Properties

Label 189.2.u.a.67.22
Level $189$
Weight $2$
Character 189.67
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 67.22
Character \(\chi\) \(=\) 189.67
Dual form 189.2.u.a.79.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10463 - 1.76600i) q^{2} +(0.673034 + 1.59594i) q^{3} +(0.963439 - 5.46393i) q^{4} +(-0.0619641 + 0.351416i) q^{5} +(4.23491 + 2.17029i) q^{6} +(-2.30020 + 1.30732i) q^{7} +(-4.87420 - 8.44237i) q^{8} +(-2.09405 + 2.14824i) q^{9} +O(q^{10})\) \(q+(2.10463 - 1.76600i) q^{2} +(0.673034 + 1.59594i) q^{3} +(0.963439 - 5.46393i) q^{4} +(-0.0619641 + 0.351416i) q^{5} +(4.23491 + 2.17029i) q^{6} +(-2.30020 + 1.30732i) q^{7} +(-4.87420 - 8.44237i) q^{8} +(-2.09405 + 2.14824i) q^{9} +(0.490188 + 0.849030i) q^{10} +(0.309353 + 1.75443i) q^{11} +(9.36854 - 2.13982i) q^{12} +(-0.143143 + 0.811807i) q^{13} +(-2.53235 + 6.81357i) q^{14} +(-0.602543 + 0.137624i) q^{15} +(-14.7403 - 5.36505i) q^{16} +(0.925578 + 1.60315i) q^{17} +(-0.613416 + 8.21935i) q^{18} +(2.45047 - 4.24434i) q^{19} +(1.86041 + 0.677136i) q^{20} +(-3.63452 - 2.79111i) q^{21} +(3.74938 + 3.14611i) q^{22} +(-5.00814 - 4.20233i) q^{23} +(10.1930 - 13.4609i) q^{24} +(4.57881 + 1.66655i) q^{25} +(1.13238 + 1.96135i) q^{26} +(-4.83784 - 1.89614i) q^{27} +(4.92701 + 13.8277i) q^{28} +(-0.600809 - 3.40736i) q^{29} +(-1.02509 + 1.35374i) q^{30} +(-1.60207 + 9.08581i) q^{31} +(-22.1767 + 8.07165i) q^{32} +(-2.59175 + 1.67450i) q^{33} +(4.77916 + 1.73947i) q^{34} +(-0.316883 - 0.889333i) q^{35} +(9.72037 + 13.5115i) q^{36} +4.98885 q^{37} +(-2.33815 - 13.2603i) q^{38} +(-1.39194 + 0.317925i) q^{39} +(3.26881 - 1.18975i) q^{40} +(-0.733977 + 4.16259i) q^{41} +(-12.5784 + 0.544280i) q^{42} +(3.83244 - 3.21580i) q^{43} +9.88411 q^{44} +(-0.625171 - 0.868997i) q^{45} -17.9616 q^{46} +(-1.59328 - 9.03594i) q^{47} +(-1.35846 - 27.1356i) q^{48} +(3.58183 - 6.01419i) q^{49} +(12.5798 - 4.57869i) q^{50} +(-1.93558 + 2.55614i) q^{51} +(4.29775 + 1.56425i) q^{52} +(2.16331 - 3.74696i) q^{53} +(-13.5304 + 4.55293i) q^{54} -0.635702 q^{55} +(22.2485 + 13.0470i) q^{56} +(8.42296 + 1.05422i) q^{57} +(-7.28186 - 6.11021i) q^{58} +(-6.88477 + 2.50585i) q^{59} +(0.171454 + 3.42485i) q^{60} +(0.822284 + 4.66340i) q^{61} +(12.6737 + 21.9515i) q^{62} +(2.00829 - 7.67898i) q^{63} +(-16.7329 + 28.9822i) q^{64} +(-0.276412 - 0.100606i) q^{65} +(-2.49754 + 8.10123i) q^{66} +(3.34664 + 2.80816i) q^{67} +(9.65124 - 3.51276i) q^{68} +(3.33602 - 10.8210i) q^{69} +(-2.23748 - 1.31211i) q^{70} +(2.19901 - 3.80879i) q^{71} +(28.3431 + 7.20777i) q^{72} +4.69636 q^{73} +(10.4997 - 8.81029i) q^{74} +(0.421979 + 8.42915i) q^{75} +(-20.8299 - 17.4784i) q^{76} +(-3.00517 - 3.63111i) q^{77} +(-2.36806 + 3.12727i) q^{78} +(-8.77429 + 7.36250i) q^{79} +(2.79874 - 4.84755i) q^{80} +(-0.229904 - 8.99706i) q^{81} +(5.80637 + 10.0569i) q^{82} +(-1.28529 - 7.28926i) q^{83} +(-18.7521 + 17.1697i) q^{84} +(-0.620724 + 0.225925i) q^{85} +(2.38679 - 13.5362i) q^{86} +(5.03357 - 3.25212i) q^{87} +(13.3037 - 11.1631i) q^{88} +(2.68059 - 4.64291i) q^{89} +(-2.85040 - 0.724869i) q^{90} +(-0.732032 - 2.05445i) q^{91} +(-27.7863 + 23.3155i) q^{92} +(-15.5787 + 3.55824i) q^{93} +(-19.3107 - 16.2036i) q^{94} +(1.33969 + 1.12413i) q^{95} +(-27.8075 - 29.9601i) q^{96} +(1.12019 - 0.939950i) q^{97} +(-3.08260 - 18.9832i) q^{98} +(-4.41673 - 3.00929i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.10463 1.76600i 1.48820 1.24875i 0.591349 0.806416i \(-0.298595\pi\)
0.896851 0.442333i \(-0.145849\pi\)
\(3\) 0.673034 + 1.59594i 0.388576 + 0.921417i
\(4\) 0.963439 5.46393i 0.481720 2.73197i
\(5\) −0.0619641 + 0.351416i −0.0277112 + 0.157158i −0.995523 0.0945155i \(-0.969870\pi\)
0.967812 + 0.251673i \(0.0809809\pi\)
\(6\) 4.23491 + 2.17029i 1.72890 + 0.886018i
\(7\) −2.30020 + 1.30732i −0.869394 + 0.494120i
\(8\) −4.87420 8.44237i −1.72329 2.98483i
\(9\) −2.09405 + 2.14824i −0.698017 + 0.716081i
\(10\) 0.490188 + 0.849030i 0.155011 + 0.268487i
\(11\) 0.309353 + 1.75443i 0.0932733 + 0.528979i 0.995263 + 0.0972213i \(0.0309955\pi\)
−0.901989 + 0.431758i \(0.857893\pi\)
\(12\) 9.36854 2.13982i 2.70446 0.617714i
\(13\) −0.143143 + 0.811807i −0.0397009 + 0.225155i −0.998202 0.0599325i \(-0.980911\pi\)
0.958502 + 0.285087i \(0.0920226\pi\)
\(14\) −2.53235 + 6.81357i −0.676800 + 1.82100i
\(15\) −0.602543 + 0.137624i −0.155576 + 0.0355343i
\(16\) −14.7403 5.36505i −3.68509 1.34126i
\(17\) 0.925578 + 1.60315i 0.224486 + 0.388821i 0.956165 0.292828i \(-0.0945965\pi\)
−0.731679 + 0.681649i \(0.761263\pi\)
\(18\) −0.613416 + 8.21935i −0.144584 + 1.93732i
\(19\) 2.45047 4.24434i 0.562176 0.973718i −0.435130 0.900368i \(-0.643298\pi\)
0.997306 0.0733500i \(-0.0233690\pi\)
\(20\) 1.86041 + 0.677136i 0.416001 + 0.151412i
\(21\) −3.63452 2.79111i −0.793116 0.609070i
\(22\) 3.74938 + 3.14611i 0.799371 + 0.670752i
\(23\) −5.00814 4.20233i −1.04427 0.876246i −0.0517896 0.998658i \(-0.516493\pi\)
−0.992479 + 0.122412i \(0.960937\pi\)
\(24\) 10.1930 13.4609i 2.08064 2.74770i
\(25\) 4.57881 + 1.66655i 0.915762 + 0.333310i
\(26\) 1.13238 + 1.96135i 0.222079 + 0.384652i
\(27\) −4.83784 1.89614i −0.931042 0.364912i
\(28\) 4.92701 + 13.8277i 0.931116 + 2.61318i
\(29\) −0.600809 3.40736i −0.111567 0.632730i −0.988393 0.151921i \(-0.951454\pi\)
0.876825 0.480809i \(-0.159657\pi\)
\(30\) −1.02509 + 1.35374i −0.187155 + 0.247157i
\(31\) −1.60207 + 9.08581i −0.287741 + 1.63186i 0.407587 + 0.913166i \(0.366370\pi\)
−0.695328 + 0.718693i \(0.744741\pi\)
\(32\) −22.1767 + 8.07165i −3.92032 + 1.42688i
\(33\) −2.59175 + 1.67450i −0.451166 + 0.291492i
\(34\) 4.77916 + 1.73947i 0.819619 + 0.298317i
\(35\) −0.316883 0.889333i −0.0535630 0.150325i
\(36\) 9.72037 + 13.5115i 1.62006 + 2.25191i
\(37\) 4.98885 0.820162 0.410081 0.912049i \(-0.365500\pi\)
0.410081 + 0.912049i \(0.365500\pi\)
\(38\) −2.33815 13.2603i −0.379298 2.15110i
\(39\) −1.39194 + 0.317925i −0.222888 + 0.0509088i
\(40\) 3.26881 1.18975i 0.516844 0.188116i
\(41\) −0.733977 + 4.16259i −0.114628 + 0.650087i 0.872306 + 0.488961i \(0.162624\pi\)
−0.986934 + 0.161126i \(0.948487\pi\)
\(42\) −12.5784 + 0.544280i −1.94089 + 0.0839842i
\(43\) 3.83244 3.21580i 0.584442 0.490405i −0.301961 0.953320i \(-0.597641\pi\)
0.886402 + 0.462916i \(0.153197\pi\)
\(44\) 9.88411 1.49009
\(45\) −0.625171 0.868997i −0.0931950 0.129542i
\(46\) −17.9616 −2.64829
\(47\) −1.59328 9.03594i −0.232404 1.31803i −0.848013 0.529976i \(-0.822201\pi\)
0.615609 0.788052i \(-0.288910\pi\)
\(48\) −1.35846 27.1356i −0.196077 3.91668i
\(49\) 3.58183 6.01419i 0.511690 0.859170i
\(50\) 12.5798 4.57869i 1.77906 0.647524i
\(51\) −1.93558 + 2.55614i −0.271036 + 0.357931i
\(52\) 4.29775 + 1.56425i 0.595991 + 0.216923i
\(53\) 2.16331 3.74696i 0.297154 0.514685i −0.678330 0.734757i \(-0.737296\pi\)
0.975484 + 0.220072i \(0.0706293\pi\)
\(54\) −13.5304 + 4.55293i −1.84126 + 0.619575i
\(55\) −0.635702 −0.0857180
\(56\) 22.2485 + 13.0470i 2.97308 + 1.74348i
\(57\) 8.42296 + 1.05422i 1.11565 + 0.139635i
\(58\) −7.28186 6.11021i −0.956155 0.802309i
\(59\) −6.88477 + 2.50585i −0.896321 + 0.326234i −0.748777 0.662822i \(-0.769359\pi\)
−0.147543 + 0.989056i \(0.547137\pi\)
\(60\) 0.171454 + 3.42485i 0.0221347 + 0.442146i
\(61\) 0.822284 + 4.66340i 0.105283 + 0.597088i 0.991107 + 0.133067i \(0.0424826\pi\)
−0.885824 + 0.464021i \(0.846406\pi\)
\(62\) 12.6737 + 21.9515i 1.60957 + 2.78785i
\(63\) 2.00829 7.67898i 0.253021 0.967461i
\(64\) −16.7329 + 28.9822i −2.09161 + 3.62278i
\(65\) −0.276412 0.100606i −0.0342847 0.0124786i
\(66\) −2.49754 + 8.10123i −0.307425 + 0.997192i
\(67\) 3.34664 + 2.80816i 0.408857 + 0.343071i 0.823905 0.566728i \(-0.191791\pi\)
−0.415048 + 0.909799i \(0.636235\pi\)
\(68\) 9.65124 3.51276i 1.17038 0.425985i
\(69\) 3.33602 10.8210i 0.401609 1.30269i
\(70\) −2.23748 1.31211i −0.267430 0.156827i
\(71\) 2.19901 3.80879i 0.260974 0.452020i −0.705527 0.708683i \(-0.749290\pi\)
0.966501 + 0.256663i \(0.0826229\pi\)
\(72\) 28.3431 + 7.20777i 3.34026 + 0.849443i
\(73\) 4.69636 0.549667 0.274834 0.961492i \(-0.411377\pi\)
0.274834 + 0.961492i \(0.411377\pi\)
\(74\) 10.4997 8.81029i 1.22057 1.02418i
\(75\) 0.421979 + 8.42915i 0.0487260 + 0.973315i
\(76\) −20.8299 17.4784i −2.38935 2.00491i
\(77\) −3.00517 3.63111i −0.342471 0.413803i
\(78\) −2.36806 + 3.12727i −0.268130 + 0.354094i
\(79\) −8.77429 + 7.36250i −0.987185 + 0.828346i −0.985158 0.171652i \(-0.945090\pi\)
−0.00202708 + 0.999998i \(0.500645\pi\)
\(80\) 2.79874 4.84755i 0.312908 0.541973i
\(81\) −0.229904 8.99706i −0.0255449 0.999674i
\(82\) 5.80637 + 10.0569i 0.641206 + 1.11060i
\(83\) −1.28529 7.28926i −0.141079 0.800100i −0.970432 0.241375i \(-0.922402\pi\)
0.829353 0.558725i \(-0.188709\pi\)
\(84\) −18.7521 + 17.1697i −2.04602 + 1.87337i
\(85\) −0.620724 + 0.225925i −0.0673270 + 0.0245050i
\(86\) 2.38679 13.5362i 0.257374 1.45964i
\(87\) 5.03357 3.25212i 0.539655 0.348664i
\(88\) 13.3037 11.1631i 1.41817 1.18999i
\(89\) 2.68059 4.64291i 0.284142 0.492148i −0.688259 0.725465i \(-0.741625\pi\)
0.972401 + 0.233317i \(0.0749581\pi\)
\(90\) −2.85040 0.724869i −0.300459 0.0764079i
\(91\) −0.732032 2.05445i −0.0767378 0.215365i
\(92\) −27.7863 + 23.3155i −2.89692 + 2.43080i
\(93\) −15.5787 + 3.55824i −1.61543 + 0.368973i
\(94\) −19.3107 16.2036i −1.99175 1.67127i
\(95\) 1.33969 + 1.12413i 0.137449 + 0.115333i
\(96\) −27.8075 29.9601i −2.83809 3.05779i
\(97\) 1.12019 0.939950i 0.113738 0.0954374i −0.584145 0.811649i \(-0.698570\pi\)
0.697883 + 0.716212i \(0.254126\pi\)
\(98\) −3.08260 18.9832i −0.311389 1.91759i
\(99\) −4.41673 3.00929i −0.443899 0.302445i
\(100\) 13.5173 23.4127i 1.35173 2.34127i
\(101\) −13.0707 + 10.9676i −1.30058 + 1.09132i −0.310538 + 0.950561i \(0.600509\pi\)
−0.990044 + 0.140757i \(0.955046\pi\)
\(102\) 0.440443 + 8.79797i 0.0436104 + 0.871129i
\(103\) −0.743920 + 4.21898i −0.0733006 + 0.415708i 0.925973 + 0.377591i \(0.123247\pi\)
−0.999273 + 0.0381178i \(0.987864\pi\)
\(104\) 7.55128 2.74844i 0.740464 0.269507i
\(105\) 1.20605 1.10428i 0.117698 0.107766i
\(106\) −2.06415 11.7064i −0.200488 1.13702i
\(107\) 2.07886 + 3.60069i 0.200971 + 0.348092i 0.948842 0.315753i \(-0.102257\pi\)
−0.747871 + 0.663845i \(0.768924\pi\)
\(108\) −15.0213 + 24.6068i −1.44543 + 2.36779i
\(109\) 3.36065 5.82082i 0.321892 0.557533i −0.658986 0.752155i \(-0.729015\pi\)
0.980878 + 0.194622i \(0.0623479\pi\)
\(110\) −1.33792 + 1.12265i −0.127566 + 0.107040i
\(111\) 3.35767 + 7.96191i 0.318696 + 0.755711i
\(112\) 40.9196 6.92966i 3.86654 0.654791i
\(113\) 2.22039 + 1.86313i 0.208877 + 0.175268i 0.741224 0.671258i \(-0.234246\pi\)
−0.532347 + 0.846526i \(0.678690\pi\)
\(114\) 19.5890 12.6562i 1.83468 1.18536i
\(115\) 1.78709 1.49955i 0.166647 0.139833i
\(116\) −19.1964 −1.78234
\(117\) −1.44421 2.00747i −0.133517 0.185591i
\(118\) −10.0646 + 17.4324i −0.926520 + 1.60478i
\(119\) −4.22484 2.47753i −0.387290 0.227115i
\(120\) 4.09879 + 4.41608i 0.374166 + 0.403131i
\(121\) 7.35431 2.67675i 0.668573 0.243341i
\(122\) 9.96616 + 8.36260i 0.902294 + 0.757115i
\(123\) −7.13723 + 1.63018i −0.643543 + 0.146988i
\(124\) 48.1008 + 17.5072i 4.31958 + 1.57220i
\(125\) −1.76147 + 3.05095i −0.157550 + 0.272885i
\(126\) −9.33434 19.7081i −0.831569 1.75574i
\(127\) −1.54578 2.67736i −0.137165 0.237577i 0.789257 0.614063i \(-0.210466\pi\)
−0.926423 + 0.376485i \(0.877133\pi\)
\(128\) 7.76975 + 44.0644i 0.686755 + 3.89478i
\(129\) 7.71158 + 3.95200i 0.678967 + 0.347954i
\(130\) −0.759416 + 0.276405i −0.0666052 + 0.0242423i
\(131\) −0.876218 0.735234i −0.0765555 0.0642377i 0.603707 0.797206i \(-0.293690\pi\)
−0.680262 + 0.732969i \(0.738134\pi\)
\(132\) 6.65234 + 15.7745i 0.579012 + 1.37299i
\(133\) −0.0878638 + 12.9664i −0.00761876 + 1.12433i
\(134\) 12.0026 1.03687
\(135\) 0.966105 1.58260i 0.0831491 0.136209i
\(136\) 9.02291 15.6281i 0.773708 1.34010i
\(137\) −7.19946 2.62039i −0.615091 0.223875i 0.0156382 0.999878i \(-0.495022\pi\)
−0.630729 + 0.776003i \(0.717244\pi\)
\(138\) −12.0888 28.6656i −1.02906 2.44018i
\(139\) −17.4052 + 6.33499i −1.47629 + 0.537326i −0.949801 0.312854i \(-0.898715\pi\)
−0.526491 + 0.850181i \(0.676493\pi\)
\(140\) −5.16456 + 0.874609i −0.436485 + 0.0739180i
\(141\) 13.3485 8.62427i 1.12415 0.726295i
\(142\) −2.09821 11.8995i −0.176078 0.998588i
\(143\) −1.46854 −0.122805
\(144\) 42.3925 20.4312i 3.53271 1.70260i
\(145\) 1.23463 0.102530
\(146\) 9.88411 8.29375i 0.818015 0.686396i
\(147\) 12.0090 + 1.66864i 0.990484 + 0.137627i
\(148\) 4.80645 27.2588i 0.395088 2.24066i
\(149\) −13.6580 + 4.97112i −1.11891 + 0.407250i −0.834254 0.551380i \(-0.814101\pi\)
−0.284655 + 0.958630i \(0.591879\pi\)
\(150\) 15.7740 + 16.9951i 1.28794 + 1.38764i
\(151\) 1.25141 + 7.09710i 0.101838 + 0.577554i 0.992436 + 0.122762i \(0.0391752\pi\)
−0.890598 + 0.454792i \(0.849714\pi\)
\(152\) −47.7763 −3.87517
\(153\) −5.38216 1.36871i −0.435122 0.110653i
\(154\) −12.7373 2.33503i −1.02640 0.188162i
\(155\) −3.09363 1.12599i −0.248486 0.0904415i
\(156\) 0.396077 + 7.91175i 0.0317116 + 0.633447i
\(157\) 15.9881 5.81920i 1.27599 0.464423i 0.386887 0.922127i \(-0.373550\pi\)
0.889104 + 0.457705i \(0.151328\pi\)
\(158\) −5.46450 + 30.9907i −0.434733 + 2.46549i
\(159\) 7.43591 + 0.930681i 0.589706 + 0.0738078i
\(160\) −1.46235 8.29339i −0.115609 0.655650i
\(161\) 17.0135 + 3.11895i 1.34085 + 0.245808i
\(162\) −16.3726 18.5295i −1.28636 1.45582i
\(163\) 6.27938 + 10.8762i 0.491839 + 0.851891i 0.999956 0.00939768i \(-0.00299142\pi\)
−0.508117 + 0.861288i \(0.669658\pi\)
\(164\) 22.0370 + 8.02080i 1.72080 + 0.626319i
\(165\) −0.427849 1.01454i −0.0333080 0.0789820i
\(166\) −15.5779 13.0714i −1.20908 1.01454i
\(167\) 4.95938 + 4.16141i 0.383768 + 0.322020i 0.814180 0.580613i \(-0.197187\pi\)
−0.430411 + 0.902633i \(0.641632\pi\)
\(168\) −5.84821 + 44.2883i −0.451199 + 3.41692i
\(169\) 11.5775 + 4.21385i 0.890574 + 0.324142i
\(170\) −0.907414 + 1.57169i −0.0695955 + 0.120543i
\(171\) 3.98646 + 14.1521i 0.304853 + 1.08224i
\(172\) −13.8786 24.0384i −1.05823 1.83291i
\(173\) 22.3636 + 8.13970i 1.70028 + 0.618850i 0.995857 0.0909334i \(-0.0289850\pi\)
0.704420 + 0.709784i \(0.251207\pi\)
\(174\) 4.85058 15.7338i 0.367722 1.19278i
\(175\) −12.7109 + 2.15257i −0.960853 + 0.162719i
\(176\) 4.85261 27.5205i 0.365779 2.07444i
\(177\) −8.63287 9.30116i −0.648886 0.699118i
\(178\) −2.55772 14.5055i −0.191709 1.08724i
\(179\) 4.03209 + 6.98378i 0.301372 + 0.521992i 0.976447 0.215757i \(-0.0692220\pi\)
−0.675075 + 0.737749i \(0.735889\pi\)
\(180\) −5.35046 + 2.57867i −0.398799 + 0.192203i
\(181\) −8.70280 15.0737i −0.646874 1.12042i −0.983865 0.178911i \(-0.942743\pi\)
0.336991 0.941508i \(-0.390591\pi\)
\(182\) −5.16882 3.03110i −0.383138 0.224680i
\(183\) −6.88909 + 4.45095i −0.509256 + 0.329023i
\(184\) −11.0669 + 62.7635i −0.815863 + 4.62699i
\(185\) −0.309130 + 1.75316i −0.0227277 + 0.128895i
\(186\) −26.5035 + 35.0007i −1.94333 + 2.56637i
\(187\) −2.52627 + 2.11980i −0.184740 + 0.155015i
\(188\) −50.9068 −3.71276
\(189\) 13.6068 1.96310i 0.989752 0.142795i
\(190\) 4.80476 0.348574
\(191\) −3.47373 + 2.91480i −0.251350 + 0.210908i −0.759753 0.650211i \(-0.774680\pi\)
0.508403 + 0.861119i \(0.330236\pi\)
\(192\) −57.5157 7.19868i −4.15084 0.519520i
\(193\) −1.89302 + 10.7358i −0.136262 + 0.772783i 0.837710 + 0.546115i \(0.183894\pi\)
−0.973972 + 0.226667i \(0.927217\pi\)
\(194\) 0.697638 3.95650i 0.0500875 0.284060i
\(195\) −0.0254739 0.508848i −0.00182423 0.0364394i
\(196\) −29.4103 25.3652i −2.10073 1.81180i
\(197\) −4.04961 7.01413i −0.288523 0.499736i 0.684935 0.728605i \(-0.259831\pi\)
−0.973457 + 0.228869i \(0.926497\pi\)
\(198\) −14.6100 + 1.46648i −1.03829 + 0.104219i
\(199\) −3.04983 5.28245i −0.216196 0.374463i 0.737446 0.675407i \(-0.236032\pi\)
−0.953642 + 0.300943i \(0.902698\pi\)
\(200\) −8.24842 46.7791i −0.583251 3.30778i
\(201\) −2.22926 + 7.23102i −0.157240 + 0.510037i
\(202\) −8.14024 + 46.1656i −0.572745 + 3.24820i
\(203\) 5.83648 + 7.05215i 0.409641 + 0.494964i
\(204\) 12.1018 + 13.0386i 0.847293 + 0.912884i
\(205\) −1.41732 0.515862i −0.0989899 0.0360294i
\(206\) 5.88503 + 10.1932i 0.410029 + 0.710191i
\(207\) 19.5149 1.95882i 1.35638 0.136147i
\(208\) 6.46537 11.1983i 0.448293 0.776466i
\(209\) 8.20443 + 2.98617i 0.567513 + 0.206558i
\(210\) 0.588141 4.45398i 0.0405856 0.307354i
\(211\) 5.91577 + 4.96392i 0.407258 + 0.341730i 0.823291 0.567619i \(-0.192135\pi\)
−0.416033 + 0.909350i \(0.636580\pi\)
\(212\) −18.3890 15.4302i −1.26296 1.05975i
\(213\) 7.55861 + 0.946038i 0.517907 + 0.0648214i
\(214\) 10.7340 + 3.90687i 0.733764 + 0.267068i
\(215\) 0.892609 + 1.54604i 0.0608754 + 0.105439i
\(216\) 7.57270 + 50.0849i 0.515257 + 3.40785i
\(217\) −8.19296 22.9936i −0.556175 1.56091i
\(218\) −3.20661 18.1856i −0.217179 1.23168i
\(219\) 3.16081 + 7.49511i 0.213588 + 0.506472i
\(220\) −0.612460 + 3.47343i −0.0412920 + 0.234179i
\(221\) −1.43394 + 0.521911i −0.0964571 + 0.0351075i
\(222\) 21.1274 + 10.8273i 1.41798 + 0.726678i
\(223\) 6.50641 + 2.36814i 0.435702 + 0.158582i 0.550553 0.834800i \(-0.314417\pi\)
−0.114851 + 0.993383i \(0.536639\pi\)
\(224\) 40.4585 47.5584i 2.70325 3.17763i
\(225\) −13.1684 + 6.34656i −0.877894 + 0.423104i
\(226\) 7.96338 0.529716
\(227\) 2.55084 + 14.4665i 0.169305 + 0.960178i 0.944514 + 0.328472i \(0.106534\pi\)
−0.775208 + 0.631706i \(0.782355\pi\)
\(228\) 13.8752 45.0068i 0.918907 2.98065i
\(229\) −7.16789 + 2.60890i −0.473668 + 0.172401i −0.567813 0.823157i \(-0.692210\pi\)
0.0941454 + 0.995558i \(0.469988\pi\)
\(230\) 1.11297 6.31199i 0.0733873 0.416200i
\(231\) 3.77245 7.23993i 0.248209 0.476352i
\(232\) −25.8377 + 21.6804i −1.69633 + 1.42339i
\(233\) 13.2626 0.868864 0.434432 0.900705i \(-0.356949\pi\)
0.434432 + 0.900705i \(0.356949\pi\)
\(234\) −6.58472 1.67452i −0.430457 0.109467i
\(235\) 3.27410 0.213579
\(236\) 7.05875 + 40.0322i 0.459486 + 2.60587i
\(237\) −17.6555 9.04803i −1.14685 0.587733i
\(238\) −13.2671 + 2.24675i −0.859976 + 0.145635i
\(239\) −25.2968 + 9.20730i −1.63632 + 0.595570i −0.986389 0.164426i \(-0.947423\pi\)
−0.649927 + 0.759997i \(0.725201\pi\)
\(240\) 9.62005 + 1.20405i 0.620971 + 0.0777209i
\(241\) −6.38058 2.32234i −0.411010 0.149595i 0.128236 0.991744i \(-0.459068\pi\)
−0.539246 + 0.842148i \(0.681291\pi\)
\(242\) 10.7510 18.6213i 0.691100 1.19702i
\(243\) 14.2040 6.42224i 0.911190 0.411987i
\(244\) 26.2728 1.68194
\(245\) 1.89154 + 1.63138i 0.120846 + 0.104225i
\(246\) −12.1424 + 16.0353i −0.774169 + 1.02237i
\(247\) 3.09481 + 2.59686i 0.196918 + 0.165234i
\(248\) 84.5145 30.7608i 5.36668 1.95331i
\(249\) 10.7682 6.95717i 0.682405 0.440893i
\(250\) 1.68073 + 9.53187i 0.106298 + 0.602849i
\(251\) 7.47800 + 12.9523i 0.472007 + 0.817540i 0.999487 0.0320274i \(-0.0101964\pi\)
−0.527480 + 0.849567i \(0.676863\pi\)
\(252\) −40.0226 18.3714i −2.52119 1.15729i
\(253\) 5.82339 10.0864i 0.366113 0.634127i
\(254\) −7.98150 2.90503i −0.500804 0.182278i
\(255\) −0.778332 0.838584i −0.0487410 0.0525141i
\(256\) 42.8975 + 35.9953i 2.68110 + 2.24971i
\(257\) −7.99972 + 2.91166i −0.499009 + 0.181624i −0.579248 0.815151i \(-0.696654\pi\)
0.0802393 + 0.996776i \(0.474432\pi\)
\(258\) 23.2093 5.30112i 1.44495 0.330033i
\(259\) −11.4753 + 6.52202i −0.713044 + 0.405259i
\(260\) −0.816010 + 1.41337i −0.0506068 + 0.0876535i
\(261\) 8.57795 + 5.84449i 0.530962 + 0.361765i
\(262\) −3.14254 −0.194147
\(263\) −5.32630 + 4.46929i −0.328433 + 0.275588i −0.792061 0.610442i \(-0.790992\pi\)
0.463628 + 0.886030i \(0.346548\pi\)
\(264\) 26.7694 + 13.7187i 1.64755 + 0.844328i
\(265\) 1.18270 + 0.992399i 0.0726524 + 0.0609626i
\(266\) 22.7136 + 27.4446i 1.39266 + 1.68274i
\(267\) 9.21394 + 1.15322i 0.563884 + 0.0705758i
\(268\) 18.5679 15.5803i 1.13421 0.951719i
\(269\) −7.34368 + 12.7196i −0.447752 + 0.775529i −0.998239 0.0593143i \(-0.981109\pi\)
0.550487 + 0.834843i \(0.314442\pi\)
\(270\) −0.761569 5.03693i −0.0463476 0.306538i
\(271\) −5.57679 9.65928i −0.338766 0.586759i 0.645435 0.763815i \(-0.276676\pi\)
−0.984201 + 0.177056i \(0.943343\pi\)
\(272\) −5.04237 28.5967i −0.305739 1.73393i
\(273\) 2.78610 2.55100i 0.168622 0.154393i
\(274\) −19.7798 + 7.19926i −1.19494 + 0.434923i
\(275\) −1.50737 + 8.54873i −0.0908980 + 0.515508i
\(276\) −55.9112 28.6531i −3.36546 1.72472i
\(277\) −1.22069 + 1.02428i −0.0733444 + 0.0615433i −0.678723 0.734395i \(-0.737466\pi\)
0.605378 + 0.795938i \(0.293022\pi\)
\(278\) −25.4441 + 44.0704i −1.52603 + 2.64317i
\(279\) −16.1637 22.4678i −0.967696 1.34511i
\(280\) −5.96353 + 7.01003i −0.356389 + 0.418930i
\(281\) 14.3102 12.0077i 0.853675 0.716319i −0.106921 0.994268i \(-0.534099\pi\)
0.960596 + 0.277949i \(0.0896546\pi\)
\(282\) 12.8632 41.7243i 0.765994 2.48465i
\(283\) −19.5187 16.3781i −1.16026 0.973578i −0.160356 0.987059i \(-0.551264\pi\)
−0.999909 + 0.0134813i \(0.995709\pi\)
\(284\) −18.6924 15.6848i −1.10919 0.930720i
\(285\) −0.892390 + 2.89464i −0.0528606 + 0.171463i
\(286\) −3.09073 + 2.59343i −0.182759 + 0.153353i
\(287\) −3.75354 10.5343i −0.221564 0.621821i
\(288\) 29.0992 64.5433i 1.71469 3.80325i
\(289\) 6.78661 11.7548i 0.399212 0.691456i
\(290\) 2.59844 2.18035i 0.152585 0.128034i
\(291\) 2.25403 + 1.15514i 0.132134 + 0.0677153i
\(292\) 4.52466 25.6606i 0.264785 1.50167i
\(293\) 5.63836 2.05220i 0.329397 0.119891i −0.172028 0.985092i \(-0.555032\pi\)
0.501424 + 0.865202i \(0.332810\pi\)
\(294\) 28.2213 17.6960i 1.64590 1.03205i
\(295\) −0.453987 2.57469i −0.0264322 0.149904i
\(296\) −24.3167 42.1177i −1.41338 2.44804i
\(297\) 1.83004 9.07420i 0.106190 0.526539i
\(298\) −19.9662 + 34.5824i −1.15661 + 2.00331i
\(299\) 4.12836 3.46411i 0.238749 0.200334i
\(300\) 46.4629 + 5.81531i 2.68254 + 0.335747i
\(301\) −4.61130 + 12.4072i −0.265791 + 0.715139i
\(302\) 15.1672 + 12.7268i 0.872775 + 0.732345i
\(303\) −26.3007 13.4785i −1.51093 0.774318i
\(304\) −58.8918 + 49.4161i −3.37768 + 2.83421i
\(305\) −1.68975 −0.0967546
\(306\) −13.7446 + 6.62425i −0.785727 + 0.378683i
\(307\) −5.80605 + 10.0564i −0.331369 + 0.573947i −0.982780 0.184777i \(-0.940844\pi\)
0.651412 + 0.758724i \(0.274177\pi\)
\(308\) −22.7354 + 12.9217i −1.29547 + 0.736282i
\(309\) −7.23392 + 1.65226i −0.411524 + 0.0939941i
\(310\) −8.49944 + 3.09354i −0.482736 + 0.175701i
\(311\) −15.1623 12.7227i −0.859773 0.721435i 0.102146 0.994769i \(-0.467429\pi\)
−0.961919 + 0.273334i \(0.911874\pi\)
\(312\) 9.46862 + 10.2016i 0.536055 + 0.577552i
\(313\) −7.89144 2.87225i −0.446051 0.162349i 0.109222 0.994017i \(-0.465164\pi\)
−0.555273 + 0.831668i \(0.687386\pi\)
\(314\) 23.3724 40.4823i 1.31898 2.28455i
\(315\) 2.57407 + 1.18157i 0.145033 + 0.0665738i
\(316\) 31.7747 + 55.0355i 1.78747 + 3.09599i
\(317\) −2.91285 16.5196i −0.163602 0.927833i −0.950494 0.310742i \(-0.899422\pi\)
0.786892 0.617091i \(-0.211689\pi\)
\(318\) 17.2934 11.1731i 0.969768 0.626554i
\(319\) 5.79209 2.10815i 0.324295 0.118034i
\(320\) −9.14798 7.67606i −0.511387 0.429105i
\(321\) −4.34734 + 5.74112i −0.242645 + 0.320438i
\(322\) 41.3152 23.4815i 2.30241 1.30857i
\(323\) 9.07240 0.504802
\(324\) −49.3809 7.41194i −2.74338 0.411774i
\(325\) −2.00834 + 3.47855i −0.111403 + 0.192955i
\(326\) 32.4232 + 11.8011i 1.79575 + 0.653600i
\(327\) 11.5515 + 1.44579i 0.638800 + 0.0799524i
\(328\) 38.7196 14.0928i 2.13793 0.778145i
\(329\) 15.4777 + 18.7015i 0.853314 + 1.03105i
\(330\) −2.69214 1.37966i −0.148198 0.0759477i
\(331\) 4.70777 + 26.6991i 0.258763 + 1.46752i 0.786226 + 0.617939i \(0.212032\pi\)
−0.527464 + 0.849578i \(0.676857\pi\)
\(332\) −41.0663 −2.25381
\(333\) −10.4469 + 10.7173i −0.572487 + 0.587303i
\(334\) 17.7867 0.973246
\(335\) −1.19420 + 1.00206i −0.0652463 + 0.0547481i
\(336\) 38.5996 + 60.6413i 2.10578 + 3.30825i
\(337\) 3.69846 20.9750i 0.201468 1.14258i −0.701433 0.712735i \(-0.747456\pi\)
0.902902 0.429847i \(-0.141433\pi\)
\(338\) 31.8080 11.5772i 1.73012 0.629714i
\(339\) −1.47904 + 4.79756i −0.0803306 + 0.260568i
\(340\) 0.636410 + 3.60926i 0.0345142 + 0.195740i
\(341\) −16.4360 −0.890058
\(342\) 33.3825 + 22.7448i 1.80512 + 1.22990i
\(343\) −0.376464 + 18.5164i −0.0203271 + 0.999793i
\(344\) −45.8290 16.6804i −2.47094 0.899347i
\(345\) 3.59596 + 1.84284i 0.193600 + 0.0992153i
\(346\) 61.4420 22.3630i 3.30314 1.20224i
\(347\) 1.86344 10.5681i 0.100035 0.567325i −0.893053 0.449951i \(-0.851441\pi\)
0.993088 0.117374i \(-0.0374475\pi\)
\(348\) −12.9198 30.6363i −0.692576 1.64228i
\(349\) −2.11784 12.0109i −0.113365 0.642927i −0.987547 0.157327i \(-0.949712\pi\)
0.874181 0.485600i \(-0.161399\pi\)
\(350\) −22.9503 + 26.9778i −1.22675 + 1.44202i
\(351\) 2.23180 3.65597i 0.119125 0.195141i
\(352\) −21.0215 36.4103i −1.12045 1.94068i
\(353\) −12.6855 4.61713i −0.675179 0.245745i −0.0184027 0.999831i \(-0.505858\pi\)
−0.656776 + 0.754086i \(0.728080\pi\)
\(354\) −34.5948 4.32990i −1.83869 0.230132i
\(355\) 1.20221 + 1.00877i 0.0638067 + 0.0535402i
\(356\) −22.7860 19.1197i −1.20765 1.01334i
\(357\) 1.11054 8.41006i 0.0587758 0.445107i
\(358\) 20.8194 + 7.57764i 1.10034 + 0.400491i
\(359\) 7.71902 13.3697i 0.407394 0.705627i −0.587203 0.809440i \(-0.699771\pi\)
0.994597 + 0.103813i \(0.0331042\pi\)
\(360\) −4.28918 + 9.51359i −0.226059 + 0.501410i
\(361\) −2.50960 4.34675i −0.132084 0.228776i
\(362\) −44.9363 16.3555i −2.36180 0.859625i
\(363\) 9.22163 + 9.93549i 0.484010 + 0.521478i
\(364\) −11.9307 + 2.02044i −0.625337 + 0.105900i
\(365\) −0.291006 + 1.65037i −0.0152319 + 0.0863846i
\(366\) −6.63865 + 21.5337i −0.347008 + 1.12559i
\(367\) −6.58512 37.3460i −0.343740 1.94945i −0.312439 0.949938i \(-0.601146\pi\)
−0.0313011 0.999510i \(-0.509965\pi\)
\(368\) 51.2760 + 88.8126i 2.67295 + 4.62968i
\(369\) −7.40527 10.2934i −0.385503 0.535855i
\(370\) 2.44547 + 4.23568i 0.127134 + 0.220203i
\(371\) −0.0775675 + 11.4469i −0.00402710 + 0.594294i
\(372\) 4.43293 + 88.5489i 0.229837 + 4.59105i
\(373\) 1.21562 6.89414i 0.0629426 0.356965i −0.937028 0.349255i \(-0.886435\pi\)
0.999970 0.00771003i \(-0.00245420\pi\)
\(374\) −1.57333 + 8.92279i −0.0813549 + 0.461386i
\(375\) −6.05466 0.757803i −0.312661 0.0391328i
\(376\) −68.5187 + 57.4941i −3.53358 + 2.96503i
\(377\) 2.85212 0.146891
\(378\) 25.1706 28.1612i 1.29464 1.44846i
\(379\) −0.100614 −0.00516821 −0.00258410 0.999997i \(-0.500823\pi\)
−0.00258410 + 0.999997i \(0.500823\pi\)
\(380\) 7.43288 6.23693i 0.381299 0.319948i
\(381\) 3.23255 4.26892i 0.165609 0.218703i
\(382\) −2.16339 + 12.2692i −0.110689 + 0.627746i
\(383\) 5.80050 32.8963i 0.296392 1.68092i −0.365100 0.930968i \(-0.618965\pi\)
0.661492 0.749952i \(-0.269924\pi\)
\(384\) −65.0949 + 42.0569i −3.32186 + 2.14621i
\(385\) 1.46224 0.831065i 0.0745227 0.0423550i
\(386\) 14.9753 + 25.9381i 0.762225 + 1.32021i
\(387\) −1.11700 + 14.9671i −0.0567804 + 0.760818i
\(388\) −4.05659 7.02622i −0.205942 0.356702i
\(389\) 1.37058 + 7.77293i 0.0694910 + 0.394103i 0.999638 + 0.0269151i \(0.00856837\pi\)
−0.930147 + 0.367188i \(0.880321\pi\)
\(390\) −0.952238 1.02595i −0.0482184 0.0519511i
\(391\) 2.10153 11.9184i 0.106279 0.602738i
\(392\) −68.2326 0.924769i −3.44626 0.0467079i
\(393\) 0.583665 1.89323i 0.0294420 0.0955008i
\(394\) −20.9099 7.61057i −1.05342 0.383415i
\(395\) −2.04361 3.53964i −0.102825 0.178098i
\(396\) −20.6978 + 21.2335i −1.04011 + 1.06702i
\(397\) 0.470708 0.815291i 0.0236242 0.0409183i −0.853972 0.520320i \(-0.825813\pi\)
0.877596 + 0.479401i \(0.159146\pi\)
\(398\) −15.7476 5.73164i −0.789354 0.287301i
\(399\) −20.7527 + 8.58658i −1.03893 + 0.429867i
\(400\) −58.5521 49.1311i −2.92761 2.45655i
\(401\) 5.61137 + 4.70850i 0.280219 + 0.235131i 0.772054 0.635557i \(-0.219229\pi\)
−0.491835 + 0.870688i \(0.663674\pi\)
\(402\) 8.07819 + 19.1555i 0.402903 + 0.955389i
\(403\) −7.14660 2.60115i −0.355997 0.129572i
\(404\) 47.3335 + 81.9840i 2.35493 + 4.07886i
\(405\) 3.17596 + 0.476703i 0.157815 + 0.0236876i
\(406\) 24.7377 + 4.53498i 1.22771 + 0.225067i
\(407\) 1.54331 + 8.75257i 0.0764992 + 0.433849i
\(408\) 31.0143 + 3.88176i 1.53544 + 0.192176i
\(409\) −0.996149 + 5.64944i −0.0492564 + 0.279347i −0.999481 0.0322194i \(-0.989742\pi\)
0.950224 + 0.311566i \(0.100854\pi\)
\(410\) −3.89395 + 1.41728i −0.192308 + 0.0699945i
\(411\) −0.663496 13.2535i −0.0327279 0.653748i
\(412\) 22.3355 + 8.12946i 1.10039 + 0.400510i
\(413\) 12.5604 14.7645i 0.618057 0.726516i
\(414\) 37.6125 38.5859i 1.84855 1.89639i
\(415\) 2.64120 0.129652
\(416\) −3.37817 19.1586i −0.165629 0.939327i
\(417\) −21.8246 23.5140i −1.06875 1.15149i
\(418\) 22.5409 8.20421i 1.10251 0.401281i
\(419\) 3.61040 20.4756i 0.176380 1.00030i −0.760160 0.649736i \(-0.774879\pi\)
0.936539 0.350563i \(-0.114010\pi\)
\(420\) −4.87175 7.65368i −0.237717 0.373461i
\(421\) −15.9469 + 13.3810i −0.777203 + 0.652151i −0.942543 0.334086i \(-0.891572\pi\)
0.165339 + 0.986237i \(0.447128\pi\)
\(422\) 21.2168 1.03282
\(423\) 22.7478 + 15.4990i 1.10604 + 0.753585i
\(424\) −42.1777 −2.04833
\(425\) 1.56632 + 8.88303i 0.0759776 + 0.430890i
\(426\) 17.5788 11.3574i 0.851696 0.550269i
\(427\) −7.98798 9.65177i −0.386565 0.467082i
\(428\) 21.6768 7.88971i 1.04779 0.381364i
\(429\) −0.988375 2.34370i −0.0477192 0.113155i
\(430\) 4.60892 + 1.67751i 0.222262 + 0.0808968i
\(431\) 16.3858 28.3810i 0.789275 1.36706i −0.137136 0.990552i \(-0.543790\pi\)
0.926412 0.376512i \(-0.122877\pi\)
\(432\) 61.1385 + 53.9050i 2.94153 + 2.59350i
\(433\) −16.9237 −0.813300 −0.406650 0.913584i \(-0.633303\pi\)
−0.406650 + 0.913584i \(0.633303\pi\)
\(434\) −57.8498 33.9243i −2.77688 1.62842i
\(435\) 0.830946 + 1.97039i 0.0398408 + 0.0944730i
\(436\) −28.5668 23.9704i −1.36810 1.14797i
\(437\) −30.1084 + 10.9586i −1.44028 + 0.524219i
\(438\) 19.8887 + 10.1925i 0.950318 + 0.487015i
\(439\) −1.92757 10.9318i −0.0919981 0.521747i −0.995626 0.0934288i \(-0.970217\pi\)
0.903628 0.428318i \(-0.140894\pi\)
\(440\) 3.09854 + 5.36683i 0.147717 + 0.255853i
\(441\) 5.41941 + 20.2887i 0.258067 + 0.966127i
\(442\) −2.09622 + 3.63076i −0.0997070 + 0.172698i
\(443\) −9.87206 3.59314i −0.469036 0.170715i 0.0966798 0.995316i \(-0.469178\pi\)
−0.565715 + 0.824600i \(0.691400\pi\)
\(444\) 46.7382 10.6753i 2.21810 0.506625i
\(445\) 1.46549 + 1.22969i 0.0694710 + 0.0582931i
\(446\) 17.8757 6.50624i 0.846441 0.308079i
\(447\) −17.1259 18.4517i −0.810028 0.872734i
\(448\) 0.599973 88.5401i 0.0283461 4.18313i
\(449\) −11.8726 + 20.5639i −0.560303 + 0.970473i 0.437167 + 0.899380i \(0.355982\pi\)
−0.997470 + 0.0710924i \(0.977351\pi\)
\(450\) −16.5067 + 36.6126i −0.778132 + 1.72593i
\(451\) −7.53001 −0.354574
\(452\) 12.3192 10.3371i 0.579447 0.486214i
\(453\) −10.4843 + 6.77377i −0.492596 + 0.318259i
\(454\) 30.9164 + 25.9420i 1.45098 + 1.21752i
\(455\) 0.767327 0.129946i 0.0359728 0.00609194i
\(456\) −32.1551 76.2482i −1.50580 3.57065i
\(457\) 4.43279 3.71956i 0.207357 0.173993i −0.533195 0.845993i \(-0.679009\pi\)
0.740552 + 0.671999i \(0.234564\pi\)
\(458\) −10.4785 + 18.1493i −0.489627 + 0.848059i
\(459\) −1.43800 9.51079i −0.0671203 0.443926i
\(460\) −6.47167 11.2093i −0.301743 0.522634i
\(461\) 5.84489 + 33.1480i 0.272224 + 1.54386i 0.747644 + 0.664099i \(0.231185\pi\)
−0.475420 + 0.879759i \(0.657704\pi\)
\(462\) −4.84606 21.8995i −0.225459 1.01886i
\(463\) −8.83945 + 3.21730i −0.410804 + 0.149520i −0.539151 0.842209i \(-0.681255\pi\)
0.128347 + 0.991729i \(0.459033\pi\)
\(464\) −9.42449 + 53.4490i −0.437521 + 2.48131i
\(465\) −0.285106 5.69507i −0.0132215 0.264103i
\(466\) 27.9130 23.4218i 1.29304 1.08499i
\(467\) 19.3667 33.5441i 0.896183 1.55224i 0.0638504 0.997959i \(-0.479662\pi\)
0.832333 0.554276i \(-0.187005\pi\)
\(468\) −12.3601 + 5.95699i −0.571346 + 0.275362i
\(469\) −11.3691 2.08421i −0.524976 0.0962398i
\(470\) 6.89078 5.78205i 0.317848 0.266706i
\(471\) 20.0476 + 21.5996i 0.923747 + 0.995256i
\(472\) 54.7131 + 45.9097i 2.51837 + 2.11317i
\(473\) 6.82746 + 5.72892i 0.313927 + 0.263416i
\(474\) −53.1372 + 12.1368i −2.44067 + 0.557462i
\(475\) 18.2936 15.3502i 0.839369 0.704315i
\(476\) −17.6075 + 20.6973i −0.807037 + 0.948659i
\(477\) 3.51931 + 12.4937i 0.161138 + 0.572045i
\(478\) −36.9805 + 64.0521i −1.69145 + 2.92968i
\(479\) 24.5433 20.5943i 1.12141 0.940976i 0.122736 0.992439i \(-0.460833\pi\)
0.998675 + 0.0514637i \(0.0163887\pi\)
\(480\) 12.2515 7.91555i 0.559204 0.361294i
\(481\) −0.714121 + 4.04998i −0.0325611 + 0.184663i
\(482\) −17.5300 + 6.38041i −0.798471 + 0.290620i
\(483\) 6.47300 + 29.2517i 0.294532 + 1.33100i
\(484\) −7.54015 42.7623i −0.342734 1.94374i
\(485\) 0.260902 + 0.451895i 0.0118469 + 0.0205195i
\(486\) 18.5526 38.6008i 0.841565 1.75097i
\(487\) 1.62963 2.82261i 0.0738457 0.127905i −0.826738 0.562587i \(-0.809806\pi\)
0.900584 + 0.434683i \(0.143139\pi\)
\(488\) 35.3622 29.6724i 1.60077 1.34321i
\(489\) −13.1315 + 17.3416i −0.593829 + 0.784213i
\(490\) 6.86200 + 0.0930020i 0.309993 + 0.00420140i
\(491\) −14.9485 12.5433i −0.674618 0.566071i 0.239811 0.970820i \(-0.422915\pi\)
−0.914428 + 0.404748i \(0.867359\pi\)
\(492\) 2.03091 + 40.5680i 0.0915605 + 1.82894i
\(493\) 4.90640 4.11696i 0.220973 0.185418i
\(494\) 11.0995 0.499390
\(495\) 1.33119 1.36564i 0.0598326 0.0613811i
\(496\) 72.3609 125.333i 3.24910 5.62761i
\(497\) −0.0788474 + 11.6358i −0.00353679 + 0.521936i
\(498\) 10.3767 33.6588i 0.464992 1.50829i
\(499\) 33.1112 12.0515i 1.48226 0.539499i 0.530862 0.847458i \(-0.321868\pi\)
0.951400 + 0.307959i \(0.0996460\pi\)
\(500\) 14.9731 + 12.5639i 0.669618 + 0.561877i
\(501\) −3.30354 + 10.7156i −0.147591 + 0.478740i
\(502\) 38.6121 + 14.0537i 1.72334 + 0.627245i
\(503\) −9.87950 + 17.1118i −0.440505 + 0.762978i −0.997727 0.0673862i \(-0.978534\pi\)
0.557222 + 0.830364i \(0.311867\pi\)
\(504\) −74.6176 + 20.4742i −3.32373 + 0.911992i
\(505\) −3.04428 5.27285i −0.135469 0.234639i
\(506\) −5.55646 31.5123i −0.247015 1.40089i
\(507\) 1.06697 + 21.3130i 0.0473858 + 0.946544i
\(508\) −16.1182 + 5.86654i −0.715129 + 0.260286i
\(509\) 3.50639 + 2.94221i 0.155418 + 0.130411i 0.717181 0.696887i \(-0.245432\pi\)
−0.561763 + 0.827298i \(0.689877\pi\)
\(510\) −3.11904 0.390380i −0.138113 0.0172863i
\(511\) −10.8026 + 6.13964i −0.477877 + 0.271602i
\(512\) 64.3628 2.84446
\(513\) −19.9028 + 15.8870i −0.878731 + 0.701427i
\(514\) −11.6945 + 20.2555i −0.515822 + 0.893430i
\(515\) −1.43652 0.522851i −0.0633006 0.0230396i
\(516\) 29.0231 38.3281i 1.27767 1.68730i
\(517\) 15.3600 5.59058i 0.675532 0.245874i
\(518\) −12.6335 + 33.9919i −0.555086 + 1.49352i
\(519\) 2.06102 + 41.1693i 0.0904686 + 1.80713i
\(520\) 0.497938 + 2.82395i 0.0218360 + 0.123838i
\(521\) −15.0838 −0.660832 −0.330416 0.943835i \(-0.607189\pi\)
−0.330416 + 0.943835i \(0.607189\pi\)
\(522\) 28.3748 2.84813i 1.24193 0.124659i
\(523\) 6.82923 0.298621 0.149311 0.988790i \(-0.452295\pi\)
0.149311 + 0.988790i \(0.452295\pi\)
\(524\) −4.86145 + 4.07924i −0.212374 + 0.178203i
\(525\) −11.9902 18.8371i −0.523296 0.822117i
\(526\) −3.31714 + 18.8124i −0.144634 + 0.820261i
\(527\) −16.0487 + 5.84126i −0.699094 + 0.254449i
\(528\) 47.1871 10.7778i 2.05356 0.469042i
\(529\) 3.42799 + 19.4411i 0.149043 + 0.845264i
\(530\) 4.24171 0.184248
\(531\) 9.03388 20.0375i 0.392037 0.869555i
\(532\) 70.7627 + 12.9724i 3.06795 + 0.562424i
\(533\) −3.27415 1.19169i −0.141819 0.0516180i
\(534\) 21.4285 13.8447i 0.927303 0.599118i
\(535\) −1.39415 + 0.507431i −0.0602746 + 0.0219381i
\(536\) 7.39534 41.9411i 0.319430 1.81158i
\(537\) −8.43196 + 11.1353i −0.363866 + 0.480523i
\(538\) 7.00707 + 39.7391i 0.302096 + 1.71327i
\(539\) 11.6595 + 4.42356i 0.502210 + 0.190536i
\(540\) −7.71644 6.80348i −0.332063 0.292775i
\(541\) 17.3586 + 30.0660i 0.746305 + 1.29264i 0.949583 + 0.313517i \(0.101507\pi\)
−0.203278 + 0.979121i \(0.565159\pi\)
\(542\) −28.7953 10.4806i −1.23687 0.450182i
\(543\) 18.1994 24.0343i 0.781013 1.03141i
\(544\) −33.4663 28.0815i −1.43486 1.20399i
\(545\) 1.83729 + 1.54167i 0.0787008 + 0.0660378i
\(546\) 1.35867 10.2892i 0.0581456 0.440335i
\(547\) −29.2610 10.6501i −1.25111 0.455366i −0.370332 0.928899i \(-0.620756\pi\)
−0.880776 + 0.473533i \(0.842978\pi\)
\(548\) −21.2539 + 36.8128i −0.907920 + 1.57256i
\(549\) −11.7400 7.99894i −0.501052 0.341386i
\(550\) 11.9246 + 20.6540i 0.508465 + 0.880688i
\(551\) −15.9342 5.79958i −0.678821 0.247071i
\(552\) −107.615 + 24.5799i −4.58041 + 1.04619i
\(553\) 10.5575 28.4060i 0.448949 1.20795i
\(554\) −0.760231 + 4.31148i −0.0322991 + 0.183177i
\(555\) −3.00600 + 0.686585i −0.127597 + 0.0291439i
\(556\) 17.8451 + 101.204i 0.756800 + 4.29202i
\(557\) 0.899386 + 1.55778i 0.0381082 + 0.0660053i 0.884450 0.466634i \(-0.154534\pi\)
−0.846342 + 0.532639i \(0.821200\pi\)
\(558\) −73.6967 18.7414i −3.11983 0.793386i
\(559\) 2.06202 + 3.57152i 0.0872141 + 0.151059i
\(560\) −0.100351 + 14.8092i −0.00424061 + 0.625802i
\(561\) −5.08334 2.60509i −0.214619 0.109987i
\(562\) 8.91219 50.5436i 0.375938 2.13205i
\(563\) 2.99316 16.9750i 0.126147 0.715413i −0.854474 0.519495i \(-0.826120\pi\)
0.980620 0.195918i \(-0.0627687\pi\)
\(564\) −34.2620 81.2442i −1.44269 3.42100i
\(565\) −0.792317 + 0.664833i −0.0333330 + 0.0279697i
\(566\) −70.0034 −2.94246
\(567\) 12.2909 + 20.3945i 0.516168 + 0.856488i
\(568\) −42.8736 −1.79894
\(569\) 34.5032 28.9516i 1.44645 1.21372i 0.511330 0.859384i \(-0.329153\pi\)
0.935120 0.354331i \(-0.115292\pi\)
\(570\) 3.23377 + 7.66811i 0.135448 + 0.321182i
\(571\) −7.52563 + 42.6800i −0.314938 + 1.78610i 0.257629 + 0.966244i \(0.417059\pi\)
−0.572567 + 0.819858i \(0.694052\pi\)
\(572\) −1.41485 + 8.02399i −0.0591577 + 0.335500i
\(573\) −6.98979 3.58210i −0.292003 0.149644i
\(574\) −26.5034 15.5421i −1.10623 0.648717i
\(575\) −15.9279 27.5880i −0.664240 1.15050i
\(576\) −27.2214 96.6366i −1.13422 4.02652i
\(577\) 10.9039 + 18.8860i 0.453933 + 0.786235i 0.998626 0.0524002i \(-0.0166871\pi\)
−0.544693 + 0.838636i \(0.683354\pi\)
\(578\) −6.47553 36.7246i −0.269347 1.52754i
\(579\) −18.4078 + 4.20444i −0.765003 + 0.174731i
\(580\) 1.18949 6.74592i 0.0493908 0.280109i
\(581\) 12.4858 + 15.0865i 0.517999 + 0.625892i
\(582\) 6.78387 1.54947i 0.281200 0.0642276i
\(583\) 7.24300 + 2.63624i 0.299974 + 0.109182i
\(584\) −22.8910 39.6484i −0.947236 1.64066i
\(585\) 0.794947 0.383127i 0.0328670 0.0158404i
\(586\) 8.24251 14.2765i 0.340495 0.589755i
\(587\) 44.1339 + 16.0634i 1.82160 + 0.663009i 0.994959 + 0.100280i \(0.0319739\pi\)
0.826642 + 0.562729i \(0.190248\pi\)
\(588\) 20.6873 64.0087i 0.853128 2.63967i
\(589\) 34.6374 + 29.0642i 1.42721 + 1.19757i
\(590\) −5.50237 4.61704i −0.226529 0.190080i
\(591\) 8.46861 11.1837i 0.348352 0.460035i
\(592\) −73.5374 26.7654i −3.02237 1.10005i
\(593\) −15.7914 27.3515i −0.648475 1.12319i −0.983487 0.180978i \(-0.942074\pi\)
0.335012 0.942214i \(-0.391260\pi\)
\(594\) −12.1735 22.3297i −0.499483 0.916199i
\(595\) 1.13243 1.33116i 0.0464252 0.0545721i
\(596\) 14.0032 + 79.4160i 0.573592 + 3.25300i
\(597\) 6.37784 8.42261i 0.261028 0.344714i
\(598\) 2.57108 14.5813i 0.105139 0.596275i
\(599\) 31.4551 11.4487i 1.28522 0.467782i 0.393065 0.919511i \(-0.371415\pi\)
0.892155 + 0.451729i \(0.149193\pi\)
\(600\) 69.1052 44.6479i 2.82121 1.82274i
\(601\) −30.8500 11.2285i −1.25840 0.458020i −0.375167 0.926957i \(-0.622415\pi\)
−0.883231 + 0.468937i \(0.844637\pi\)
\(602\) 12.2060 + 34.2561i 0.497479 + 1.39618i
\(603\) −13.0406 + 1.30896i −0.531056 + 0.0533049i
\(604\) 39.9838 1.62692
\(605\) 0.484949 + 2.75028i 0.0197160 + 0.111815i
\(606\) −79.1562 + 18.0797i −3.21550 + 0.734437i
\(607\) −30.8989 + 11.2463i −1.25415 + 0.456472i −0.881801 0.471622i \(-0.843669\pi\)
−0.372346 + 0.928094i \(0.621447\pi\)
\(608\) −20.0844 + 113.905i −0.814532 + 4.61944i
\(609\) −7.32666 + 14.0610i −0.296891 + 0.569781i
\(610\) −3.55630 + 2.98409i −0.143990 + 0.120822i
\(611\) 7.56351 0.305987
\(612\) −12.6639 + 28.0891i −0.511908 + 1.13543i
\(613\) 43.6248 1.76199 0.880994 0.473127i \(-0.156875\pi\)
0.880994 + 0.473127i \(0.156875\pi\)
\(614\) 5.53992 + 31.4184i 0.223573 + 1.26794i
\(615\) −0.130619 2.60915i −0.00526707 0.105211i
\(616\) −16.0073 + 43.0695i −0.644954 + 1.73532i
\(617\) 29.1770 10.6196i 1.17462 0.427528i 0.320324 0.947308i \(-0.396208\pi\)
0.854300 + 0.519780i \(0.173986\pi\)
\(618\) −12.3069 + 16.2525i −0.495054 + 0.653771i
\(619\) −1.30905 0.476457i −0.0526154 0.0191504i 0.315578 0.948900i \(-0.397801\pi\)
−0.368194 + 0.929749i \(0.620024\pi\)
\(620\) −9.13284 + 15.8185i −0.366784 + 0.635288i
\(621\) 16.2604 + 29.8263i 0.652506 + 1.19689i
\(622\) −54.3792 −2.18041
\(623\) −0.0961149 + 14.1840i −0.00385076 + 0.568270i
\(624\) 22.2233 + 2.78147i 0.889644 + 0.111348i
\(625\) 17.7004 + 14.8524i 0.708016 + 0.594096i
\(626\) −21.6810 + 7.89123i −0.866546 + 0.315397i
\(627\) 0.756114 + 15.1036i 0.0301963 + 0.603179i
\(628\) −16.3921 92.9645i −0.654118 3.70969i
\(629\) 4.61757 + 7.99787i 0.184115 + 0.318896i
\(630\) 7.50413 2.05904i 0.298971 0.0820342i
\(631\) −8.49624 + 14.7159i −0.338230 + 0.585832i −0.984100 0.177616i \(-0.943162\pi\)
0.645870 + 0.763448i \(0.276495\pi\)
\(632\) 104.925 + 38.1894i 4.17368 + 1.51909i
\(633\) −3.94061 + 12.7821i −0.156625 + 0.508043i
\(634\) −35.3040 29.6236i −1.40210 1.17650i
\(635\) 1.03665 0.377310i 0.0411382 0.0149731i
\(636\) 12.2492 39.7327i 0.485713 1.57550i
\(637\) 4.36965 + 3.76865i 0.173132 + 0.149319i
\(638\) 8.46724 14.6657i 0.335221 0.580620i
\(639\) 3.57738 + 12.6998i 0.141519 + 0.502397i
\(640\) −15.9664 −0.631127
\(641\) −20.5762 + 17.2655i −0.812710 + 0.681945i −0.951253 0.308412i \(-0.900203\pi\)
0.138543 + 0.990356i \(0.455758\pi\)
\(642\) 0.989241 + 19.7604i 0.0390422 + 0.779879i
\(643\) 35.0679 + 29.4255i 1.38294 + 1.16043i 0.968108 + 0.250533i \(0.0806057\pi\)
0.414837 + 0.909896i \(0.363839\pi\)
\(644\) 33.4332 89.9557i 1.31745 3.54475i
\(645\) −1.86664 + 2.46509i −0.0734988 + 0.0970629i
\(646\) 19.0941 16.0218i 0.751246 0.630371i
\(647\) 11.6262 20.1371i 0.457072 0.791671i −0.541733 0.840551i \(-0.682232\pi\)
0.998805 + 0.0488793i \(0.0155650\pi\)
\(648\) −74.8359 + 45.7944i −2.93983 + 1.79898i
\(649\) −6.52615 11.3036i −0.256174 0.443706i
\(650\) 1.91629 + 10.8678i 0.0751630 + 0.426271i
\(651\) 31.1822 28.5509i 1.22213 1.11900i
\(652\) 65.4767 23.8316i 2.56427 0.933317i
\(653\) 0.668221 3.78967i 0.0261495 0.148301i −0.968937 0.247306i \(-0.920455\pi\)
0.995087 + 0.0990047i \(0.0315659\pi\)
\(654\) 26.8649 17.3571i 1.05050 0.678715i
\(655\) 0.312667 0.262359i 0.0122169 0.0102512i
\(656\) 33.1516 57.4202i 1.29435 2.24188i
\(657\) −9.83441 + 10.0889i −0.383677 + 0.393606i
\(658\) 65.6018 + 12.0263i 2.55742 + 0.468833i
\(659\) −25.4848 + 21.3843i −0.992746 + 0.833012i −0.985963 0.166965i \(-0.946603\pi\)
−0.00678272 + 0.999977i \(0.502159\pi\)
\(660\) −5.95560 + 1.36029i −0.231821 + 0.0529492i
\(661\) −5.73044 4.80841i −0.222888 0.187026i 0.524505 0.851407i \(-0.324250\pi\)
−0.747393 + 0.664382i \(0.768695\pi\)
\(662\) 57.0587 + 47.8779i 2.21765 + 1.86083i
\(663\) −1.79803 1.93722i −0.0698296 0.0752352i
\(664\) −55.2738 + 46.3802i −2.14504 + 1.79990i
\(665\) −4.55114 0.834326i −0.176486 0.0323538i
\(666\) −3.06024 + 41.0051i −0.118582 + 1.58892i
\(667\) −11.3099 + 19.5893i −0.437921 + 0.758501i
\(668\) 27.5157 23.0885i 1.06462 0.893319i
\(669\) 0.599626 + 11.9777i 0.0231829 + 0.463084i
\(670\) −0.743733 + 4.21792i −0.0287329 + 0.162952i
\(671\) −7.92722 + 2.88527i −0.306027 + 0.111385i
\(672\) 103.130 + 32.5610i 3.97834 + 1.25607i
\(673\) 2.06817 + 11.7292i 0.0797222 + 0.452127i 0.998371 + 0.0570524i \(0.0181702\pi\)
−0.918649 + 0.395075i \(0.870719\pi\)
\(674\) −29.2579 50.6762i −1.12697 1.95197i
\(675\) −18.9915 16.7446i −0.730984 0.644498i
\(676\) 34.1784 59.1987i 1.31455 2.27687i
\(677\) −12.7010 + 10.6574i −0.488139 + 0.409597i −0.853359 0.521324i \(-0.825438\pi\)
0.365220 + 0.930921i \(0.380994\pi\)
\(678\) 5.35963 + 12.7091i 0.205835 + 0.488089i
\(679\) −1.34784 + 3.62652i −0.0517254 + 0.139173i
\(680\) 4.93288 + 4.13918i 0.189167 + 0.158730i
\(681\) −21.3709 + 13.8075i −0.818936 + 0.529103i
\(682\) −34.5917 + 29.0259i −1.32458 + 1.11146i
\(683\) −12.4145 −0.475029 −0.237514 0.971384i \(-0.576333\pi\)
−0.237514 + 0.971384i \(0.576333\pi\)
\(684\) 81.1667 8.14713i 3.10348 0.311513i
\(685\) 1.36695 2.36763i 0.0522286 0.0904626i
\(686\) 31.9076 + 39.6351i 1.21824 + 1.51328i
\(687\) −8.98788 9.68365i −0.342909 0.369454i
\(688\) −73.7444 + 26.8408i −2.81148 + 1.02329i
\(689\) 2.73215 + 2.29254i 0.104087 + 0.0873390i
\(690\) 10.8226 2.47194i 0.412010 0.0941052i
\(691\) 22.0563 + 8.02785i 0.839062 + 0.305394i 0.725573 0.688146i \(-0.241575\pi\)
0.113489 + 0.993539i \(0.463797\pi\)
\(692\) 66.0208 114.351i 2.50974 4.34699i
\(693\) 14.0935 + 1.14789i 0.535367 + 0.0436047i
\(694\) −14.7414 25.5328i −0.559574 0.969211i
\(695\) −1.14772 6.50902i −0.0435353 0.246901i
\(696\) −51.9902 26.6438i −1.97068 1.00993i
\(697\) −7.35260 + 2.67613i −0.278500 + 0.101366i
\(698\) −25.6684 21.5384i −0.971564 0.815239i
\(699\) 8.92620 + 21.1664i 0.337620 + 0.800585i
\(700\) −0.484676 + 71.5253i −0.0183190 + 2.70340i
\(701\) −19.0250 −0.718566 −0.359283 0.933229i \(-0.616979\pi\)
−0.359283 + 0.933229i \(0.616979\pi\)
\(702\) −1.75930 11.6358i −0.0664006 0.439166i
\(703\) 12.2250 21.1744i 0.461075 0.798606i
\(704\) −56.0235 20.3909i −2.11147 0.768511i
\(705\) 2.20358 + 5.22527i 0.0829916 + 0.196795i
\(706\) −34.8521 + 12.6851i −1.31167 + 0.477411i
\(707\) 15.7270 42.3153i 0.591476 1.59143i
\(708\) −59.1382 + 38.2083i −2.22255 + 1.43596i
\(709\) −2.57431 14.5996i −0.0966801 0.548300i −0.994220 0.107366i \(-0.965758\pi\)
0.897539 0.440934i \(-0.145353\pi\)
\(710\) 4.31170 0.161815
\(711\) 2.55735 34.2668i 0.0959083 1.28510i
\(712\) −52.2629 −1.95863
\(713\) 46.2049 38.7705i 1.73039 1.45197i
\(714\) −12.5149 19.6613i −0.468357 0.735805i
\(715\) 0.0909966 0.516067i 0.00340308 0.0192998i
\(716\) 42.0436 15.3026i 1.57124 0.571885i
\(717\) −31.7199 34.1754i −1.18460 1.27630i
\(718\) −7.36520 41.7701i −0.274867 1.55885i
\(719\) −26.2476 −0.978871 −0.489436 0.872039i \(-0.662797\pi\)
−0.489436 + 0.872039i \(0.662797\pi\)
\(720\) 4.55303 + 16.1634i 0.169681 + 0.602374i
\(721\) −3.80439 10.6770i −0.141683 0.397634i
\(722\) −12.9581 4.71637i −0.482251 0.175525i
\(723\) −0.588030 11.7460i −0.0218691 0.436840i
\(724\) −90.7463 + 33.0290i −3.37256 + 1.22751i
\(725\) 2.92754 16.6029i 0.108726 0.616617i
\(726\) 36.9542 + 4.62520i 1.37150 + 0.171657i
\(727\) −6.88405 39.0414i −0.255315 1.44797i −0.795262 0.606266i \(-0.792667\pi\)
0.539946 0.841699i \(-0.318444\pi\)
\(728\) −13.7764 + 16.1939i −0.510586 + 0.600186i
\(729\) 19.8093 + 18.3464i 0.733678 + 0.679497i
\(730\) 2.30210 + 3.98735i 0.0852044 + 0.147578i
\(731\) 8.70262 + 3.16750i 0.321878 + 0.117154i
\(732\) 17.6825 + 41.9298i 0.653562 + 1.54977i
\(733\) 24.8681 + 20.8668i 0.918523 + 0.770732i 0.973721 0.227743i \(-0.0731346\pi\)
−0.0551981 + 0.998475i \(0.517579\pi\)
\(734\) −79.8123 66.9704i −2.94592 2.47192i
\(735\) −1.33051 + 4.11675i −0.0490767 + 0.151849i
\(736\) 144.984 + 52.7697i 5.34416 + 1.94512i
\(737\) −3.89142 + 6.74014i −0.143342 + 0.248276i
\(738\) −33.7635 8.58621i −1.24285 0.316063i
\(739\) −16.3460 28.3122i −0.601298 1.04148i −0.992625 0.121227i \(-0.961317\pi\)
0.391326 0.920252i \(-0.372016\pi\)
\(740\) 9.28133 + 3.37813i 0.341188 + 0.124182i
\(741\) −2.06151 + 6.68691i −0.0757316 + 0.245650i
\(742\) 20.0519 + 24.2285i 0.736130 + 0.889457i
\(743\) 2.39317 13.5723i 0.0877968 0.497920i −0.908921 0.416968i \(-0.863093\pi\)
0.996718 0.0809524i \(-0.0257962\pi\)
\(744\) 105.974 + 114.177i 3.88518 + 4.18594i
\(745\) −0.900622 5.10768i −0.0329962 0.187131i
\(746\) −9.61659 16.6564i −0.352088 0.609835i
\(747\) 18.3506 + 12.5029i 0.671412 + 0.457459i
\(748\) 9.14852 + 15.8457i 0.334503 + 0.579376i
\(749\) −9.48905 5.56457i −0.346722 0.203325i
\(750\) −14.0811 + 9.09761i −0.514170 + 0.332198i
\(751\) 6.83597 38.7687i 0.249448 1.41469i −0.560484 0.828165i \(-0.689385\pi\)
0.809932 0.586524i \(-0.199504\pi\)
\(752\) −24.9927 + 141.741i −0.911392 + 5.16876i
\(753\) −15.6381 + 20.6518i −0.569884 + 0.752592i
\(754\) 6.00266 5.03683i 0.218604 0.183430i
\(755\) −2.57158 −0.0935892
\(756\) 2.38312 76.2382i 0.0866731 2.77276i
\(757\) −34.5578 −1.25602 −0.628011 0.778204i \(-0.716131\pi\)
−0.628011 + 0.778204i \(0.716131\pi\)
\(758\) −0.211756 + 0.177684i −0.00769132 + 0.00645379i
\(759\) 20.0166 + 2.50529i 0.726558 + 0.0909362i
\(760\) 2.96042 16.7894i 0.107386 0.609014i
\(761\) −6.76432 + 38.3624i −0.245206 + 1.39063i 0.574807 + 0.818289i \(0.305077\pi\)
−0.820013 + 0.572345i \(0.806034\pi\)
\(762\) −0.735569 14.6932i −0.0266469 0.532278i
\(763\) −0.120499 + 17.7825i −0.00436236 + 0.643769i
\(764\) 12.5796 + 21.7885i 0.455113 + 0.788279i
\(765\) 0.814486 1.80657i 0.0294478 0.0653165i
\(766\) −45.8868 79.4782i −1.65796 2.87166i
\(767\) −1.04876 5.94780i −0.0378684 0.214763i
\(768\) −28.5749 + 92.6880i