792302i
\(727\) 30.4435 11.0805i 1.12909 0.410954i 0.291125 0.956685i \(-0.405970\pi\)
0.837960 + 0.545731i \(0.183748\pi\)
\(728\) 12.9113 0.478523
\(729\) 25.3235 9.36580i 0.937909 0.346881i
\(730\) 52.7883 1.95378
\(731\) 72.5146 26.3931i 2.68205 0.976186i
\(732\) 58.5262 3.45944i 2.16319 0.127865i
\(733\) 28.9143 24.2619i 1.06797 0.896135i 0.0731053 0.997324i \(-0.476709\pi\)
0.994867 + 0.101189i \(0.0322646\pi\)
\(734\) 0.0889191 + 0.504285i 0.00328206 + 0.0186135i
\(735\) 4.05728 1.75429i 0.149655 0.0647081i
\(736\) 12.8445 + 10.7778i 0.473453 + 0.397274i
\(737\) −12.2921 + 21.2905i −0.452785 + 0.784247i
\(738\) 2.82724 0.335405i 0.104072 0.0123464i
\(739\) −11.3590 19.6744i −0.417847 0.723733i 0.577875 0.816125i \(-0.303882\pi\)
−0.995723 + 0.0923921i \(0.970549\pi\)
\(740\) −0.161694 + 0.917013i −0.00594399 + 0.0337101i
\(741\) −18.8393 + 17.8047i −0.692079 + 0.654073i
\(742\) −2.08079 0.757346i −0.0763882 0.0278030i
\(743\) −47.5117 17.2928i −1.74304 0.634413i −0.743620 0.668602i \(-0.766893\pi\)
−0.999415 + 0.0341890i \(0.989115\pi\)
\(744\) −1.85162 7.78267i −0.0678837 0.285326i
\(745\) −9.85803 + 55.9077i −0.361170 + 2.04830i
\(746\) 1.87187 + 3.24217i 0.0685339 + 0.118704i
\(747\) −7.77319 + 3.92066i −0.284406 + 0.143449i
\(748\) 57.9499 100.372i 2.11886 3.66997i
\(749\) 6.60127 + 5.53912i 0.241205 + 0.202395i
\(750\) 28.6902 + 21.3206i 1.04762 + 0.778519i
\(751\) 7.83162 + 44.4153i 0.285780 + 1.62074i 0.702487 + 0.711697i \(0.252073\pi\)
−0.416707 + 0.909041i \(0.636816\pi\)
\(752\) 3.57107 2.99648i 0.130224 0.109271i
\(753\) 7.12976 14.2271i 0.259823 0.518465i
\(754\) −45.5885 + 16.5928i −1.66023 + 0.604276i
\(755\) −18.9003 −0.687851
\(756\) −17.2784 + 3.09279i −0.628408 + 0.112484i
\(757\) −1.81010 −0.0657893 −0.0328946 0.999459i \(-0.510473\pi\)
−0.0328946 + 0.999459i \(0.510473\pi\)
\(758\) 42.1531 15.3425i 1.53107 0.557263i
\(759\) 14.6702 + 22.2631i 0.532496 + 0.808101i
\(760\) 23.1445 19.4206i 0.839540 0.704458i
\(761\) 6.55375 + 37.1682i 0.237573 + 1.34734i 0.837126 + 0.547010i \(0.184234\pi\)
−0.599553 + 0.800335i \(0.704655\pi\)
\(762\) 1.15998 9.99913i 0.0420218 0.362230i
\(763\) 8.66865 + 7.27387i 0.313826 + 0.263332i
\(764\) −14.2270 + 24.6419i −0.514716 + 0.891514i
\(765\) 40.2268 42.7856i 1.45440 1.54692i
\(766\) −14.3339 24.8271i −0.517907 0.897040i
\(767\) −5.69992 + 32.3259i −0.205812 + 1.16722i
\(768\) −33.1902 9.90528i