Properties

Label 189.2.v.a.169.1
Level $189$
Weight $2$
Character 189.169
Analytic conductor $1.509$
Analytic rank $0$
Dimension $54$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(22,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.v (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(54\)
Relative dimension: \(9\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 169.1
Character \(\chi\) \(=\) 189.169
Dual form 189.2.v.a.85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.52562 + 0.919249i) q^{2} +(1.69786 - 0.342450i) q^{3} +(4.00163 - 3.35776i) q^{4} +(0.203200 + 1.15240i) q^{5} +(-3.97334 + 2.42565i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-4.33224 + 7.50367i) q^{8} +(2.76546 - 1.16287i) q^{9} +O(q^{10})\) \(q+(-2.52562 + 0.919249i) q^{2} +(1.69786 - 0.342450i) q^{3} +(4.00163 - 3.35776i) q^{4} +(0.203200 + 1.15240i) q^{5} +(-3.97334 + 2.42565i) q^{6} +(0.766044 + 0.642788i) q^{7} +(-4.33224 + 7.50367i) q^{8} +(2.76546 - 1.16287i) q^{9} +(-1.57255 - 2.72374i) q^{10} +(0.971566 - 5.51003i) q^{11} +(5.64433 - 7.07137i) q^{12} +(-0.292839 - 0.106585i) q^{13} +(-2.52562 - 0.919249i) q^{14} +(0.739646 + 1.88704i) q^{15} +(2.22966 - 12.6450i) q^{16} +(3.00422 + 5.20346i) q^{17} +(-5.91551 + 5.47909i) q^{18} +(-1.92629 + 3.33643i) q^{19} +(4.68263 + 3.92919i) q^{20} +(1.52076 + 0.829031i) q^{21} +(2.61128 + 14.8093i) q^{22} +(1.48447 - 1.24562i) q^{23} +(-4.78591 + 14.2238i) q^{24} +(3.41172 - 1.24176i) q^{25} +0.837576 q^{26} +(4.29713 - 2.92141i) q^{27} +5.22375 q^{28} +(-0.141485 + 0.0514963i) q^{29} +(-3.60272 - 4.08601i) q^{30} +(-4.98069 + 4.17929i) q^{31} +(2.98351 + 16.9203i) q^{32} +(-0.237328 - 9.68796i) q^{33} +(-12.3708 - 10.3803i) q^{34} +(-0.585091 + 1.01341i) q^{35} +(7.16169 - 13.9391i) q^{36} +(1.20400 + 2.08539i) q^{37} +(1.79806 - 10.1973i) q^{38} +(-0.533699 - 0.0806829i) q^{39} +(-9.52757 - 3.46775i) q^{40} +(0.879340 + 0.320054i) q^{41} +(-4.60294 - 0.695857i) q^{42} +(0.356574 - 2.02223i) q^{43} +(-14.6135 - 25.3113i) q^{44} +(1.90203 + 2.95063i) q^{45} +(-2.60417 + 4.51055i) q^{46} +(-0.0877615 - 0.0736406i) q^{47} +(-0.544646 - 22.2330i) q^{48} +(0.173648 + 0.984808i) q^{49} +(-7.47520 + 6.27243i) q^{50} +(6.88267 + 7.80595i) q^{51} +(-1.52972 + 0.556771i) q^{52} -12.9101 q^{53} +(-8.16739 + 11.3285i) q^{54} +6.54720 q^{55} +(-8.14196 + 2.96343i) q^{56} +(-2.12801 + 6.32445i) q^{57} +(0.309999 - 0.260120i) q^{58} +(-2.31842 - 13.1484i) q^{59} +(9.29600 + 5.06765i) q^{60} +(-4.94110 - 4.14607i) q^{61} +(8.73749 - 15.1338i) q^{62} +(2.86594 + 0.886794i) q^{63} +(-10.2491 - 17.7520i) q^{64} +(0.0633237 - 0.359127i) q^{65} +(9.50505 + 24.2499i) q^{66} +(-6.91806 - 2.51797i) q^{67} +(29.4937 + 10.7348i) q^{68} +(2.09386 - 2.62324i) q^{69} +(0.546141 - 3.09732i) q^{70} +(1.70461 + 2.95247i) q^{71} +(-3.25487 + 25.7889i) q^{72} +(1.48619 - 2.57416i) q^{73} +(-4.95784 - 4.16012i) q^{74} +(5.36738 - 3.27668i) q^{75} +(3.49465 + 19.8192i) q^{76} +(4.28604 - 3.59641i) q^{77} +(1.42209 - 0.286828i) q^{78} +(-10.0188 + 3.64655i) q^{79} +15.0252 q^{80} +(6.29549 - 6.43171i) q^{81} -2.51508 q^{82} +(-14.6581 + 5.33512i) q^{83} +(8.86920 - 1.78888i) q^{84} +(-5.38603 + 4.51942i) q^{85} +(0.958365 + 5.43516i) q^{86} +(-0.222587 + 0.135885i) q^{87} +(37.1363 + 31.1611i) q^{88} +(-3.11001 + 5.38670i) q^{89} +(-7.51616 - 5.70371i) q^{90} +(-0.155816 - 0.269882i) q^{91} +(1.75780 - 9.96900i) q^{92} +(-7.02531 + 8.80149i) q^{93} +(0.289346 + 0.105313i) q^{94} +(-4.23634 - 1.54190i) q^{95} +(10.8600 + 27.7066i) q^{96} +(-1.36421 + 7.73680i) q^{97} +(-1.34385 - 2.32762i) q^{98} +(-3.72060 - 16.3675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 54 q - 3 q^{3} - 3 q^{5} - 27 q^{8} - 9 q^{9} - 6 q^{11} + 24 q^{12} - 9 q^{13} - 9 q^{15} - 30 q^{17} - 27 q^{18} - 12 q^{20} - 3 q^{21} - 9 q^{22} - 12 q^{23} + 36 q^{24} + 27 q^{25} + 18 q^{26} + 63 q^{27} + 54 q^{28} + 6 q^{29} - 72 q^{30} - 9 q^{31} - 9 q^{32} - 36 q^{33} - 9 q^{34} - 12 q^{35} + 54 q^{38} + 12 q^{39} - 45 q^{40} - 15 q^{41} - 18 q^{42} - 9 q^{43} - 42 q^{44} - 9 q^{45} - 45 q^{47} - 93 q^{48} + 18 q^{50} + 72 q^{51} - 63 q^{52} + 132 q^{53} + 54 q^{54} - 9 q^{56} + 3 q^{57} - 27 q^{58} - 9 q^{60} - 36 q^{62} - 9 q^{63} - 27 q^{64} + 66 q^{65} + 153 q^{66} + 45 q^{67} + 87 q^{68} - 72 q^{71} - 45 q^{72} - 72 q^{74} - 39 q^{75} + 54 q^{76} + 3 q^{77} - 54 q^{78} - 36 q^{79} + 42 q^{80} + 27 q^{81} + 24 q^{83} - 12 q^{84} + 18 q^{85} - 90 q^{86} - 99 q^{87} + 54 q^{88} - 42 q^{89} - 9 q^{90} + 87 q^{92} + 93 q^{93} - 90 q^{94} + 12 q^{95} + 108 q^{96} - 18 q^{97} - 9 q^{98} - 117 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52562 + 0.919249i −1.78588 + 0.650007i −0.786401 + 0.617716i \(0.788058\pi\)
−0.999479 + 0.0322911i \(0.989720\pi\)
\(3\) 1.69786 0.342450i 0.980260 0.197714i
\(4\) 4.00163 3.35776i 2.00081 1.67888i
\(5\) 0.203200 + 1.15240i 0.0908738 + 0.515371i 0.995934 + 0.0900872i \(0.0287146\pi\)
−0.905060 + 0.425284i \(0.860174\pi\)
\(6\) −3.97334 + 2.42565i −1.62211 + 0.990269i
\(7\) 0.766044 + 0.642788i 0.289538 + 0.242951i
\(8\) −4.33224 + 7.50367i −1.53168 + 2.65295i
\(9\) 2.76546 1.16287i 0.921818 0.387622i
\(10\) −1.57255 2.72374i −0.497284 0.861322i
\(11\) 0.971566 5.51003i 0.292938 1.66134i −0.382528 0.923944i \(-0.624946\pi\)
0.675466 0.737391i \(-0.263943\pi\)
\(12\) 5.64433 7.07137i 1.62938 2.04133i
\(13\) −0.292839 0.106585i −0.0812188 0.0295612i 0.301091 0.953595i \(-0.402649\pi\)
−0.382310 + 0.924034i \(0.624871\pi\)
\(14\) −2.52562 0.919249i −0.674999 0.245680i
\(15\) 0.739646 + 1.88704i 0.190976 + 0.487230i
\(16\) 2.22966 12.6450i 0.557414 3.16125i
\(17\) 3.00422 + 5.20346i 0.728630 + 1.26202i 0.957462 + 0.288558i \(0.0931759\pi\)
−0.228832 + 0.973466i \(0.573491\pi\)
\(18\) −5.91551 + 5.47909i −1.39430 + 1.29143i
\(19\) −1.92629 + 3.33643i −0.441921 + 0.765430i −0.997832 0.0658121i \(-0.979036\pi\)
0.555911 + 0.831242i \(0.312370\pi\)
\(20\) 4.68263 + 3.92919i 1.04707 + 0.878594i
\(21\) 1.52076 + 0.829031i 0.331857 + 0.180909i
\(22\) 2.61128 + 14.8093i 0.556727 + 3.15736i
\(23\) 1.48447 1.24562i 0.309533 0.259729i −0.474766 0.880112i \(-0.657467\pi\)
0.784299 + 0.620383i \(0.213023\pi\)
\(24\) −4.78591 + 14.2238i −0.976920 + 2.90341i
\(25\) 3.41172 1.24176i 0.682343 0.248353i
\(26\) 0.837576 0.164262
\(27\) 4.29713 2.92141i 0.826983 0.562226i
\(28\) 5.22375 0.987196
\(29\) −0.141485 + 0.0514963i −0.0262731 + 0.00956263i −0.355123 0.934819i \(-0.615561\pi\)
0.328850 + 0.944382i \(0.393339\pi\)
\(30\) −3.60272 4.08601i −0.657763 0.745999i
\(31\) −4.98069 + 4.17929i −0.894558 + 0.750623i −0.969119 0.246593i \(-0.920689\pi\)
0.0745611 + 0.997216i \(0.476244\pi\)
\(32\) 2.98351 + 16.9203i 0.527415 + 2.99112i
\(33\) −0.237328 9.68796i −0.0413135 1.68646i
\(34\) −12.3708 10.3803i −2.12157 1.78021i
\(35\) −0.585091 + 1.01341i −0.0988984 + 0.171297i
\(36\) 7.16169 13.9391i 1.19362 2.32318i
\(37\) 1.20400 + 2.08539i 0.197937 + 0.342836i 0.947859 0.318689i \(-0.103243\pi\)
−0.749923 + 0.661526i \(0.769909\pi\)
\(38\) 1.79806 10.1973i 0.291683 1.65422i
\(39\) −0.533699 0.0806829i −0.0854602 0.0129196i
\(40\) −9.52757 3.46775i −1.50644 0.548300i
\(41\) 0.879340 + 0.320054i 0.137330 + 0.0499840i 0.409771 0.912189i \(-0.365609\pi\)
−0.272441 + 0.962173i \(0.587831\pi\)
\(42\) −4.60294 0.695857i −0.710249 0.107373i
\(43\) 0.356574 2.02223i 0.0543770 0.308387i −0.945473 0.325700i \(-0.894400\pi\)
0.999850 + 0.0173128i \(0.00551110\pi\)
\(44\) −14.6135 25.3113i −2.20307 3.81583i
\(45\) 1.90203 + 2.95063i 0.283538 + 0.439854i
\(46\) −2.60417 + 4.51055i −0.383964 + 0.665044i
\(47\) −0.0877615 0.0736406i −0.0128013 0.0107416i 0.636365 0.771388i \(-0.280437\pi\)
−0.649166 + 0.760647i \(0.724882\pi\)
\(48\) −0.544646 22.2330i −0.0786128 3.20906i
\(49\) 0.173648 + 0.984808i 0.0248069 + 0.140687i
\(50\) −7.47520 + 6.27243i −1.05715 + 0.887056i
\(51\) 6.88267 + 7.80595i 0.963766 + 1.09305i
\(52\) −1.52972 + 0.556771i −0.212134 + 0.0772103i
\(53\) −12.9101 −1.77334 −0.886671 0.462400i \(-0.846988\pi\)
−0.886671 + 0.462400i \(0.846988\pi\)
\(54\) −8.16739 + 11.3285i −1.11144 + 1.54161i
\(55\) 6.54720 0.882824
\(56\) −8.14196 + 2.96343i −1.08801 + 0.396005i
\(57\) −2.12801 + 6.32445i −0.281861 + 0.837694i
\(58\) 0.309999 0.260120i 0.0407048 0.0341554i
\(59\) −2.31842 13.1484i −0.301832 1.71177i −0.638054 0.769992i \(-0.720260\pi\)
0.336222 0.941783i \(-0.390851\pi\)
\(60\) 9.29600 + 5.06765i 1.20011 + 0.654231i
\(61\) −4.94110 4.14607i −0.632643 0.530850i 0.269106 0.963111i \(-0.413272\pi\)
−0.901749 + 0.432260i \(0.857716\pi\)
\(62\) 8.73749 15.1338i 1.10966 1.92199i
\(63\) 2.86594 + 0.886794i 0.361074 + 0.111725i
\(64\) −10.2491 17.7520i −1.28114 2.21900i
\(65\) 0.0633237 0.359127i 0.00785434 0.0445442i
\(66\) 9.50505 + 24.2499i 1.16999 + 2.98496i
\(67\) −6.91806 2.51797i −0.845175 0.307619i −0.117104 0.993120i \(-0.537361\pi\)
−0.728072 + 0.685501i \(0.759583\pi\)
\(68\) 29.4937 + 10.7348i 3.57664 + 1.30179i
\(69\) 2.09386 2.62324i 0.252071 0.315801i
\(70\) 0.546141 3.09732i 0.0652764 0.370201i
\(71\) 1.70461 + 2.95247i 0.202300 + 0.350393i 0.949269 0.314465i \(-0.101825\pi\)
−0.746969 + 0.664858i \(0.768492\pi\)
\(72\) −3.25487 + 25.7889i −0.383590 + 3.03925i
\(73\) 1.48619 2.57416i 0.173946 0.301282i −0.765850 0.643019i \(-0.777682\pi\)
0.939796 + 0.341736i \(0.111015\pi\)
\(74\) −4.95784 4.16012i −0.576337 0.483604i
\(75\) 5.36738 3.27668i 0.619771 0.378359i
\(76\) 3.49465 + 19.8192i 0.400864 + 2.27341i
\(77\) 4.28604 3.59641i 0.488439 0.409849i
\(78\) 1.42209 0.286828i 0.161020 0.0324769i
\(79\) −10.0188 + 3.64655i −1.12720 + 0.410269i −0.837277 0.546779i \(-0.815854\pi\)
−0.289928 + 0.957048i \(0.593631\pi\)
\(80\) 15.0252 1.67987
\(81\) 6.29549 6.43171i 0.699499 0.714634i
\(82\) −2.51508 −0.277745
\(83\) −14.6581 + 5.33512i −1.60894 + 0.585605i −0.981229 0.192844i \(-0.938229\pi\)
−0.627708 + 0.778449i \(0.716007\pi\)
\(84\) 8.86920 1.78888i 0.967709 0.195182i
\(85\) −5.38603 + 4.51942i −0.584197 + 0.490200i
\(86\) 0.958365 + 5.43516i 0.103343 + 0.586088i
\(87\) −0.222587 + 0.135885i −0.0238638 + 0.0145684i
\(88\) 37.1363 + 31.1611i 3.95875 + 3.32178i
\(89\) −3.11001 + 5.38670i −0.329661 + 0.570989i −0.982445 0.186555i \(-0.940268\pi\)
0.652784 + 0.757544i \(0.273601\pi\)
\(90\) −7.51616 5.70371i −0.792273 0.601224i
\(91\) −0.155816 0.269882i −0.0163340 0.0282913i
\(92\) 1.75780 9.96900i 0.183264 1.03934i
\(93\) −7.02531 + 8.80149i −0.728491 + 0.912672i
\(94\) 0.289346 + 0.105313i 0.0298437 + 0.0108622i
\(95\) −4.23634 1.54190i −0.434639 0.158196i
\(96\) 10.8600 + 27.7066i 1.10839 + 2.82780i
\(97\) −1.36421 + 7.73680i −0.138514 + 0.785553i 0.833834 + 0.552016i \(0.186141\pi\)
−0.972348 + 0.233537i \(0.924970\pi\)
\(98\) −1.34385 2.32762i −0.135750 0.235125i
\(99\) −3.72060 16.3675i −0.373934 1.64500i
\(100\) 9.48287 16.4248i 0.948287 1.64248i
\(101\) −0.0408810 0.0343033i −0.00406782 0.00341330i 0.640751 0.767748i \(-0.278623\pi\)
−0.644819 + 0.764335i \(0.723067\pi\)
\(102\) −24.5586 13.3879i −2.43166 1.32560i
\(103\) −1.40113 7.94618i −0.138057 0.782960i −0.972682 0.232142i \(-0.925427\pi\)
0.834625 0.550819i \(-0.185684\pi\)
\(104\) 2.06842 1.73561i 0.202826 0.170191i
\(105\) −0.646361 + 1.92099i −0.0630783 + 0.187469i
\(106\) 32.6060 11.8676i 3.16698 1.15269i
\(107\) 12.1197 1.17165 0.585826 0.810437i \(-0.300770\pi\)
0.585826 + 0.810437i \(0.300770\pi\)
\(108\) 7.38610 26.1192i 0.710727 2.51332i
\(109\) −10.7975 −1.03421 −0.517105 0.855922i \(-0.672990\pi\)
−0.517105 + 0.855922i \(0.672990\pi\)
\(110\) −16.5357 + 6.01851i −1.57662 + 0.573842i
\(111\) 2.75837 + 3.12839i 0.261813 + 0.296934i
\(112\) 9.83607 8.25344i 0.929421 0.779877i
\(113\) −0.0985621 0.558973i −0.00927194 0.0525838i 0.979821 0.199878i \(-0.0640546\pi\)
−0.989093 + 0.147294i \(0.952944\pi\)
\(114\) −0.439217 17.9293i −0.0411364 1.67923i
\(115\) 1.73710 + 1.45760i 0.161985 + 0.135922i
\(116\) −0.393258 + 0.681142i −0.0365130 + 0.0632425i
\(117\) −0.933776 + 0.0457772i −0.0863276 + 0.00423210i
\(118\) 17.9421 + 31.0766i 1.65170 + 2.86083i
\(119\) −1.04335 + 5.91715i −0.0956441 + 0.542425i
\(120\) −17.3640 2.62504i −1.58511 0.239632i
\(121\) −19.0798 6.94449i −1.73453 0.631317i
\(122\) 16.2906 + 5.92929i 1.47488 + 0.536813i
\(123\) 1.60260 + 0.242276i 0.144501 + 0.0218453i
\(124\) −5.89777 + 33.4479i −0.529636 + 3.00371i
\(125\) 5.04973 + 8.74639i 0.451662 + 0.782301i
\(126\) −8.05344 + 0.394810i −0.717457 + 0.0351725i
\(127\) 5.18232 8.97604i 0.459856 0.796494i −0.539097 0.842244i \(-0.681234\pi\)
0.998953 + 0.0457495i \(0.0145676\pi\)
\(128\) 15.8804 + 13.3253i 1.40364 + 1.17780i
\(129\) −0.0871015 3.55557i −0.00766886 0.313051i
\(130\) 0.170195 + 0.965226i 0.0149271 + 0.0846559i
\(131\) 4.60650 3.86531i 0.402471 0.337714i −0.418977 0.907997i \(-0.637611\pi\)
0.821448 + 0.570283i \(0.193167\pi\)
\(132\) −33.4796 37.9707i −2.91402 3.30493i
\(133\) −3.62024 + 1.31766i −0.313915 + 0.114256i
\(134\) 19.7870 1.70934
\(135\) 4.23983 + 4.35840i 0.364906 + 0.375111i
\(136\) −52.0600 −4.46411
\(137\) 2.01170 0.732199i 0.171871 0.0625560i −0.254651 0.967033i \(-0.581961\pi\)
0.426523 + 0.904477i \(0.359738\pi\)
\(138\) −2.87687 + 8.55008i −0.244896 + 0.727831i
\(139\) 4.53763 3.80752i 0.384876 0.322950i −0.429737 0.902954i \(-0.641394\pi\)
0.814613 + 0.580005i \(0.196949\pi\)
\(140\) 1.06147 + 6.01987i 0.0897103 + 0.508772i
\(141\) −0.174225 0.0949775i −0.0146724 0.00799855i
\(142\) −7.01923 5.88984i −0.589041 0.494264i
\(143\) −0.871796 + 1.50999i −0.0729032 + 0.126272i
\(144\) −8.53843 37.5620i −0.711536 3.13017i
\(145\) −0.0880943 0.152584i −0.00731584 0.0126714i
\(146\) −1.38725 + 7.86751i −0.114810 + 0.651120i
\(147\) 0.632078 + 1.61260i 0.0521329 + 0.133005i
\(148\) 11.8202 + 4.30221i 0.971616 + 0.353639i
\(149\) −2.98455 1.08629i −0.244504 0.0889920i 0.216862 0.976202i \(-0.430418\pi\)
−0.461365 + 0.887210i \(0.652640\pi\)
\(150\) −10.5438 + 13.2096i −0.860901 + 1.07856i
\(151\) 2.12109 12.0293i 0.172612 0.978929i −0.768253 0.640146i \(-0.778874\pi\)
0.940865 0.338783i \(-0.110015\pi\)
\(152\) −16.6903 28.9085i −1.35376 2.34479i
\(153\) 14.3590 + 10.8964i 1.16085 + 0.880924i
\(154\) −7.51889 + 13.0231i −0.605889 + 1.04943i
\(155\) −5.82831 4.89053i −0.468141 0.392817i
\(156\) −2.40658 + 1.46917i −0.192680 + 0.117628i
\(157\) 2.56800 + 14.5638i 0.204948 + 1.16232i 0.897521 + 0.440972i \(0.145366\pi\)
−0.692573 + 0.721348i \(0.743523\pi\)
\(158\) 21.9516 18.4196i 1.74637 1.46538i
\(159\) −21.9196 + 4.42108i −1.73834 + 0.350614i
\(160\) −18.8928 + 6.87642i −1.49361 + 0.543629i
\(161\) 1.93784 0.152723
\(162\) −9.98764 + 22.0311i −0.784703 + 1.73093i
\(163\) 17.9552 1.40636 0.703179 0.711013i \(-0.251763\pi\)
0.703179 + 0.711013i \(0.251763\pi\)
\(164\) 4.59345 1.67188i 0.358689 0.130552i
\(165\) 11.1162 2.24209i 0.865397 0.174547i
\(166\) 32.1165 26.9489i 2.49272 2.09164i
\(167\) 1.81639 + 10.3013i 0.140557 + 0.797137i 0.970828 + 0.239777i \(0.0770744\pi\)
−0.830271 + 0.557359i \(0.811815\pi\)
\(168\) −12.8091 + 7.81970i −0.988241 + 0.603303i
\(169\) −9.88418 8.29381i −0.760322 0.637986i
\(170\) 9.44858 16.3654i 0.724673 1.25517i
\(171\) −1.44725 + 11.4668i −0.110674 + 0.876886i
\(172\) −5.36330 9.28950i −0.408948 0.708318i
\(173\) −3.47887 + 19.7297i −0.264494 + 1.50002i 0.505979 + 0.862546i \(0.331131\pi\)
−0.770473 + 0.637473i \(0.779980\pi\)
\(174\) 0.437256 0.547806i 0.0331483 0.0415291i
\(175\) 3.41172 + 1.24176i 0.257902 + 0.0938685i
\(176\) −67.5081 24.5709i −5.08861 1.85210i
\(177\) −8.43902 21.5302i −0.634315 1.61831i
\(178\) 2.90298 16.4636i 0.217588 1.23400i
\(179\) 2.00725 + 3.47666i 0.150029 + 0.259858i 0.931238 0.364412i \(-0.118730\pi\)
−0.781209 + 0.624270i \(0.785397\pi\)
\(180\) 17.5187 + 5.42074i 1.30577 + 0.404038i
\(181\) 4.02771 6.97620i 0.299377 0.518537i −0.676616 0.736336i \(-0.736554\pi\)
0.975994 + 0.217799i \(0.0698878\pi\)
\(182\) 0.641620 + 0.538383i 0.0475601 + 0.0399076i
\(183\) −9.80912 5.34737i −0.725111 0.395289i
\(184\) 2.91562 + 16.5353i 0.214942 + 1.21900i
\(185\) −2.15856 + 1.81125i −0.158701 + 0.133166i
\(186\) 9.65247 28.6872i 0.707753 2.10345i
\(187\) 31.5900 11.4978i 2.31009 0.840804i
\(188\) −0.598457 −0.0436469
\(189\) 5.16964 + 0.524210i 0.376036 + 0.0381306i
\(190\) 12.1168 0.879042
\(191\) 11.9961 4.36622i 0.868007 0.315929i 0.130647 0.991429i \(-0.458295\pi\)
0.737360 + 0.675500i \(0.236072\pi\)
\(192\) −23.4807 26.6305i −1.69457 1.92189i
\(193\) −10.0198 + 8.40764i −0.721244 + 0.605195i −0.927729 0.373254i \(-0.878242\pi\)
0.206485 + 0.978450i \(0.433797\pi\)
\(194\) −3.66658 20.7942i −0.263245 1.49294i
\(195\) −0.0154683 0.631432i −0.00110771 0.0452178i
\(196\) 4.00163 + 3.35776i 0.285830 + 0.239840i
\(197\) −13.2846 + 23.0096i −0.946488 + 1.63936i −0.193743 + 0.981052i \(0.562063\pi\)
−0.752745 + 0.658312i \(0.771271\pi\)
\(198\) 24.4426 + 37.9179i 1.73706 + 2.69471i
\(199\) 1.46711 + 2.54111i 0.104001 + 0.180135i 0.913330 0.407221i \(-0.133502\pi\)
−0.809329 + 0.587356i \(0.800169\pi\)
\(200\) −5.46261 + 30.9800i −0.386265 + 2.19062i
\(201\) −12.6082 1.90606i −0.889312 0.134443i
\(202\) 0.134783 + 0.0490570i 0.00948330 + 0.00345164i
\(203\) −0.141485 0.0514963i −0.00993030 0.00361433i
\(204\) 53.7524 + 8.12611i 3.76342 + 0.568942i
\(205\) −0.190149 + 1.07839i −0.0132806 + 0.0753181i
\(206\) 10.8432 + 18.7810i 0.755483 + 1.30853i
\(207\) 2.65675 5.17094i 0.184657 0.359405i
\(208\) −2.00069 + 3.46530i −0.138723 + 0.240275i
\(209\) 16.5123 + 13.8555i 1.14218 + 0.958403i
\(210\) −0.133408 5.44584i −0.00920601 0.375799i
\(211\) 0.904352 + 5.12884i 0.0622582 + 0.353084i 0.999984 + 0.00570661i \(0.00181648\pi\)
−0.937726 + 0.347377i \(0.887072\pi\)
\(212\) −51.6615 + 43.3492i −3.54813 + 2.97723i
\(213\) 3.90526 + 4.42913i 0.267584 + 0.303479i
\(214\) −30.6096 + 11.1410i −2.09243 + 0.761582i
\(215\) 2.40288 0.163875
\(216\) 3.30510 + 44.9005i 0.224883 + 3.05509i
\(217\) −6.50183 −0.441373
\(218\) 27.2702 9.92555i 1.84697 0.672243i
\(219\) 1.64182 4.87951i 0.110944 0.329727i
\(220\) 26.1994 21.9839i 1.76637 1.48216i
\(221\) −0.325143 1.84398i −0.0218715 0.124039i
\(222\) −9.84235 5.36549i −0.660575 0.360108i
\(223\) 1.26584 + 1.06216i 0.0847668 + 0.0711278i 0.684186 0.729307i \(-0.260157\pi\)
−0.599420 + 0.800435i \(0.704602\pi\)
\(224\) −8.59067 + 14.8795i −0.573988 + 0.994177i
\(225\) 7.99095 7.40141i 0.532730 0.493427i
\(226\) 0.762765 + 1.32115i 0.0507384 + 0.0878815i
\(227\) 2.49075 14.1257i 0.165317 0.937559i −0.783420 0.621492i \(-0.786527\pi\)
0.948737 0.316066i \(-0.102362\pi\)
\(228\) 12.7205 + 32.4534i 0.842437 + 2.14928i
\(229\) 13.5888 + 4.94594i 0.897976 + 0.326837i 0.749441 0.662071i \(-0.230322\pi\)
0.148535 + 0.988907i \(0.452544\pi\)
\(230\) −5.72715 2.08451i −0.377637 0.137449i
\(231\) 6.04550 7.57396i 0.397765 0.498330i
\(232\) 0.226536 1.28475i 0.0148728 0.0843480i
\(233\) −1.22410 2.12020i −0.0801935 0.138899i 0.823139 0.567839i \(-0.192220\pi\)
−0.903333 + 0.428940i \(0.858887\pi\)
\(234\) 2.31628 0.973988i 0.151420 0.0636716i
\(235\) 0.0670307 0.116101i 0.00437260 0.00757356i
\(236\) −53.4266 44.8302i −3.47778 2.91820i
\(237\) −15.7618 + 9.62228i −1.02384 + 0.625034i
\(238\) −2.80423 15.9036i −0.181771 1.03087i
\(239\) −1.38904 + 1.16554i −0.0898497 + 0.0753928i −0.686606 0.727030i \(-0.740900\pi\)
0.596756 + 0.802422i \(0.296456\pi\)
\(240\) 25.5107 5.14540i 1.64671 0.332134i
\(241\) 7.39961 2.69324i 0.476651 0.173487i −0.0925120 0.995712i \(-0.529490\pi\)
0.569163 + 0.822225i \(0.307267\pi\)
\(242\) 54.5720 3.50802
\(243\) 8.48631 13.0760i 0.544397 0.838828i
\(244\) −33.6940 −2.15703
\(245\) −1.09961 + 0.400226i −0.0702516 + 0.0255695i
\(246\) −4.27026 + 0.861292i −0.272262 + 0.0549140i
\(247\) 0.919704 0.771723i 0.0585194 0.0491036i
\(248\) −9.78247 55.4792i −0.621188 3.52293i
\(249\) −23.0604 + 14.0780i −1.46139 + 0.892154i
\(250\) −20.7938 17.4481i −1.31511 1.10351i
\(251\) −3.06122 + 5.30219i −0.193223 + 0.334672i −0.946316 0.323242i \(-0.895227\pi\)
0.753094 + 0.657913i \(0.228561\pi\)
\(252\) 14.4461 6.07452i 0.910016 0.382659i
\(253\) −5.42113 9.38967i −0.340823 0.590324i
\(254\) −4.83733 + 27.4339i −0.303521 + 1.72135i
\(255\) −7.59705 + 9.51779i −0.475746 + 0.596027i
\(256\) −13.8331 5.03482i −0.864566 0.314676i
\(257\) −14.7803 5.37959i −0.921969 0.335569i −0.162948 0.986635i \(-0.552100\pi\)
−0.759022 + 0.651065i \(0.774322\pi\)
\(258\) 3.48844 + 8.89995i 0.217181 + 0.554086i
\(259\) −0.418145 + 2.37142i −0.0259823 + 0.147353i
\(260\) −0.952464 1.64972i −0.0590693 0.102311i
\(261\) −0.331387 + 0.306939i −0.0205123 + 0.0189990i
\(262\) −8.08106 + 13.9968i −0.499249 + 0.864725i
\(263\) −4.86769 4.08448i −0.300155 0.251860i 0.480254 0.877129i \(-0.340544\pi\)
−0.780409 + 0.625270i \(0.784989\pi\)
\(264\) 73.7234 + 40.1898i 4.53736 + 2.47351i
\(265\) −2.62334 14.8777i −0.161150 0.913929i
\(266\) 7.93208 6.65580i 0.486347 0.408093i
\(267\) −3.43569 + 10.2109i −0.210261 + 0.624896i
\(268\) −36.1382 + 13.1532i −2.20749 + 0.803462i
\(269\) 3.32886 0.202964 0.101482 0.994837i \(-0.467642\pi\)
0.101482 + 0.994837i \(0.467642\pi\)
\(270\) −14.7146 7.11019i −0.895504 0.432712i
\(271\) 21.5188 1.30717 0.653587 0.756851i \(-0.273263\pi\)
0.653587 + 0.756851i \(0.273263\pi\)
\(272\) 72.4961 26.3864i 4.39572 1.59991i
\(273\) −0.356975 0.404862i −0.0216051 0.0245034i
\(274\) −4.40771 + 3.69851i −0.266279 + 0.223435i
\(275\) −3.52744 20.0051i −0.212713 1.20635i
\(276\) −0.429385 17.5279i −0.0258459 1.05506i
\(277\) −17.1984 14.4312i −1.03335 0.867084i −0.0421044 0.999113i \(-0.513406\pi\)
−0.991246 + 0.132029i \(0.957851\pi\)
\(278\) −7.96024 + 13.7875i −0.477423 + 0.826922i
\(279\) −8.91391 + 17.3495i −0.533662 + 1.03869i
\(280\) −5.06951 8.78066i −0.302961 0.524745i
\(281\) −0.941835 + 5.34141i −0.0561852 + 0.318642i −0.999928 0.0120398i \(-0.996168\pi\)
0.943742 + 0.330682i \(0.107279\pi\)
\(282\) 0.527333 + 0.0797206i 0.0314022 + 0.00474729i
\(283\) −28.9739 10.5456i −1.72232 0.626872i −0.724281 0.689505i \(-0.757828\pi\)
−0.998037 + 0.0626324i \(0.980050\pi\)
\(284\) 16.7349 + 6.09100i 0.993032 + 0.361434i
\(285\) −7.72074 1.16720i −0.457337 0.0691387i
\(286\) 0.813760 4.61506i 0.0481187 0.272894i
\(287\) 0.467887 + 0.810404i 0.0276185 + 0.0478367i
\(288\) 27.9268 + 43.3230i 1.64560 + 2.55283i
\(289\) −9.55065 + 16.5422i −0.561803 + 0.973072i
\(290\) 0.362755 + 0.304388i 0.0213017 + 0.0178743i
\(291\) 0.333239 + 13.6032i 0.0195348 + 0.797432i
\(292\) −2.69623 15.2911i −0.157785 0.894844i
\(293\) 18.4315 15.4659i 1.07678 0.903528i 0.0811329 0.996703i \(-0.474146\pi\)
0.995650 + 0.0931754i \(0.0297017\pi\)
\(294\) −3.07877 3.49177i −0.179557 0.203644i
\(295\) 14.6812 5.34351i 0.854770 0.311111i
\(296\) −20.8641 −1.21270
\(297\) −11.9221 26.5157i −0.691792 1.53859i
\(298\) 8.53639 0.494500
\(299\) −0.567474 + 0.206544i −0.0328179 + 0.0119447i
\(300\) 10.4759 31.1344i 0.604826 1.79755i
\(301\) 1.57302 1.31992i 0.0906672 0.0760788i
\(302\) 5.70085 + 32.3311i 0.328047 + 1.86045i
\(303\) −0.0811574 0.0442424i −0.00466237 0.00254166i
\(304\) 37.8942 + 31.7970i 2.17338 + 1.82368i
\(305\) 3.77392 6.53662i 0.216094 0.374286i
\(306\) −46.2817 14.3207i −2.64575 0.818662i
\(307\) −4.56858 7.91301i −0.260743 0.451619i 0.705697 0.708514i \(-0.250634\pi\)
−0.966439 + 0.256895i \(0.917301\pi\)
\(308\) 5.07522 28.7830i 0.289188 1.64006i
\(309\) −5.10009 13.0117i −0.290134 0.740209i
\(310\) 19.2157 + 6.99394i 1.09138 + 0.397229i
\(311\) 24.4856 + 8.91202i 1.38845 + 0.505354i 0.924729 0.380627i \(-0.124292\pi\)
0.463721 + 0.885981i \(0.346514\pi\)
\(312\) 2.91753 3.65516i 0.165173 0.206933i
\(313\) −4.63829 + 26.3050i −0.262171 + 1.48685i 0.514799 + 0.857311i \(0.327867\pi\)
−0.776970 + 0.629537i \(0.783245\pi\)
\(314\) −19.8735 34.4220i −1.12153 1.94255i
\(315\) −0.439586 + 3.48292i −0.0247679 + 0.196240i
\(316\) −27.8473 + 48.2329i −1.56653 + 2.71331i
\(317\) 3.78783 + 3.17837i 0.212746 + 0.178515i 0.742933 0.669366i \(-0.233434\pi\)
−0.530187 + 0.847881i \(0.677878\pi\)
\(318\) 51.2964 31.3155i 2.87656 1.75609i
\(319\) 0.146284 + 0.829618i 0.00819033 + 0.0464497i
\(320\) 18.3748 15.4183i 1.02718 0.861910i
\(321\) 20.5775 4.15038i 1.14852 0.231652i
\(322\) −4.89423 + 1.78136i −0.272745 + 0.0992711i
\(323\) −23.1480 −1.28799
\(324\) 3.59604 46.8760i 0.199780 2.60422i
\(325\) −1.13144 −0.0627608
\(326\) −45.3479 + 16.5053i −2.51159 + 0.914143i
\(327\) −18.3326 + 3.69760i −1.01379 + 0.204478i
\(328\) −6.21109 + 5.21173i −0.342950 + 0.287769i
\(329\) −0.0198939 0.112824i −0.00109679 0.00622019i
\(330\) −26.0143 + 15.8812i −1.43204 + 0.874233i
\(331\) −7.66648 6.43294i −0.421388 0.353586i 0.407303 0.913293i \(-0.366469\pi\)
−0.828691 + 0.559707i \(0.810914\pi\)
\(332\) −40.7422 + 70.5676i −2.23602 + 3.87290i
\(333\) 5.75464 + 4.36697i 0.315353 + 0.239308i
\(334\) −14.0569 24.3473i −0.769162 1.33223i
\(335\) 1.49597 8.48405i 0.0817334 0.463533i
\(336\) 13.8739 17.3816i 0.756882 0.948241i
\(337\) −1.25023 0.455045i −0.0681041 0.0247879i 0.307743 0.951469i \(-0.400426\pi\)
−0.375848 + 0.926681i \(0.622648\pi\)
\(338\) 32.5877 + 11.8610i 1.77254 + 0.645151i
\(339\) −0.358765 0.915305i −0.0194855 0.0497126i
\(340\) −6.37775 + 36.1700i −0.345882 + 1.96160i
\(341\) 18.1889 + 31.5042i 0.984987 + 1.70605i
\(342\) −6.88562 30.2910i −0.372332 1.63795i
\(343\) −0.500000 + 0.866025i −0.0269975 + 0.0467610i
\(344\) 13.6294 + 11.4364i 0.734847 + 0.616610i
\(345\) 3.44851 + 1.87993i 0.185661 + 0.101212i
\(346\) −9.35018 53.0275i −0.502669 2.85078i
\(347\) 9.16650 7.69161i 0.492083 0.412907i −0.362689 0.931910i \(-0.618141\pi\)
0.854772 + 0.519003i \(0.173697\pi\)
\(348\) −0.434439 + 1.29115i −0.0232884 + 0.0692132i
\(349\) 24.9445 9.07906i 1.33525 0.485991i 0.426936 0.904282i \(-0.359593\pi\)
0.908313 + 0.418291i \(0.137371\pi\)
\(350\) −9.75818 −0.521596
\(351\) −1.56974 + 0.397495i −0.0837867 + 0.0212167i
\(352\) 96.1301 5.12375
\(353\) 6.35246 2.31211i 0.338107 0.123061i −0.167386 0.985891i \(-0.553533\pi\)
0.505493 + 0.862830i \(0.331310\pi\)
\(354\) 41.1053 + 46.6194i 2.18472 + 2.47779i
\(355\) −3.05606 + 2.56434i −0.162199 + 0.136101i
\(356\) 5.64216 + 31.9983i 0.299034 + 1.69590i
\(357\) 0.254864 + 10.4038i 0.0134888 + 0.550627i
\(358\) −8.26545 6.93554i −0.436843 0.366555i
\(359\) 3.19259 5.52972i 0.168498 0.291848i −0.769394 0.638775i \(-0.779442\pi\)
0.937892 + 0.346927i \(0.112775\pi\)
\(360\) −30.3806 + 1.48937i −1.60120 + 0.0784968i
\(361\) 2.07882 + 3.60062i 0.109412 + 0.189506i
\(362\) −3.75958 + 21.3217i −0.197599 + 1.12064i
\(363\) −34.7730 5.25687i −1.82511 0.275914i
\(364\) −1.52972 0.556771i −0.0801789 0.0291827i
\(365\) 3.26847 + 1.18962i 0.171079 + 0.0622678i
\(366\) 29.6896 + 4.48838i 1.55190 + 0.234611i
\(367\) −4.69453 + 26.6240i −0.245052 + 1.38976i 0.575319 + 0.817929i \(0.304878\pi\)
−0.820371 + 0.571832i \(0.806233\pi\)
\(368\) −12.4410 21.5484i −0.648532 1.12329i
\(369\) 2.80396 0.137460i 0.145968 0.00715591i
\(370\) 3.78671 6.55877i 0.196862 0.340974i
\(371\) −9.88973 8.29847i −0.513449 0.430835i
\(372\) 1.44067 + 58.8096i 0.0746952 + 3.04914i
\(373\) 4.94033 + 28.0180i 0.255801 + 1.45072i 0.794009 + 0.607906i \(0.207990\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(374\) −69.2148 + 58.0781i −3.57901 + 3.00315i
\(375\) 11.5689 + 13.1209i 0.597417 + 0.677558i
\(376\) 0.932779 0.339504i 0.0481044 0.0175086i
\(377\) 0.0469210 0.00241655
\(378\) −13.5384 + 3.42824i −0.696341 + 0.176329i
\(379\) 30.7917 1.58167 0.790833 0.612032i \(-0.209648\pi\)
0.790833 + 0.612032i \(0.209648\pi\)
\(380\) −22.1296 + 8.05451i −1.13522 + 0.413188i
\(381\) 5.72500 17.0147i 0.293301 0.871691i
\(382\) −26.2839 + 22.0548i −1.34480 + 1.12842i
\(383\) 3.07487 + 17.4384i 0.157118 + 0.891063i 0.956823 + 0.290670i \(0.0938780\pi\)
−0.799705 + 0.600393i \(0.795011\pi\)
\(384\) 31.5260 + 17.1862i 1.60880 + 0.877028i
\(385\) 5.01545 + 4.20846i 0.255611 + 0.214483i
\(386\) 17.5775 30.4452i 0.894673 1.54962i
\(387\) −1.36549 6.00704i −0.0694120 0.305355i
\(388\) 20.5193 + 35.5405i 1.04171 + 1.80429i
\(389\) 1.82478 10.3489i 0.0925202 0.524708i −0.902959 0.429727i \(-0.858610\pi\)
0.995479 0.0949811i \(-0.0302791\pi\)
\(390\) 0.619510 + 1.58053i 0.0313701 + 0.0800335i
\(391\) 10.9412 + 3.98227i 0.553320 + 0.201392i
\(392\) −8.14196 2.96343i −0.411231 0.149676i
\(393\) 6.49751 8.14025i 0.327756 0.410621i
\(394\) 12.4002 70.3252i 0.624715 3.54293i
\(395\) −6.23812 10.8047i −0.313874 0.543646i
\(396\) −69.8467 53.0039i −3.50993 2.66354i
\(397\) 13.6008 23.5572i 0.682603 1.18230i −0.291581 0.956546i \(-0.594181\pi\)
0.974184 0.225757i \(-0.0724855\pi\)
\(398\) −6.04128 5.06923i −0.302822 0.254098i
\(399\) −5.69543 + 3.47695i −0.285128 + 0.174065i
\(400\) −8.09515 45.9099i −0.404758 2.29549i
\(401\) 6.59691 5.53546i 0.329434 0.276428i −0.463035 0.886340i \(-0.653240\pi\)
0.792469 + 0.609912i \(0.208795\pi\)
\(402\) 33.5955 6.77606i 1.67559 0.337959i
\(403\) 1.90399 0.692994i 0.0948443 0.0345205i
\(404\) −0.278773 −0.0138695
\(405\) 8.69117 + 5.94802i 0.431868 + 0.295560i
\(406\) 0.404675 0.0200837
\(407\) 12.6603 4.60798i 0.627549 0.228409i
\(408\) −88.3906 + 17.8280i −4.37599 + 0.882617i
\(409\) −1.74752 + 1.46634i −0.0864094 + 0.0725061i −0.684969 0.728572i \(-0.740184\pi\)
0.598560 + 0.801078i \(0.295740\pi\)
\(410\) −0.511065 2.89839i −0.0252397 0.143141i
\(411\) 3.16484 1.93208i 0.156110 0.0953024i
\(412\) −32.2882 27.0930i −1.59072 1.33478i
\(413\) 6.67561 11.5625i 0.328485 0.568953i
\(414\) −1.95654 + 15.5020i −0.0961589 + 0.761883i
\(415\) −9.12674 15.8080i −0.448014 0.775983i
\(416\) 0.929758 5.27292i 0.0455851 0.258526i
\(417\) 6.40037 8.01855i 0.313427 0.392670i
\(418\) −54.4403 19.8147i −2.66276 0.969167i
\(419\) −36.4858 13.2798i −1.78245 0.648758i −0.999649 0.0264847i \(-0.991569\pi\)
−0.782800 0.622274i \(-0.786209\pi\)
\(420\) 3.86373 + 9.85740i 0.188531 + 0.480992i
\(421\) 2.46258 13.9660i 0.120019 0.680661i −0.864123 0.503280i \(-0.832126\pi\)
0.984142 0.177381i \(-0.0567624\pi\)
\(422\) −6.99872 12.1221i −0.340692 0.590097i
\(423\) −0.328335 0.101595i −0.0159642 0.00493972i
\(424\) 55.9298 96.8733i 2.71619 4.70458i
\(425\) 16.7110 + 14.0222i 0.810603 + 0.680177i
\(426\) −13.9346 7.59638i −0.675136 0.368046i
\(427\) −1.12006 6.35215i −0.0542033 0.307402i
\(428\) 48.4983 40.6949i 2.34426 1.96706i
\(429\) −0.963089 + 2.86231i −0.0464984 + 0.138193i
\(430\) −6.06876 + 2.20885i −0.292662 + 0.106520i
\(431\) −7.70973 −0.371365 −0.185682 0.982610i \(-0.559450\pi\)
−0.185682 + 0.982610i \(0.559450\pi\)
\(432\) −27.3602 60.8510i −1.31637 2.92770i
\(433\) −22.8350 −1.09738 −0.548690 0.836026i \(-0.684873\pi\)
−0.548690 + 0.836026i \(0.684873\pi\)
\(434\) 16.4211 5.97680i 0.788239 0.286895i
\(435\) −0.201824 0.228898i −0.00967673 0.0109748i
\(436\) −43.2074 + 36.2553i −2.06926 + 1.73631i
\(437\) 1.29640 + 7.35225i 0.0620153 + 0.351706i
\(438\) 0.338869 + 13.8330i 0.0161918 + 0.660966i
\(439\) 20.2122 + 16.9600i 0.964674 + 0.809458i 0.981707 0.190397i \(-0.0609776\pi\)
−0.0170331 + 0.999855i \(0.505422\pi\)
\(440\) −28.3641 + 49.1280i −1.35220 + 2.34209i
\(441\) 1.62542 + 2.52151i 0.0774007 + 0.120072i
\(442\) 2.51626 + 4.35829i 0.119686 + 0.207303i
\(443\) −1.88159 + 10.6711i −0.0893973 + 0.506997i 0.906924 + 0.421295i \(0.138424\pi\)
−0.996321 + 0.0857018i \(0.972687\pi\)
\(444\) 21.5424 + 3.25671i 1.02236 + 0.154556i
\(445\) −6.83961 2.48942i −0.324229 0.118010i
\(446\) −4.17341 1.51900i −0.197617 0.0719267i
\(447\) −5.43934 0.822302i −0.257272 0.0388936i
\(448\) 3.55948 20.1868i 0.168169 0.953736i
\(449\) −3.76288 6.51749i −0.177581 0.307580i 0.763470 0.645843i \(-0.223494\pi\)
−0.941052 + 0.338263i \(0.890161\pi\)
\(450\) −13.3783 + 26.0388i −0.630660 + 1.22748i
\(451\) 2.61784 4.53423i 0.123269 0.213509i
\(452\) −2.27131 1.90585i −0.106833 0.0896438i
\(453\) −0.518125 21.1504i −0.0243436 0.993732i
\(454\) 6.69440 + 37.9658i 0.314184 + 1.78182i
\(455\) 0.279351 0.234403i 0.0130962 0.0109890i
\(456\) −38.2375 43.3669i −1.79064 2.03084i
\(457\) 19.5878 7.12937i 0.916278 0.333498i 0.159521 0.987194i \(-0.449005\pi\)
0.756757 + 0.653697i \(0.226783\pi\)
\(458\) −38.8667 −1.81612
\(459\) 28.1110 + 13.5834i 1.31211 + 0.634018i
\(460\) 11.8455 0.552299
\(461\) −2.32300 + 0.845502i −0.108193 + 0.0393790i −0.395549 0.918445i \(-0.629446\pi\)
0.287357 + 0.957824i \(0.407224\pi\)
\(462\) −8.30625 + 24.6862i −0.386442 + 1.14851i
\(463\) −20.6982 + 17.3679i −0.961927 + 0.807153i −0.981266 0.192660i \(-0.938288\pi\)
0.0193384 + 0.999813i \(0.493844\pi\)
\(464\) 0.335709 + 1.90390i 0.0155849 + 0.0883862i
\(465\) −11.5704 6.30753i −0.536566 0.292505i
\(466\) 5.04060 + 4.22957i 0.233501 + 0.195931i
\(467\) 8.38967 14.5313i 0.388228 0.672430i −0.603983 0.796997i \(-0.706421\pi\)
0.992211 + 0.124567i \(0.0397540\pi\)
\(468\) −3.58291 + 3.31858i −0.165620 + 0.153401i
\(469\) −3.68102 6.37572i −0.169974 0.294403i
\(470\) −0.0625684 + 0.354843i −0.00288607 + 0.0163677i
\(471\) 9.34748 + 23.8479i 0.430709 + 1.09885i
\(472\) 108.705 + 39.5654i 5.00356 + 1.82115i
\(473\) −10.7961 3.92946i −0.496406 0.180677i
\(474\) 30.9629 38.7912i 1.42217 1.78174i
\(475\) −2.42890 + 13.7750i −0.111445 + 0.632038i
\(476\) 15.6933 + 27.1816i 0.719301 + 1.24587i
\(477\) −35.7024 + 15.0127i −1.63470 + 0.687386i
\(478\) 2.43676 4.22059i 0.111455 0.193045i
\(479\) −28.5409 23.9487i −1.30407 1.09424i −0.989427 0.145031i \(-0.953672\pi\)
−0.314640 0.949211i \(-0.601884\pi\)
\(480\) −29.7225 + 18.1450i −1.35664 + 0.828204i
\(481\) −0.130308 0.739012i −0.00594152 0.0336960i
\(482\) −16.2128 + 13.6042i −0.738473 + 0.619653i
\(483\) 3.29018 0.663614i 0.149708 0.0301955i
\(484\) −99.6683 + 36.2763i −4.53038 + 1.64892i
\(485\) −9.19313 −0.417439
\(486\) −9.41304 + 40.8260i −0.426984 + 1.85191i
\(487\) 4.49285 0.203591 0.101795 0.994805i \(-0.467541\pi\)
0.101795 + 0.994805i \(0.467541\pi\)
\(488\) 52.5168 19.1146i 2.37732 0.865275i
\(489\) 30.4854 6.14876i 1.37860 0.278056i
\(490\) 2.40929 2.02163i 0.108841 0.0913281i
\(491\) 6.73351 + 38.1876i 0.303879 + 1.72338i 0.628735 + 0.777620i \(0.283573\pi\)
−0.324856 + 0.945763i \(0.605316\pi\)
\(492\) 7.22651 4.41165i 0.325796 0.198893i
\(493\) −0.693011 0.581505i −0.0312116 0.0261897i
\(494\) −1.61341 + 2.79451i −0.0725909 + 0.125731i
\(495\) 18.1060 7.61351i 0.813804 0.342202i
\(496\) 41.7420 + 72.2992i 1.87427 + 3.24633i
\(497\) −0.592004 + 3.35742i −0.0265550 + 0.150601i
\(498\) 45.3006 56.7538i 2.02997 2.54320i
\(499\) 22.8963 + 8.33356i 1.02498 + 0.373061i 0.799167 0.601110i \(-0.205275\pi\)
0.225811 + 0.974171i \(0.427497\pi\)
\(500\) 49.5754 + 18.0440i 2.21708 + 0.806951i
\(501\) 6.61166 + 16.8681i 0.295387 + 0.753611i
\(502\) 2.85744 16.2053i 0.127534 0.723279i
\(503\) −13.0025 22.5211i −0.579755 1.00416i −0.995507 0.0946868i \(-0.969815\pi\)
0.415752 0.909478i \(-0.363518\pi\)
\(504\) −19.0701 + 17.6632i −0.849452 + 0.786783i
\(505\) 0.0312242 0.0540819i 0.00138946 0.00240661i
\(506\) 22.3231 + 18.7313i 0.992384 + 0.832709i
\(507\) −19.6222 10.6969i −0.871452 0.475066i
\(508\) −9.40171 53.3197i −0.417133 2.36568i
\(509\) −5.23280 + 4.39084i −0.231940 + 0.194620i −0.751349 0.659905i \(-0.770596\pi\)
0.519409 + 0.854526i \(0.326152\pi\)
\(510\) 10.4380 31.0218i 0.462203 1.37367i
\(511\) 2.79313 1.01661i 0.123561 0.0449724i
\(512\) −1.89563 −0.0837759
\(513\) 1.46958 + 19.9646i 0.0648835 + 0.881457i
\(514\) 42.2745 1.86465
\(515\) 8.87250 3.22933i 0.390969 0.142301i
\(516\) −12.2873 13.9356i −0.540919 0.613481i
\(517\) −0.491028 + 0.412021i −0.0215954 + 0.0181207i
\(518\) −1.12385 6.37368i −0.0493792 0.280043i
\(519\) 0.849796 + 34.6895i 0.0373019 + 1.52270i
\(520\) 2.42043 + 2.03098i 0.106143 + 0.0890646i
\(521\) 15.6709 27.1427i 0.686553 1.18914i −0.286393 0.958112i \(-0.592456\pi\)
0.972946 0.231033i \(-0.0742104\pi\)
\(522\) 0.554803 1.07984i 0.0242831 0.0472632i
\(523\) 7.60378 + 13.1701i 0.332490 + 0.575890i 0.982999 0.183608i \(-0.0587778\pi\)
−0.650509 + 0.759498i \(0.725444\pi\)
\(524\) 5.45468 30.9350i 0.238289 1.35140i
\(525\) 6.21786 + 0.939996i 0.271370 + 0.0410248i
\(526\) 16.0486 + 5.84120i 0.699750 + 0.254688i
\(527\) −36.7099 13.3613i −1.59911 0.582027i
\(528\) −123.034 18.5998i −5.35435 0.809453i
\(529\) −3.34182 + 18.9524i −0.145297 + 0.824018i
\(530\) 20.3018 + 35.1638i 0.881856 + 1.52742i
\(531\) −21.7013 33.6653i −0.941756 1.46095i
\(532\) −10.0625 + 17.4287i −0.436263 + 0.755629i
\(533\) −0.223392 0.187448i −0.00967618 0.00811928i
\(534\) −0.709121 28.9470i −0.0306866 1.25266i
\(535\) 2.46271 + 13.9667i 0.106472 + 0.603835i
\(536\) 48.8647 41.0024i 2.11063 1.77103i
\(537\) 4.59861 + 5.21549i 0.198445 + 0.225065i
\(538\) −8.40741 + 3.06005i −0.362469 + 0.131928i
\(539\) 5.59503 0.240995
\(540\) 31.6007 + 3.20436i 1.35988 + 0.137894i
\(541\) −7.62055 −0.327633 −0.163816 0.986491i \(-0.552380\pi\)
−0.163816 + 0.986491i \(0.552380\pi\)
\(542\) −54.3482 + 19.7811i −2.33446 + 0.849672i
\(543\) 4.44948 13.2239i 0.190946 0.567492i
\(544\) −79.0811 + 66.3569i −3.39057 + 2.84503i
\(545\) −2.19404 12.4430i −0.0939825 0.533001i
\(546\) 1.27375 + 0.694376i 0.0545115 + 0.0297166i
\(547\) −31.9883 26.8413i −1.36772 1.14765i −0.973513 0.228631i \(-0.926575\pi\)
−0.394207 0.919022i \(-0.628981\pi\)
\(548\) 5.59152 9.68480i 0.238858 0.413714i
\(549\) −18.4857 5.71995i −0.788951 0.244121i
\(550\) 27.2986 + 47.2826i 1.16402 + 2.01614i
\(551\) 0.100727 0.571252i 0.00429112 0.0243361i
\(552\) 10.6128 + 27.0762i 0.451712 + 1.15244i
\(553\) −10.0188 3.64655i −0.426043 0.155067i
\(554\) 56.7023 + 20.6379i 2.40905 + 0.876822i
\(555\) −3.04467 + 3.81445i −0.129239 + 0.161914i
\(556\) 5.37313 30.4725i 0.227872 1.29232i
\(557\) −5.71345 9.89598i −0.242087 0.419306i 0.719222 0.694780i \(-0.244498\pi\)
−0.961308 + 0.275474i \(0.911165\pi\)
\(558\) 6.56459 52.0123i 0.277901 2.20186i
\(559\) −0.319957 + 0.554182i −0.0135328 + 0.0234394i
\(560\) 11.5100 + 9.65803i 0.486386 + 0.408126i
\(561\) 49.6979 30.3397i 2.09825 1.28094i
\(562\) −2.53137 14.3561i −0.106780 0.605577i
\(563\) 15.6976 13.1719i 0.661576 0.555129i −0.248982 0.968508i \(-0.580096\pi\)
0.910559 + 0.413379i \(0.135652\pi\)
\(564\) −1.01610 + 0.204942i −0.0427853 + 0.00862960i
\(565\) 0.624135 0.227167i 0.0262576 0.00955697i
\(566\) 82.8709 3.48332
\(567\) 8.95684 0.880312i 0.376152 0.0369696i
\(568\) −29.5391 −1.23943
\(569\) 38.7396 14.1001i 1.62405 0.591105i 0.639901 0.768458i \(-0.278975\pi\)
0.984147 + 0.177352i \(0.0567532\pi\)
\(570\) 20.5726 4.14939i 0.861689 0.173799i
\(571\) 9.45413 7.93296i 0.395643 0.331984i −0.423164 0.906053i \(-0.639080\pi\)
0.818807 + 0.574069i \(0.194636\pi\)
\(572\) 1.58160 + 8.96972i 0.0661302 + 0.375043i
\(573\) 18.8725 11.5213i 0.788409 0.481309i
\(574\) −1.92667 1.61666i −0.0804175 0.0674783i
\(575\) 3.51783 6.09306i 0.146704 0.254098i
\(576\) −48.9866 37.1739i −2.04111 1.54891i
\(577\) 6.08999 + 10.5482i 0.253530 + 0.439126i 0.964495 0.264101i \(-0.0850752\pi\)
−0.710966 + 0.703227i \(0.751742\pi\)
\(578\) 8.91486 50.5587i 0.370809 2.10297i
\(579\) −14.1331 + 17.7063i −0.587351 + 0.735848i
\(580\) −0.864861 0.314784i −0.0359114 0.0130707i
\(581\) −14.6581 5.33512i −0.608121 0.221338i
\(582\) −13.3463 34.0501i −0.553224 1.41142i
\(583\) −12.5430 + 71.1351i −0.519480 + 2.94612i
\(584\) 12.8771 + 22.3038i 0.532858 + 0.922937i
\(585\) −0.242497 1.06679i −0.0100260 0.0441062i
\(586\) −32.3340 + 56.0041i −1.33570 + 2.31351i
\(587\) 14.4255 + 12.1044i 0.595404 + 0.499603i 0.889965 0.456030i \(-0.150729\pi\)
−0.294561 + 0.955633i \(0.595173\pi\)
\(588\) 7.94407 + 4.33065i 0.327608 + 0.178593i
\(589\) −4.34968 24.6683i −0.179225 1.01644i
\(590\) −32.1670 + 26.9913i −1.32429 + 1.11121i
\(591\) −14.6757 + 43.6164i −0.603679 + 1.79414i
\(592\) 29.0543 10.5749i 1.19412 0.434626i
\(593\) 10.1976 0.418767 0.209384 0.977834i \(-0.432854\pi\)
0.209384 + 0.977834i \(0.432854\pi\)
\(594\) 54.4852 + 56.0089i 2.23555 + 2.29807i
\(595\) −7.03096 −0.288241
\(596\) −15.5905 + 5.67449i −0.638613 + 0.232436i
\(597\) 3.36116 + 3.81204i 0.137563 + 0.156016i
\(598\) 1.24336 1.04330i 0.0508446 0.0426637i
\(599\) 3.86999 + 21.9478i 0.158124 + 0.896764i 0.955874 + 0.293776i \(0.0949120\pi\)
−0.797751 + 0.602987i \(0.793977\pi\)
\(600\) 1.33437 + 54.4704i 0.0544755 + 2.22374i
\(601\) 8.82016 + 7.40100i 0.359782 + 0.301893i 0.804704 0.593676i \(-0.202324\pi\)
−0.444922 + 0.895569i \(0.646769\pi\)
\(602\) −2.75950 + 4.77960i −0.112469 + 0.194802i
\(603\) −22.0596 + 1.08145i −0.898338 + 0.0440399i
\(604\) −31.9037 55.2588i −1.29814 2.24845i
\(605\) 4.12584 23.3988i 0.167739 0.951296i
\(606\) 0.245642 + 0.0371354i 0.00997854 + 0.00150852i
\(607\) 44.0541 + 16.0344i 1.78810 + 0.650815i 0.999348 + 0.0361016i \(0.0114940\pi\)
0.788751 + 0.614713i \(0.210728\pi\)
\(608\) −62.2006 22.6392i −2.52257 0.918139i
\(609\) −0.257857 0.0389819i −0.0104489 0.00157963i
\(610\) −3.52269 + 19.9782i −0.142630 + 0.808893i
\(611\) 0.0178510 + 0.0309189i 0.000722175 + 0.00125084i
\(612\) 94.0468 4.61053i 3.80162 0.186370i
\(613\) −8.34297 + 14.4505i −0.336970 + 0.583648i −0.983861 0.178934i \(-0.942735\pi\)
0.646892 + 0.762582i \(0.276069\pi\)
\(614\) 18.8125 + 15.7856i 0.759211 + 0.637053i
\(615\) 0.0464484 + 1.89607i 0.00187298 + 0.0764570i
\(616\) 8.41812 + 47.7416i 0.339176 + 1.92356i
\(617\) 18.3464 15.3945i 0.738598 0.619757i −0.193863 0.981029i \(-0.562102\pi\)
0.932461 + 0.361271i \(0.117657\pi\)
\(618\) 24.8418 + 28.1742i 0.999285 + 1.13333i
\(619\) −13.6383 + 4.96393i −0.548169 + 0.199517i −0.601233 0.799074i \(-0.705324\pi\)
0.0530637 + 0.998591i \(0.483101\pi\)
\(620\) −39.7440 −1.59616
\(621\) 2.74000 9.68934i 0.109952 0.388820i
\(622\) −70.0335 −2.80809
\(623\) −5.84491 + 2.12737i −0.234172 + 0.0852315i
\(624\) −2.21020 + 6.56873i −0.0884788 + 0.262960i
\(625\) 4.85302 4.07216i 0.194121 0.162887i
\(626\) −12.4663 70.7001i −0.498255 2.82574i
\(627\) 32.7804 + 17.8700i 1.30912 + 0.713659i
\(628\) 59.1780 + 49.6563i 2.36146 + 1.98150i
\(629\) −7.23417 + 12.5299i −0.288445 + 0.499602i
\(630\) −2.09144 9.20059i −0.0833249 0.366560i
\(631\) 7.54004 + 13.0597i 0.300164 + 0.519900i 0.976173 0.216994i \(-0.0696252\pi\)
−0.676009 + 0.736894i \(0.736292\pi\)
\(632\) 16.0415 90.9756i 0.638095 3.61882i
\(633\) 3.29184 + 8.39835i 0.130839 + 0.333804i
\(634\) −12.4883 4.54538i −0.495974 0.180520i
\(635\) 11.3971 + 4.14819i 0.452279 + 0.164616i
\(636\) −72.8691 + 91.2923i −2.88945 + 3.61997i
\(637\) 0.0541144 0.306898i 0.00214409 0.0121597i
\(638\) −1.13208 1.96082i −0.0448196 0.0776298i
\(639\) 8.14734 + 6.18268i 0.322304 + 0.244583i
\(640\) −12.1292 + 21.0084i −0.479448 + 0.830429i
\(641\) 16.4800 + 13.8284i 0.650922 + 0.546188i 0.907350 0.420375i \(-0.138101\pi\)
−0.256429 + 0.966563i \(0.582546\pi\)
\(642\) −48.1556 + 29.3981i −1.90055 + 1.16025i
\(643\) −4.72868 26.8176i −0.186481 1.05758i −0.924038 0.382300i \(-0.875132\pi\)
0.737557 0.675284i \(-0.235979\pi\)
\(644\) 7.75450 6.50680i 0.305570 0.256404i
\(645\) 4.07976 0.822869i 0.160640 0.0324004i
\(646\) 58.4629 21.2787i 2.30019 0.837201i
\(647\) −26.5680 −1.04450 −0.522248 0.852794i \(-0.674906\pi\)
−0.522248 + 0.852794i \(0.674906\pi\)
\(648\) 20.9878 + 75.1030i 0.824479 + 2.95032i
\(649\) −74.7005 −2.93225
\(650\) 2.85757 1.04007i 0.112083 0.0407949i
\(651\) −11.0392 + 2.22655i −0.432660 + 0.0872655i
\(652\) 71.8499 60.2892i 2.81386 2.36111i
\(653\) −6.39689 36.2786i −0.250330 1.41969i −0.807782 0.589482i \(-0.799332\pi\)
0.557452 0.830209i \(-0.311779\pi\)
\(654\) 42.9020 26.1909i 1.67760 1.02415i
\(655\) 5.39044 + 4.52312i 0.210622 + 0.176733i
\(656\) 6.00771 10.4057i 0.234562 0.406273i
\(657\) 1.11659 8.84696i 0.0435625 0.345153i
\(658\) 0.153958 + 0.266663i 0.00600190 + 0.0103956i
\(659\) 2.26438 12.8420i 0.0882079 0.500252i −0.908410 0.418080i \(-0.862703\pi\)
0.996618 0.0821719i \(-0.0261857\pi\)
\(660\) 36.9546 46.2977i 1.43845 1.80213i
\(661\) 14.7237 + 5.35899i 0.572685 + 0.208440i 0.612097 0.790783i \(-0.290326\pi\)
−0.0394117 + 0.999223i \(0.512548\pi\)
\(662\) 25.2761 + 9.19973i 0.982382 + 0.357558i
\(663\) −1.18352 3.01947i −0.0459640 0.117266i
\(664\) 23.4696 133.103i 0.910797 5.16538i
\(665\) −2.25411 3.90423i −0.0874106 0.151400i
\(666\) −18.5483 5.73933i −0.718734 0.222394i
\(667\) −0.145885 + 0.252681i −0.00564871 + 0.00978385i
\(668\) 41.8578 + 35.1228i 1.61953 + 1.35894i
\(669\) 2.51296 + 1.36992i 0.0971565 + 0.0529642i
\(670\) 4.02072 + 22.8026i 0.155334 + 0.880942i
\(671\) −27.6456 + 23.1974i −1.06725 + 0.895525i
\(672\) −9.49027 + 28.2051i −0.366095 + 1.08804i
\(673\) −3.18524 + 1.15933i −0.122782 + 0.0446891i −0.402681 0.915341i \(-0.631921\pi\)
0.279898 + 0.960030i \(0.409699\pi\)
\(674\) 3.57589 0.137738
\(675\) 11.0329 15.3031i 0.424656 0.589015i
\(676\) −67.4015 −2.59236
\(677\) −29.6634 + 10.7966i −1.14006 + 0.414947i −0.841934 0.539580i \(-0.818583\pi\)
−0.298124 + 0.954527i \(0.596361\pi\)
\(678\) 1.74750 + 1.98192i 0.0671122 + 0.0761150i
\(679\) −6.01816 + 5.04984i −0.230956 + 0.193795i
\(680\) −10.5786 59.9942i −0.405671 2.30067i
\(681\) −0.608424 24.8365i −0.0233149 0.951737i
\(682\) −74.8985 62.8473i −2.86801 2.40655i
\(683\) −1.45308 + 2.51682i −0.0556007 + 0.0963033i −0.892486 0.451075i \(-0.851041\pi\)
0.836885 + 0.547378i \(0.184374\pi\)
\(684\) 32.7113 + 50.7452i 1.25075 + 1.94029i
\(685\) 1.25257 + 2.16951i 0.0478581 + 0.0828927i
\(686\) 0.466715 2.64687i 0.0178193 0.101058i
\(687\) 24.7657 + 3.74400i 0.944870 + 0.142842i
\(688\) −24.7761 9.01776i −0.944580 0.343799i
\(689\) 3.78059 + 1.37602i 0.144029 + 0.0524222i
\(690\) −10.4377 1.57794i −0.397358 0.0600713i
\(691\) −1.33662 + 7.58037i −0.0508476 + 0.288371i −0.999619 0.0275915i \(-0.991216\pi\)
0.948772 + 0.315962i \(0.102327\pi\)
\(692\) 52.3264 + 90.6319i 1.98915 + 3.44531i
\(693\) 7.67070 14.9298i 0.291386 0.567137i
\(694\) −16.0806 + 27.8523i −0.610409 + 1.05726i
\(695\) 5.30985 + 4.45549i 0.201414 + 0.169006i
\(696\) −0.0553368 2.25890i −0.00209753 0.0856235i
\(697\) 0.976344 + 5.53712i 0.0369817 + 0.209733i
\(698\) −54.6543 + 45.8604i −2.06870 + 1.73584i
\(699\) −2.80441 3.18061i −0.106073 0.120302i
\(700\) 17.8220 6.48666i 0.673607 0.245173i
\(701\) −19.9944 −0.755176 −0.377588 0.925974i \(-0.623247\pi\)
−0.377588 + 0.925974i \(0.623247\pi\)
\(702\) 3.59917 2.44691i 0.135842 0.0923525i
\(703\) −9.27702 −0.349890
\(704\) −107.771 + 39.2256i −4.06179 + 1.47837i
\(705\) 0.0740500 0.220077i 0.00278888 0.00828858i
\(706\) −13.9185 + 11.6790i −0.523828 + 0.439544i
\(707\) −0.00926698 0.0525557i −0.000348521 0.00197656i
\(708\) −106.063 57.8195i −3.98609 2.17299i
\(709\) 7.35295 + 6.16985i 0.276146 + 0.231714i 0.770333 0.637642i \(-0.220090\pi\)
−0.494187 + 0.869355i \(0.664534\pi\)
\(710\) 5.36116 9.28581i 0.201201 0.348490i
\(711\) −23.4661 + 21.7349i −0.880049 + 0.815123i
\(712\) −26.9467 46.6730i −1.00987 1.74915i
\(713\) −2.18788 + 12.4081i −0.0819367 + 0.464686i
\(714\) −10.2074 26.0417i −0.382001 0.974586i
\(715\) −1.91727 0.697831i −0.0717020 0.0260974i
\(716\) 19.7060 + 7.17242i 0.736450 + 0.268046i
\(717\) −1.95926 + 2.45461i −0.0731698 + 0.0916691i
\(718\) −2.98006 + 16.9007i −0.111215 + 0.630730i
\(719\) −6.84815 11.8613i −0.255393 0.442353i 0.709609 0.704595i \(-0.248871\pi\)
−0.965002 + 0.262242i \(0.915538\pi\)
\(720\) 41.5516 17.4723i 1.54854 0.651155i
\(721\) 4.03438 6.98775i 0.150248 0.260237i
\(722\) −8.56016 7.18283i −0.318576 0.267317i
\(723\) 11.6412 7.10674i 0.432941 0.264303i
\(724\) −7.30703 41.4402i −0.271564 1.54011i
\(725\) −0.418761 + 0.351382i −0.0155524 + 0.0130500i
\(726\) 92.6556 18.6882i 3.43877 0.693584i
\(727\) −31.0866 + 11.3146i −1.15294 + 0.419636i −0.846570 0.532277i \(-0.821337\pi\)
−0.306370 + 0.951913i \(0.599114\pi\)
\(728\) 2.70014 0.100074
\(729\) 9.93068 25.1074i 0.367803 0.929904i
\(730\) −9.34845 −0.346002
\(731\) 11.5938 4.21981i 0.428813 0.156075i
\(732\) −57.2076 + 11.5385i −2.11445 + 0.426476i
\(733\) 27.2561 22.8705i 1.00673 0.844743i 0.0188233 0.999823i \(-0.494008\pi\)
0.987902 + 0.155080i \(0.0495635\pi\)
\(734\) −12.6175 71.5574i −0.465720 2.64123i
\(735\) −1.72993 + 1.05609i −0.0638094 + 0.0389545i
\(736\) 25.5052 + 21.4014i 0.940134 + 0.788866i
\(737\) −20.5954 + 35.6723i −0.758642 + 1.31401i
\(738\) −6.95535 + 2.92471i −0.256030 + 0.107660i
\(739\) 1.00106 + 1.73389i 0.0368246 + 0.0637822i 0.883850 0.467770i \(-0.154942\pi\)
−0.847026 + 0.531552i \(0.821609\pi\)
\(740\) −2.55601 + 14.4959i −0.0939610 + 0.532879i
\(741\) 1.29725 1.62523i 0.0476557 0.0597044i
\(742\) 32.6060 + 11.8676i 1.19700 + 0.435674i
\(743\) −28.2859 10.2952i −1.03771 0.377696i −0.233698 0.972309i \(-0.575083\pi\)
−0.804012 + 0.594614i \(0.797305\pi\)
\(744\) −35.6081 90.8458i −1.30546 3.33057i
\(745\) 0.645381 3.66014i 0.0236449 0.134097i
\(746\) −38.2329 66.2214i −1.39981 2.42454i
\(747\) −34.3323 + 31.7994i −1.25615 + 1.16348i
\(748\) 87.8044 152.082i 3.21045 5.56066i
\(749\) 9.28420 + 7.79037i 0.339237 + 0.284654i
\(750\) −41.2800 22.5035i −1.50733 0.821712i
\(751\) −4.72756 26.8113i −0.172511 0.978358i −0.940978 0.338469i \(-0.890091\pi\)
0.768467 0.639890i \(-0.221020\pi\)
\(752\) −1.12686 + 0.945551i −0.0410925 + 0.0344807i
\(753\) −3.38179 + 10.0507i −0.123239 + 0.366268i
\(754\) −0.118504 + 0.0431321i −0.00431568 + 0.00157078i
\(755\) 14.2936 0.520197
\(756\) 22.4471 15.2607i 0.816395 0.555028i
\(757\) 44.4636 1.61606 0.808028 0.589144i \(-0.200535\pi\)
0.808028 + 0.589144i \(0.200535\pi\)
\(758\) −77.7681 + 28.3053i −2.82466 + 1.02809i
\(759\) −12.4198 14.0859i −0.450811 0.511285i
\(760\) 29.9228 25.1082i 1.08541 0.910770i
\(761\) −3.46021 19.6238i −0.125433 0.711364i −0.981050 0.193755i \(-0.937933\pi\)
0.855617 0.517609i \(-0.173178\pi\)
\(762\) 1.18163 + 48.2354i 0.0428060 + 1.74738i
\(763\) −8.27134 6.94048i −0.299442 0.251262i
\(764\) 33.3431 57.7520i 1.20631 2.08939i
\(765\) −9.63935 + 18.7615i −0.348512 + 0.678323i
\(766\) −23.7962 41.2162i −0.859791 1.48920i
\(767\) −0.722494 + 4.09746i −0.0260877 + 0.147951i